导数与函数的单调性练习题

合集下载

导数与函数的单调性练习题

导数与函数的单调性练习题

导数与函数的单调性练习题2.2.1 导数与函数的单调性基础巩固题:1.已知函数 $f(x)=\frac{ax+1}{x+2}$ 在区间 $(-2,+\infty)$ 上为增函数,求实数 $a$ 的取值范围。

解析:由题意可得 $f(x)$ 在 $(-2,+\infty)$ 上单调递增,因此$a>-\frac{1}{2}$。

又因为$f(x)$ 的定义域为$(-2,+\infty)$,所以 $a$ 的取值范围为 $a\geq -\frac{1}{2}$ 或 $a\leq -2$,即$a\geq -\frac{1}{2}$ 或 $a\leq -2$。

2.已知函数 $f(x)=x^2+2x+a\ln x$ 在区间 $(0,1)$ 上单调,求实数 $a$ 的取值范围。

解析:由题意可得 $f(x)$ 在 $(0,1)$ 上单调,因此$f'(x)=2x+2+\frac{a}{x}$ 在 $(0,1)$ 上恒大于等于零或恒小于等于零。

化简可得 $a\geq -(2x^2+2x)$ 或 $a\leq -(2x^2+2x)$ 在$(0,1)$ 上恒成立。

记 $g(x)=-(2x^2+2x)$,则 $g(x)$ 在$(0,1)$ 上单调递增,且 $-4<g(x)<0$。

因此,$a\geq -4$ 或$a\leq -4$,即 $a\geq -4$ 或 $a\leq -4$。

3.已知函数$f(x)=\frac{x}{2x-9}$,求$f(x)$ 的单调区间。

解析:求导得 $f'(x)=\frac{9}{(2x-9)^2}$,$f'(x)>0$ 当且仅当 $x\frac{9}{2}$。

因此,$f(x)$ 在 $(-\infty,\frac{9}{2})$ 上单调递减,在 $(\frac{9}{2},+\infty)$ 上单调递增。

所以$f(x)$ 的单调区间为 $(-\infty,\frac{9}{2})$ 和$(\frac{9}{2},+\infty)$。

导数与函数的单调性附答案

导数与函数的单调性附答案

1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D.由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 2.函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选C .根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C .3.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D.由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A .因为f (x )=x sin x , 所以f (-x )=(-x )sin(-x )=x sin x =f (x ). 所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数. 所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3.所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A . 5.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)解析:选B .由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B .6.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)7.(2018·张掖第一次诊断考试)若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-a 2+1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞)8.(2017·高考江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1ex ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂。

