函数的单调性与导数(获奖教案

合集下载

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。

2. 让学生掌握导数的定义,能够计算常见函数的导数。

3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。

二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。

2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗。

3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。

(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。

(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。

(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。

4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。

(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。

(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。

三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。

2. 采用案例分析法,分析导数与函数单调性的关系。

3. 采用练习法,让学生通过练习巩固所学知识。

四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。

2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。

3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。

教师资格证-优秀教案-高中数学《函数的单调性与导数》教案

教师资格证-优秀教案-高中数学《函数的单调性与导数》教案

《函数的单调性与导数》一、教学目标【知识与技能】探索函数的单调性与导数的关系,会利用导数判断函数的单调性并求函数的单调区间。

【过程与方法】通过观察、分析、概括等数学活动,拿握用导数研究单调性的方法,同时'渗透数形结合思想、转化思想。

【情感态度与价值观]在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

二、教学重难点【重点】探索并应用函数的单调性与导数的关系求单调区间。

【难点】探索函数的单调性与导数的关系。

三、教学过程(-)复习导入问题1:导数的几何意义是什么?问题2:函数单调性的定义,如何判断圈数单调性的方法?(图像法,定义法)问题提出:判断尸必的单调性,如何进行?(分别用图像法,定义法完成)那么如何判断,(x) = sin x-xxe(0:加;的单调性呢?引导学生图像法,定义去尝试发觉有困难,引出课题。

) 板书课题:函数的单调性与导数(-)新知探究探究任务一:函数单调性与其导数的关系:观察图(1)〜图(4)问题:通过观察,你能得到原圈数的单调性与其导函数的正负号有何关系?你能得到怎样的结 论? 学生讨论汇报:形成初步结论,板书结论:函数的单调性与导数的关系:在某个区间(。

0)内, 如果,(对> 0,那么函数y =在这个区间内单调递増;如果/(X )<0 ,那么函数V = /(x )在这个区间内单调递减.(三)应用新知判断下列函数的单调性并求出单调区间: (1) /(x) = sin X-x,xe (0,(2) f (x) = 2x 3 + 3X 2 -24x +1;(3) /'(x) = x 3+3x; (4) f(x) = x 2 — 2x —3: (5) f(x)=x+tax(对于(2)让学生课后探究尝试单调性的定义法和图象法)问:你对利用导数去研究函数的单调性有什么看法*尔能总结出利用导数求单调区间的步骤吗? 〈简单易行)学生讨论汇报:形成初步结论,板书结论:“求解函数y = /(x )单调区间的步骚:(1)确定函数y = 小 的定义域;(2) 求导数y =/(x)(3)解不等式f\x )>Q,解集在定义域内的部分为增区间:<4)解不等式/(对<0,解集在定义域内的部分为减区间.(四)小结作业小结:通过本节课的学习你学到了什么?函数的单调性与导数之间存在什么关系?作业:课后习题。