高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第8练 导数与函数的单调性习题精选一、单选题1. 函数21()9ln 2f x x x =-在区间上单调递减,则实数m 的取值范围是( )A.B. C.D.2. 若函数()sin()sin(2)cos()2f x x x a x πππ=+---在区间(0,]2π上单调递增,则实数a 的取值范围是( )A. (,1]-∞-B. (-∞C. D. [1,)+∞3. 若函数在其定义域上不单调,则实数a 的取值范围为( )A. 1a <或4a >B. 4aC. 14a <<D. 14a4. 若函数2()ln 2f x x ax =+-在区间1(,2)2内存在单调递增区间,则实数a 的取值范围是( )A. (-,-2]∞B. 1(-,+)8∞C. 1(-2,-)8D. (-2,+)∞5. 已知函数()f x 是定义在R 上的偶函数,设函数()f x 的导函数为()f x ',若对任意0x >都有2()()0f x xf x +'>成立,则( )A. 4(2)9(3)f f -<B. 4(2)9(3)f f ->C. 2(3)3(2)f f >-D. 3(3)2(2)f f -<-(2,1)m m +(0,1)(0,2)6. 定义在(0,)+∞上的函数()f x 满足()10xf x '+>,(3)=-ln 3f ,则不等式()+0x f e x >的解集为( )A. 3(,+)e ∞B. 3(0,)eC. (ln 3,)+∞D. 3(ln 3,)e7. 已知函数,若存在1[,2]2x ∈,使得()()0f x xf x +'>,则实数b 的取值范围是( )A.B. 9(,)4-∞C. (,3)-∞D. (,2)-∞8. 已知4ln 3a π=,3ln 4b π=,34ln c π=,则a ,b ,c 的大小关系是( ) A. c b a <<B. b c a <<C. b a c <<D. a b c <<9. 已知是函数的导数,且,当0x 时,,则不等式的解集是( )A.B.C.D.10. 设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()2f x f x x =-+,当0x >时,()2 1.f x x '>+若(1)()21f a f a a +-++,则实数a 的取值范围是( )A. 1[,)2-+∞B. 3[,)2-+∞C. [1,)-+∞D. [2,)-+∞二、填空题11. 函数2()24ln f x x x x =--,则()f x 的单调递增区间为__________12. 设函数()x x f x e ae -=+ (a 为常数),若()f x 为奇函数,则a =__________;若()f x 是R 上的增函数,则a 的取值范围是__________.13. 写出一个同时具有下列性质①②③的函数__________.()f x '()f x①;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.三、解答题14. 已知函数2()sin sin 2.f x x x =(1)讨论()f x 在区间(0,)π的单调性; (2)证明:33|()|8f x ; (3)设*n N ∈,证明:222sin sin 2sin 4x x x (2)3sin 2.4nnn x15. 已知0a >且1a ≠,函数()(0).ax x f x x a =>(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.16. 已知函数()2ln 1af x x x x=--+,()(2ln ).x g x e x x =- (1)若函数()f x 在定义域上是增函数,求a 的取值范围; (2)求()g x 的单调区间.17. 已知函数21()ln (1)(0).2f x a x a x x a =-++->(1)讨论()f x 的单调性; (2)若21()2f x x ax b -++恒成立,求实数ab 的最大值.18. (本小题12.0分)已知函数2().xf x e ax x =+-(1)当1a =时,讨论()f x 的单调性; (2)当0x 时,31()12f x x +,求a 的取值范围.19. 已知函数(1)令,讨论的单调区间;(2)若2a =-,正实数12,x x 满足,证明1251.2x x -+()g x 1212()()0f x f x x x ++=20. 已知函数2()(2)x x f x ae a e x =+--,().a R ∈(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.答案和解析1.【答案】A解:()f x 的定义域是(0,)+∞,9(3)(3)()x x f x x x x+-'=-=, 令()0f x '>,解得:3x >,令()0f x '<,解得:03x <<, 故()f x 在(0,3)递减,在(3,)+∞递增, 若函数21()9ln 2f x x x =-在区间(2,1)m m +上单调递减, 则20m 且013m <+且21m m <+,解得:01m <, 故选:.A2.【答案】A解:因为1()sin()sin(2)cos()cos sin cos sin 2cos 22f x x x a x x x a x x a x πππ=+---=+=+在(0,]2π上是增函数,所以当(0,]2x π∈时,,即212sin sin 0x a x --,因为当(0,]2x π∈时,sin (0,1],x ∈所以12sin sin a x x-+, 令1()2sin sin g x x x =-+,(0,],2x π∈则22cos 1()2cos cos (2)0sin sin x g x x x x x '=--=--<,所以()g x 在(0,]2π单调递减,所以,即(,1],a ∈-∞-故选.A3.【答案】A解:求导可得,()f x ∴在其定义域上不单调等价于方程有两个解,,解得1a <或 4.a >故选.A4.【答案】D解:根据题意得1()2f x ax x'=+, ()f x 在区间1(,2)2内存在单调递增区间,则()0f x '在内有解,,故min 21()2a x-,,令21()=-2g x x ,,则()g x 在1(,2)2单调递增,1()(2,)8g x ∈--, 故-2.a > 故选.D5. 【答案】A解:1()||f x x =时,3(3)1f -=,2(2)1f -=,可以排除D ; ()||f x x =时,2(3)6f =,3(2)3(2)6f f -==,可排除C ;设2()()g x x f x =,22()(())2()()(2()())g x x f x xf x x f x x f x xf x '='=+'=+',0x >时,2()()0f x xf x +'>,0x ∴>时()0g x '>,()g x 为(0,)+∞上的单调增函数;(2)(3)g g ∴<,4(2)9(3)f f ∴<,又()f x 为偶函数,4(2)9(3)f f ∴-<,A ∴对,A ,B 矛盾,故B 错,故选.A6.【答案】C解:令()()ln g x f x x =+,(0,).x ∈+∞ 在(0,)+∞上的函数()f x 满足()10xf x '+>,1()1()()0xf x g x f x x x'''+∴=+=>,∴函数()g x 在(0,)+∞上单调递增,(3)(3)ln 30g f =+=,而不等式,所以3x e >,即ln3x >,∴不等式()0x f e x +>的解集为(ln3,).+∞故选.C7.【答案】B解:,,∴,∴,存在,使得,即,∴,设,∴.而,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以,∴,故选:.B8.【答案】B解: 令ln ()xf x x=,0x >, 则21ln (),0xf x x x-'=>, 令()0f x '>,得0x e <<,令()0f x '<,得x e >, 所以()f x 在(0,)e 单调递增,在(,)e +∞单调递减, 又3e π>>, 所以()(3)f f π<,即ln ln 33ππ<, 所以3ln ln 3ππ<, 又4ln 3a π=,34ln c π=, 所以a c >, 又由()f x 的单调性得ln 4ln 4ππ<,即4ln 4ln ππ<, 因为343ln 4,4ln 3ln b c πππ===, 所以b c <, 综合得.b c a << 故选.B9.【答案】D解:设,则因为当0x 时,,所以当0x 时,,即在上单调递增. 因为,所以,所以是偶函数. 因为,所以,即,,则,解得1.2x <故选.D10.【答案】A解:设()()g x f x x =-,则()()()[()]0g x g x f x x f x x --=---+=,()()g x g x ∴=-,()g x ∴是偶函数,当0x >时,()()1g x f x '='-,而()21f x x '>+,则()()120g x f x x '='->>,()g x ∴在(0,)+∞上是增函数, (1)()21f a f a a +-++, (1)(1)()()f a a f a a ∴+-+---,即(1)()g a g a +-,|1|||a a ∴+-,()g x ()g x即12a -, 故选:.A11.【答案】(2,)+∞解:()f x 定义域为(0,)+∞,242(2)2(2)(1)()22x x x x f x x x x x---+'=--==,故当02x <<时,()0f x '<,()f x 单调递减, 当2x >时,()0f x '>,()f x 单调递增, 故()f x 的单调递增区间为(2,).+∞ 故答案为(2,).+∞12.【答案】1-(,0]-∞解:根据题意,函数()xxf x e ae-=+,若()f x 为奇函数,则()()f x f x -=-, 即()xx x x eae e ae --+=-+,变形可得1a =-,经检验,1a =-满足()f x 为奇函数,()f x 是R 上的增函数,()0f x '∴对x R ∀∈恒成立,即0x xae e -对x R ∀∈恒成立,2()x a e ∴恒成立. 2()0x e >,0.a ∴故答案为1-;(,0].-∞13.【答案】2()(f x x =答案不唯一,均满足)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②,()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③. 故答案为:2()(f x x =答案不唯一,均满足)14.【答案】解:23(1)()sin sin 22sin cos f x x x x x ==,222222()2sin (3cos sin )2sin (34sin )2sin [32(1cos 2)]f x x x x x x x x ∴'=-=-=--22sin (12cos 2)x x =+,令()0f x '=,解得,3x π=,或23x π=, 当(0,)3x π∈或2(,)3ππ时,()0f x '>,当2(,)33x ππ∈时,()0f x '<, ()f x ∴在(0,)3π,2(,)3ππ上单调递增,在2(,)33ππ上单调递减.证明:(2)(0)()0f f π==,由(1)可知2()()3f x f π==极小值()()3f x f π==极大值()0f x '>()f x 'max 33()8f x ∴=,min 33()8f x =-, ,()f x 为周期函数,33|()|8f x ∴; (3)由(2)可知322333sin sin 2()84x x =,322333sin 2sin 4()84x x =,32232333sin 2sin 2()84x x =,…,3212333sin 2sin 2()84n nx x -=, 334sin sin 2sin 4x x x ∴……313233sin 2sin 2sin (sin sin 2sin 4n n x x x x x x -=……331223sin 2sin 2)sin 2()4nn nnx x x -,222sin sin 2sin 4x x x ∴……23sin 2.4nnn x15.【答案】解:(1)2a =时,2()2x x f x =,222ln 2()222ln 2(2ln 2)ln 2()(2)22x x x xxx x x x x x f x ⋅-⋅-⋅-'===, 当2(0,)ln 2x ∈时,()0f x '>,当2(,)ln 2x ∈+∞时,()0f x '<, 故()f x 在2(0,)ln 2上单调递增,在2(,)ln 2+∞上单调递减. (2)由题知()1f x =在(0,)+∞有两个不等实根,ln ln ()1ln ln a x x af x x a a x x a x a=⇔=⇔=⇔=, 令ln ()x g x x =,21ln ()xg x x-'=,()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,所以max 1()()g x g e e==, 又(1)0g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,即0()()g a g e <<,解得1a >且a e ≠, 所以a 的取值范围是(1,)(,).e e ⋃+∞16.