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。

2. 知道导数的定义,掌握求导的方法。

3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。

教学重点:1. 函数单调性与导数的概念及其关系。

2. 求导数的方法和技巧。

3. 应用函数单调性和导数解决实际问题。

教学难点:1. 求高阶导数,各种复杂函数的单调性判断。

2. 应用函数单调性与导数解决实际问题。

教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。

2. 实验法:以具体例子演示如何判断函数的单调性。

3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。

教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。

2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。

3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。

Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。

2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。

3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。

Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。

2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。

3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。

Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。

2. 分组讨论,展示各自的解题思路和方法,互相学习。

Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。

2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。

2. 学生实验用的计算器。

3. 相关练习题和例题。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。

举例说明函数单调性的两种类型:单调递增和单调递减。

1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。

通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。

第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。

引导学生学会识别函数图像中的单调区间。

2.2 导数法介绍导数与函数单调性的关系。

教授如何利用导数的正负来判断函数的单调性。

第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。

通过例题让学生掌握求解极值的方法。

3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。

通过例题让学生理解最值的求解过程。

第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。

通过例题展示导数在单调区间判断中的应用。

4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。

通过实际例子让学生学会如何运用单调性解决实际问题。

第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。

引导学生学会如何运用所学知识来解决问题。

5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。

提供一些拓展问题,激发学生的学习兴趣和思考能力。

第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。

通过例题展示函数单调性在其他数学领域的应用。

6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。

通过实际例子让学生学会如何运用函数单调性来解决优化问题。

函数的单调性与导数--公开课省名师优质课赛课获奖课件市赛课一等奖课件

函数的单调性与导数--公开课省名师优质课赛课获奖课件市赛课一等奖课件
假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数 y=f(x)在这一区间具有单调性。区间D叫做函数旳单调区间。
2.怎样用定义判断函数旳单调性?
(1)取值(2)作差(3)变形(4)定号(5)结论
二、讲授新课------导入新课
下图(1)表达高台跳水运动员旳高度 h 随时间 t 变化旳函 数h(t)= -4.9 t 2+6.5t+10 旳图象, 图(2)表达高台跳水运动 员旳速度 v 随时间 t 变化旳函数 v(t)= -9.8t+6.5 旳图象. 运动员从起跳到最高点, 以及从最高点到入水这两段时 间旳运动状态有什么区别?
二、讲授新课-----问题探究
观察下面某些函数旳图象, 探讨函数旳单调性与其导函数正负
旳关系.
y
(1)
y y=x (2)
y=x2o (3ຫໍສະໝຸດ yxoy=x3
y
(4)
x
y1 x
ox
o
x
二、讲授新课-----问题探究
y
一般地,函数旳单调性与其导
函数旳正负有如下关系:
(x1,f(x1))
y=f(x)
在某个区间(a,b)内,
解:(1)f '(x)=x3+3x= 3(x2+1)>0
所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x旳单调增区间为R。
二、讲授新课-----典例精讲
例 3. 判断下列函数旳单调性, 并求出单调区间:
(1) f(x)=x2-2x-3,
(2) f(x)=x2-2lnx
解 (2) 函数f(x)=x2-2lnx定义域为0,
h
(1)

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。

1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。

1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。

第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。

2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。

2.3 练习:判断一些复杂函数的单调性,并进行验证。

第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。

3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。

3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。

第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。

4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。

4.3 练习:运用性质与定理解决一些实际问题。

第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。

5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。

5.3 练习:判断函数的单调性,并找出其极值点。

第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。

6.2 讲解:复合函数单调性的定义和判断方法。

6.3 练习:判断复合函数的单调性,并进行验证。

第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。

7.2 讲解:反函数单调性的性质和判断方法。

高中数学函数的单调性的教学设计一等奖

高中数学函数的单调性的教学设计一等奖

1、高中数学函数的单调性的教学设计一等奖【教学目标】1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。

2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。

3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。

【教学重点】函数单调性的概念、判断。

【教学难点】根据定义证明函数的单调性。

【教学方法】教师启发讲授,学生探究学习。

【教学工具】教学多媒体。

【教学过程】一、创设情境,引入课题师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。

生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。

师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。

师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。

观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?二、归纳探索,形成概念我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的`专题研究之一──函数单调性的研究。

同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。

1.借助图象,直观感知首先,我们来研究一次函数和二次函数的单调性。

师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,师:根据图象,请同学们写出你对这两个函数单调性的描述。