【答案】解:(1)由题意得0x >,22()1af x x x'=-+,由函数()f x 在定义域上是增函数得,()0f x ', 即222(1)1(0)a x x x x -=--+>恒成立, 因为2(1)11(x --+当1x =时,取等号), 所以a 的取值范围是[1,).+∞2(2)()(2ln 1)x g x e x x x'=---+,由(1)得2a =时,2()2ln 1f x x x x=--+, 此时()f x 在定义域上是增函数,又(1)0f =, 所以,当(0,1)x ∈时,()0f x <, 当(1,)x ∈+∞时,()0.f x > 所以,当(0,1)x ∈时,()0g x '>, 当(1,)x ∈+∞时,()0.g x '< 所以()g x 的单调递增区间是(0,1),()g x 的单调递减区间是(1,).+∞17.【答案】解:,(0,0)a x >>,①1a =时,,()f x ∴在(0,)+∞上单调递减;②01a <<时,由()0f x '>,解得:1a x <<,()f x ∴在(,1)a 上单调递增,在(0,)a ,(1,)+∞上单调递减;③1a >时,同理()f x 在(1,)a 上单调递增,在(0,1),(,)a +∞上单调递减;21(2)()2f x x ax b -++恒成立,ln 0a x x b ∴-+恒成立,令()ln g x a x x b =-+,则()a xg x x-'=, ()g x ∴在(0,)a 上单调递增,在(,)a +∞上单调递减.max ()()ln 0g x g a a a a b ∴==-+,ln b a a a ∴-,22ln ab a a a ∴-,令22()ln (0)h x x x x x =->,则()(12ln )h x x x '=-,()h x ∴在上单调递增,在)+∞上单调递减,max ()2e h x h e e ∴==-=, .2e ab∴ 即ab 的最大值为.2e18.【答案】解:(1)当1a =时,2()x f x e x x =+-,()21x f x e x '=+-,记()()g x f x =',因为()20xg x e '=+>,所以()()21xg x f x e x ='=+-在R 上单调递增, 又(0)0f '=,得当0x >时()0f x '>,即2()xf x e x x =+-在(0,)+∞上单调递增; 当0x <时()0f x '<,即2()xf x e x x =+-在(,0)-∞上单调递减. 所以2()xf x e x x =+-在(,0)-∞上单调递减,在(0,)+∞上单调递增.(2)①当0x =时,a ∈R ;②当0x >时,31()12f x x +即32112xx x e a x++-, 令32112()x x x e h x x++-=,231(2)(1)2()x x e x x h x x ----'= 记21()12x m x e x x =---,()1x m x e x '=-- 令()1xq x e x =--,因为0x >,所以()10xq x e '=->,所以()()1xm x q x e x '==--在(0,)+∞上单调递增,即()1(0)0xm x e x m ''=-->=所以21()12x m x e x x =---在(0,)+∞上单调递增,即21()1(0)02x m x e x x m =--->=, 故当(0,2)x ∈时,()0h x '>,32112()xx x e h x x ++-=在(0,2)上单调递增; 当(2,)x ∈+∞时,()0h x '<,32112()xx x e h x x++-=在(2,)+∞上单调递减;所以2max7[()](2)4e h x h -==,所以274e a -,综上可知,实数a 的取值范围是27[,).4e -+∞19.【答案】(1)解:21()()(1)ln (1)12g x f x ax x ax a x =--=-+-+,所以21(1)1()(1)ax a x g x ax a x x-+-+'=-+-=,当0a 时,因为0x >,所以()0.g x '> 所以()g x 在(0,)+∞上是递增函数;当0a >时,1()(1)()a x x a g x x--+'=, 令()0g x '=,得1x a=, 所以当1(0,)x a∈时,()0g x '>;当1(,)x a∈+∞时,()0g x '<,因此函数()g x 在1(0,)a 是增函数,在1(,)a+∞是减函数,综上,当0a 时,()g x 的单调递增区间是(0,)+∞,无单调递减区间; 当0a >时,()g x 的单调递增区间是1(0,)a ,单调递减区间是1(,).a+∞(2)证明:当2a =-时,2()ln ,0f x x x x x =++>,由1212()()0f x f x x x ++=,即2211122212ln ln 0x x x x x x x x ++++++=,从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,则由()ln t t t ϕ=-,得1()t t tϕ-'=,0t >, 可知,()t ϕ在区间(0,1)上单调递减,在区间(1,)+∞上单调递增, 所以()(1)1t ϕϕ=,所以21212()()1x x x x +++,解得12512x x -+或12512x x --+, 又因为10x >,20x >,因此12512x x -+成立.20.【答案】解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(i)若0a ,则在(,)x ∈-∞+∞时()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ii)若0a >,则由()0f x '=得ln .x a =-当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(i)若0a ,由(1)知,()f x 在(,)-∞+∞上单调递减,故()f x 至多有一个零点,不合题意.(ii)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln .f a a a-=-+①当1a =时,由于(ln )0,f a -=故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0.f a -< 又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则0000()(2)n n f n e ae a n =+-- 000020.n n e n n >->-> 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).。

高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.已知函数(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定实数的取值范围;【答案】(1)详见解析(2).【解析】(1)求出函数的导数,只要解导数的不等式即可,根据导数与0的关系判断函数的单调性;(2)函数f(|x|)是偶函数,只要f(x)>0对任意x≥0恒成立即可,等价于f(x)在[0,+∞)的最小值大于零.试题解析:解:(1)由得,所以.由得,故的单调递增区间是,由得,故的单调递减区间是. 4(2)由可知是偶函数.于是对任意成立等价于对任意成立.由得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如下表:单调递减极小值单调递增由此可得,在依题意,,又.综合①,②得,实数的取值范围是.【考点】1.利用导数求闭区间上函数的最值;2.利用导数研究函数的单调性..3.已知函数f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).【答案】(1)f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。

(2)ⅰ. 7分ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。

若时, f(x)有极大值点,无极小值点。

【解析】(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。

所以,,故,f(x)的单调增区间为(-1,3),单调减区间为(3,+∞)。

(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。

(完整版)导数与单调性习题

(完整版)导数与单调性习题

导数与单调性习题1、函数x e x x f )3()(-=的单调递增区间是( )A .)2,(-∞B .(0,3)C .(1,4)D .),2(+∞2、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )3函数x x y 142+=的单调递增区间是( )A .),0(+∞ B .),21(+∞ C .)1,(--∞ D .)21,(--∞ 4.求函数2()2ln f x x x =-的单调区间.5. 已知函数2()ln 3,f x x x x a R =+-∈.求()f x 的单调区间6.已知函数y =f (x )(x ∈R )上任一点(x 0,f (x 0))处的切线斜率k =(x 0-2)(x 0+1)2,则该函数的单调递减区间为( )A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)7.已知函数y =xf ′(x )的图象如图(1)所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )8.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( )A.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫0,π2C.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫π2,π 9.x y O 图1x y O A x y O B x y O C y OD x10.已知函数()2ln ()f x x ax a a R =-+∈.讨论()f x 的单调性11.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )12.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)13.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<014.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________. 15.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.16.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.17.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.18.设函数f (x )=x (e x -1)-12x 2. 求f (x )的单调区间;19、函数3()f x ax x =-在R 上为减函数,则实数a 的取值范围是______________.20. 已知函数()22ln f x x a x x=++在区间[2,3]上单调递增,求实数a 的取值范围21.已知函数32()f x x ax bx c =+++,()124g x x =-,若(1)0f -=,且()f x 的图象在点(1,(1))f 处的切线方程为()y g x =.(1)求实数a ,b ,c 的值;(2)求单调区间。

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:x(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,=h(2)=-,所以a≤-.所以h(x)在[1,2]上为减函数,h(x)min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.2.函数的部分图象大致为( ).【答案】D【解析】,为奇函数,图像关于原点对称,排除选项B;,所以排除选项A;当时,,所以排除选项C;故选选项D.【考点】函数的图像.3.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性4.函数f(x)=ax3-x在R上为减函数,则()A.a≤0B.a<1C.a<0D.a≤1【答案】【解析】当时,在上为减函数,成立;当时, 的导函数为,根据题意可知, 在上恒成立,所以且,可得.综上可知.【考点】导数法判断函数的单调性;二次函数恒成立.5.已知在R上开导,且,若,则不等式的解集为()A.B.C.D.【答案】B【解析】令,则,由,则,在上为增函数,,所以的解集为,故选B.【考点】函数的单调性与导数的关系.6.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是 ( )A.B.C.D.【答案】D.【解析】先根据可确定,进而可得到在时单调递增,结合函数,分别是定义在上的奇函数和偶函数可确定在时也是增函数.于是构造函数知在上为奇函数且为单调递增的,又因为,所以,所以的解集为,故选D.【考点】利用导数研究函数的单调性.7.在上可导的函数的图形如图所示,则关于的不等式的解集为().A.B.C.D.【答案】A【解析】由图象可知f′(x)=0的解为x=-1和x=1函数f(x)在(-∞,-1)上增,在(-1,1)上减,在(1,+∞)上增∴f′(x)在(-∞,-1)上大于0,在(-1,1)小于0,在(1,+∞)大于0当x<0时,f′(x)>0解得x∈(-∞,-1)当x>0时,f′(x)<0解得x∈(0,1)综上所述,x∈(-∞,-1)∪(0,1),故选A.【考点】函数的图象;导数的运算;其他不等式的解法.8.函数,若对于区间[-3,2]上的任意x1,x2,都有 | f(x1)-f (x2)|≤ t,则实数t的最小值是()A.20B.18C.3D.0【答案】A【解析】所以在区间,单调递增,在区间单调递减.,,,,可知的最大值为20 .故的最小值为20.【考点】利用导数求函数的单调性与最值.9.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1)极大值为(2)【解析】(1)先求导,根据在时有极值,则,可求得的值。