生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.1函数的单调性与导数教材分析“函数单调性与导数”是高中数学(选修1-1)第三章导数及其应用的第三节,本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础.由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性.通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数而言),充分展示了导数解决问题的优越性.课时分配本节内容用1课时完成,主要经历从生活中的变化率问题抽象概括出函数平均变化率概念的过程,体会从特殊到一般的数学思想,体现了数学知识来源于生活,又服务于生活.教学目标重点:利用导数研究函数的单调性,会求函数的单调区间.难点:⒈探究函数的单调性与导数的关系;⒉如何用导数判断函数的单调性.知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想.教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯.自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法.考试点:利用导数判断函数的单调性并求函数的单调区间.易错易混点:导数的正负决定函数的单调性,而不是导数的单调性决定函数的单调性.教具准备:多媒体课件,三角板课堂模式:学案导学一.引入新课y 的单调性,如何进行?师:判断函数的单调性有哪些方法?比如判断2x生:用定义法、图像法.师:因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 生:注意定义域.师:如果遇到函数x x y 33-=,如何判断单调性呢?你能画出该函数的图像吗? 师:定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?揭示并板书课题:函数的单调性与导数【设计意图】通过复习回顾,巩固旧知.从已学过的知识(判断二次函数的单调性)入手,提出新的问题(判断三次函数的单调性),引起认知冲突,激发学习的兴趣.师:函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?二.探究新知师:如图(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 生:通过观察图像,可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.【设计意图】从具体的实际情景出发,提出本节课要探索的问题,函数的单调性与导数的关系.为学生提供一个联想的“源”,巧妙设问,把学习任务转移给学生;让学生完成对函数单调性与导数关系的第一次认识,明确研究课题.师:导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢?观察下面函数的图像,探讨函数的单调性与其导数正负的关系.(1)函数x y =的定义域为R ,并且在定义域上是增函数,其导数01/>=y ; (2)函数2x y =的定义域为R ,在),(+∞-∞上单调递减,在),0(+∞上单调递增;而x y 2/=,当0<x 时,其导数0/<y ;当0>x 时,其导数0/>y ;当0=x 时,其导数0/=y .(3)函数3x y =的定义域为R ,在定义域上为增函数;而2/3x y =,若0≠x ,则其导数032>x ,当0=x 时,其导数032=x ;(4)函数x y 1=的定义域为),0()0,(+∞⋃-∞,在)0,(-∞上单调递减,在),0(+∞上单调递减,而2/1xy -=,因为0≠x ,所以0/<y .师:以上四个函数的单调性及其导数符号的关系说明,在区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减.【设计意图】从具体的函数出发,体会数形结合思想的运用.让学生体会从特殊到一般,从具体到抽象的过程,降低思维难度,让学生在老师的引导下自主学习和探索,提高学习的成就感和自信心.三. 理解新知师:如图,导数'0()f x 表示函数)(x f 在点00(,)x y 处的切线的斜率.观察图像回答,函数在某个点处的导数值与函数在该点处的单调性是怎样的关系?生:在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数)(x f 在0x 附近单调递增;在1x x =处,0)(1/<x f ,切线是“左上右下”式的,这时,函数)(x f 在1x 附近单调递减.师生共同总结:函数的单调性与导数的关系: 在某个区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减. 说明:如果0)(/=x f ,那么函数)(x f y =在这个区间内是常函数.【设计意图】通过导数的几何意义来验证由具体函数所得到的结论,形成一般性结论.让学生经历观察、分析、归纳、发现规律的过程,体会函数单调性与导数的关系.四.运用新知例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图所示. 学生思考,并在纸上画出函数图像教师投影若干学生的作业情况,学生共同分析.【设计意图】让学生通过此题加深理解导函数是如何影响原函数的,这是今后利用 导函数研究函数的必备技能.这里让学生切实理解,为今后学习扫清障碍. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =-- (3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图1所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图2所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-<因此,函数()sin f x x x =-在(0,)π单调递减,如图3所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ;140 x当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图4所示. 学生练(3)、(4)【设计意图】让学生初步体会用导数的方法确定函数单调性的简便. 【师生活动】总结求()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 例3.已知函数xx y 1+=,试讨论出此函数的单调区间. 解:2222//)1)(1(111)1(x x x x x x x x y +-=-=-=+=2令0)1)(1(2>+-xx x . 解得11-<>x x 或∴xx y 1+=的单调增区间是:),1()1-,(+∞-∞和令0)1)(1(2<+-x x x ,解得1001<<<<-x x 或 ∴xx y 1+=的单调减区间是:)1,0()0,1(和-练习:93P 1题五.课堂小结(1)函数的单调性与导数的关系(2)求解函数()y f x =单调区间【设计意图】通过师生共同反思,优化学生的认知结构.六. 布置作业必做:课本89P A 组 1,2 选做:1、求下列函数的单调区间: (1) 76223+-=x x y (2) x xy 21+=(3) []π2,0,sin ∈=x x y (4) x x y ln = 2、已知32()f x x bx cx d =+++的图像过点(0,2)P 且在1x =-处的切线方程为670x y -+=,求(1)()f x 的解析式;(2)求函数()y f x =的单调区间. 3、已知函数13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 【设计意图】体现了分层、有梯度的教学,学生动手练习,加强学生的应用意识.七.教后反思1. 本节课的亮点:教学过程中教师指导启发学生以已知的熟悉的二次函数为研究的起点,发现函数的导数的正负与函数单调性的关系,从而到更多的,更复杂的函数,从中发现规律,并推广到一般.这个过程中既让学生获得了关于新知的内容,更可贵的是让学生体会到如何研究一个新问题,即探究方法的体验与感知.同时也渗透了归纳推理的数学思想方法,培养了学生的探索精神,积累了探究经验.2. 不足之处:学生对与数形结合的理解还不是很熟练,今后应多加强训练.八、板书设计。

相关文档
最新文档