专题02 利用导数求函数单调区间与单调性(解析版)

专题02 利用导数求函数单调区间与单调性(解析版)

专题02 利用导数求函数单调区间与单调性专项突破一 利用导数判断或证明函数单调性一、多选题1.若函数f (x )的导函数在定义域内单调递增,则f (x )的解析式可以是( )A .()2sin f x x x =+B .()2f x x =C .()1cos f x x =+D .()2ln f x x x =+【解析】A :由()()2sin 2cos f x x x f x x x '=+⇒=-,令()()2cos g x f x x x '==-,因为()2sin 0g x x '=+>,所以函数()f x '是实数集上的增函数,符合题意;B :由()()22f x x f x x '=⇒=,因为一次函数()2f x x '=是实数集上的增函数,所以符合题意;C :由()()1cos sin f x x f x x '=+⇒=-,因为函数()sin f x x '=-是周期函数,所以函数()sin f x x '=-不是实数集上的增函数,因此不符合题意;D :由()()21ln 2f x x x f x x x '=+⇒=+,令()()12g x f x x x'==+,则()2221212x g x x x -'=-=,当2x ∈时,()()0,g x g x '<单调递减,因此不符合题意, 故选:AB 二、解答题2.已知函数()()21e xf x x x a -=++-.(1)讨论()f x 的单调性;(2)若()f x 至少有两个零点,求a 的取值范围.【解析】(1)由2()(21)e (1)e (1)e x x x f x x x x x x ---'=+-++=-, 在(,0)-∞,(1,)+∞上()0f x '<,在(0,1)上()0f x '>, 所以()f x 在(,0)-∞上递减,(0,1)上递增,(1,)+∞上递减.(2)由(1)知:()f x 极小值为(0)1f a =-,极大值为3(1)ef a =-,要使()f x 至少有两个零点,则1030ea a -≤⎧⎪⎨-≥⎪⎩,可得31e a ≤≤.3.设函数()323f x x ax b =-+.(1)若曲线()y f x =在点()()22f ,处与直线8y =相切,求a ,b 的值; (2)讨论函数()y f x =的单调性.【解析】(1)由题意知,2()36f x x ax '=-,又(2)8(2)0f f '==,即322232832620a b a ⎧-⨯+=⎨⨯-⨯=⎩,解得112a b ==,; (2)已知2()36f x x ax '=-,令()0f x '=,知1202x x a ==, 当0a =时,2()30f x x '=≥,此时函数()f x 在R 单调递增当0a >时,令()00f x x '>⇒<或2x a >,令()002f x x a '<⇒<<, 所以函数()f x 在(0)(2)a ∞∞-+,、,上单调递增,在(02)a ,上单调递减, 当0a <时,令()02f x x a '>⇒<或0x >,令()020f x a x '<⇒<<, 所以函数()f x 在(2)(0)a ∞∞-+,、,上单调递增,在(20)a ,上单调递减. 4.已知函数()1()x f x e axlnx a R =--∈,2()x g x xe x =-.当1a =时,求证:()f x 在(0,)+∞上单调递增. 【解析】证明:当1a =时,()ln 1x f x e x x =--,(0,)x ∈+∞,则()1x f x e lnx '=--,又1()x f x e x ''=-在(0,)+∞上单调递增,且1()202f ''<,且f ''(1)10e =->,01,12x ⎛⎫∴∃∈ ⎪⎝⎭,使得0001()0xf x e x ''=-=,当0(0,)x x ∈时,()0f x ''<,当0(x x ∈,)+∞时,()0f x ''>,()f x ∴'在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,000()()1x f x f x e lnx ∴'≥'=--,0010x e x -=,∴001x e x =,00ln x x =-,001()10f x x x ∴'=+->,()f x ∴在(0,)+∞上单调递增.5.已知函数()()()()211422ln f x x x a a x =-+-+-,讨论()f x 的单调性;【解析】因为2()(1)(14)(22)ln f x x x a a x =-+-+-,所以[][]2'2(1)(1)22()24(0)x a x a a f x x a x x x---+-=-+=>, 当1a ≤-时,110a a -<+≤,'()0f x >,()f x 在(0,)+∞上单调递增.当11a -<≤时,10a -≤,10a +>,若(1,1)x a a ∈-+,则'()0f x <,()f x 单调递减,若(0,1)x a ∈-,则'()0f x >,()f x 单调递增.当1a >时,110a a +>->,若(1,1)x a a ∈-+,则'()0f x <,()f x 单调递减,若 (0,1)x a ∈-或(1,)x a ∈++∞,则'()0f x >,()f x 单调递增.综上可得,当1a ≤-时,()f x 在(0,)+∞上单调递增;当11a -<≤时()f x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增;当1a >时,()f x 在(1,1)a a -+上单调递减,在(0,1)a -,(1,)a ++∞上单调递增. 6.已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围. 【解析】(1)()()()11a x a a f x x a x x x a ++'=+=++,0x >且x a >-, ①0a ≥,()0f x '>,()f x 单调递增;②1a ≤-,()0f x '<,()f x 单调递减; ③10a -<<,01aa a ->->+, ,1a x a a ⎛⎫∈-- ⎪+⎝⎭时,()0f x '<,()f x 单调递减,,1a x a ⎛⎫∈-+∞ ⎪+⎝⎭时,()0f x '>,()f x 单调递增; 综上,当0a ≥时,()f x 在(0,)+∞上单调递增;当1a ≤-时,()f x 在(,)a -+∞单调递减; 当10a -<<时,()f x 在,1a a a ⎛⎫-- ⎪+⎝⎭单调递减,在,1a a ⎛⎫-+∞ ⎪+⎝⎭单调递增 (2)()()2ln ln lnxf x a x a x a x a=++≤+, 即()2ln ln 0a x a a x a +-+≤,令()()2ln ln h x a x a a x a =+-+, 则()232a a x a a h x a x a x a -+-'=-=++,令()0h x '=,可得21a x a-=, 当1a ≥时,()0h x '≤,则()h x 在()0,∞+单调递减,则只需满足()0ln ln 0h a a a =+≤,∴ln 0≤a ,解得01a <≤,∴1a =;当01a <<时,可得()h x 在210,a a ⎛⎫- ⎪⎝⎭单调递增,在21,a a ⎛⎫-+∞⎪⎝⎭单调递减,则()()22max11ln 1ln 0a h x h a a a a a a ⎛⎫-==--+≤ ⎪⎝⎭,整理可得2ln 0a a a --≤,令()2ln a a a a ϕ=--,则()()()121121a a a a a aϕ-+-'=--=, ()1002a a ϕ'>⇒<<,()1012a a ϕ'<⇒>>,则可得()a ϕ在10,2⎛⎫ ⎪⎝⎭单调递增,在1,12⎛⎫⎪⎝⎭单调递减,则()max 13ln 2024a ϕϕ⎛⎫==--< ⎪⎝⎭,故01a <<时,()0h x ≤恒成立,综上,01a <≤;7.已知函数()3211,32f x x ax a =-∈R .(1)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【解析】(1)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x =-', 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(2)因为()()()cos sin g x f x x a x x =+--,所以()()cos ()sin cos g x f x x x a x x ''=+---()()sin x x a x a x =---()(sin )x a x x =--, 令()sin h x x x =-,则()1cos 0h x x '=-≥,所以()h x 在R 上单调递增,因为(0)0h =, 所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--.综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-;当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--.专项突破二 利用导数求函数单调区间(不含参)一、单选题1.函数()1e 2xf x x =-的单调减区间是( )A .(2),ln -∞B .(ln2,)+∞C .(–),2∞D .(2,)+∞【解析】1()1e 2xf x '=-,由()0f x '<,得ln 2x >,所以()f x 的单调递减区间为(ln2,)+∞.故选:B2.函数()()2ln 2f x x x =-的单调递减区间为( ) A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .112⎛⎫⎪⎝⎭, D .10,4⎛⎫ ⎪⎝⎭【解析】由题得函数的定义域为(0,)+∞.()121222x f x x x-'=-⨯=, 令1()0,02f x x '<∴<<.所以函数的单调递减区间为10,2⎛⎫⎪⎝⎭.故选:A 3.已知函数()f x 的导函数为()f x ',()()2ln 1f x x f x '=+,则函数()f x 的单调递增区间为( )A .⎛ ⎝⎭B .,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫+∞⎪⎪⎝⎭【解析】由()()2ln 1f x x f x '=+得1()2(1)f x f x x''=+,所以(1)12(1)f f ''=+,(1)1f '=-, 2112()2x f x x x x -'=-=,因为0x >,所以由212()0x f x x -'=>得0x <<C . 4.已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)【解析】由题设()()()22e 0x f x f f x -''=-+,则()()()2202f f f ''=-+,可得()02f =,而()()2022e f f -'==,则()2e 22f '=,所以()212e 22xf x x x =-+,即()2e 2x f x x '=-+,则()00f '=且fx 递增,当0x <时0f x,即()f x 递减,故()f x 递减区间为(-∞,0).故选:A二、多选题 5.函数()1ln f x x x=的一个单调递减区间是( ) A .(e ,+∞)B .1,e ⎛⎫+∞ ⎪⎝⎭C .(0,1e )D .(1e,1)【解析】()f x 的定义域为()()0,11,+∞,()()()'2210ln 1ln ln ln x x x x f x x x x x ⎛⎫-+⨯ ⎪+⎝⎭==-, 所以()f x 在区间()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上()'0f x <,()f x 递减,所以AD 选项符合题意.故选:AD三、填空题6.函数()2ln f x x x x =+-的单调递增区间是______.【解析】()2ln f x x x x=+-的定义域为()0,∞+,()()()2222211221x x x x f x x x x x -+--='=--=,令()0f x '>,解得:2x >或1x <-, 因为定义域为()0,∞+,所以单调递增区间为()2,+∞.7.函数()2cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭的增区间为___________.【解析】由已知得()12sin f x x =-',π0,2x ⎛⎫∈ ⎪⎝⎭,令()0f x '>,即12sin 0x ->,解得π06x <<,令()0f x '<,即12sin 0x -<,解得ππ62x <<, 则()f x 的单调递增区间为π0,6⎛⎫ ⎪⎝⎭,单调递减区间为ππ,62⎛⎫⎪⎝⎭,故答案为:π0,6⎛⎫ ⎪⎝⎭.四、解答题8.已知函数2()ln 3f x x x x=++. (1)求函数()f x 的单调区间;(2)求曲线()y f x =在点(1,(1))f 处的切线方程.【解析】(1),()0x ∈+∞,22221232(32)(1)()3x x x x f x x x x x +--+=-+==', 解()0f x '<得20,3x <<解()0f x '>得2,3x >所以()f x 的单调减区间是20,,()3f x ⎛⎤ ⎥⎝⎦的单调增区间是2,3⎡⎫+∞⎪⎢⎣⎭.(2)由(1)知(1)2f '=,而(1)5f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为52(1)y x -=-,即23y x =+.专项突破三 利用导数求函数单调区间(含参)1.设函数()e 2xf x ax =--,求()f x 的单调区间.【解析】()f x 的定义域为(),-∞+∞,()e xf x a '=-.若0a ≤,则()0f x '>,所以()f x 在(),-∞+∞上单调递增.若0a >,则当(),ln x a ∈-∞时,()0f x '<;当()ln ,x a ∈+∞时,()0f x '>. 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 2.已知函数()()21ln 12f x a x x a x =+-+. (1)求函数f (x )的单调区间;(2)若f (x )≥ 0对定义域内的任意x 恒成立,求实数a 的取值范围. 【解析】(1)求导可得()(1)()(0)>'--=x a x f x x x①0a ≤时,令()0f x '<可得1x <,由于0x >知01x <<;令()0f x '>,得1x > ∴函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;②01a <<时,令()0f x '<可得1<<a x ;令()0f x '>,得1x >或x a <,由于0x >知0x a <<或1x >;∴函数()f x 在(,1)a 上单调递减,在(0,),(1,)+∞a 上单调递增; ③1a =时,()0f x '≥,函数()y f x =在(0,)+∞上单调递增;④1a >时,令()0f x '<可得1x a <<;令()0f x '>,得x a >或1x <,由于0x >知01x <<或x a > ∴函数()f x 在(1,)a 上单调递减,在(0,1),(,)+∞a 上单调递增; (2)由(1)0a ≥时,1(1)02f a =--<,(不符合,舍去)当0a <时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故函数在1x =处取得最小值,所以函数()0f x ≥对定义域内的任意x 恒成立时,只需要(1)0f ≥即可 ,∴12a ≤-.综上,12a ≤-.3.设函数()()32211,3f x x x m x =-++-其中0m >.(1)当1m =时,求曲线()y f x =在点()()1,1f 处的切线斜率; (2)求函数()f x 的单调区间.【解析】(1)由题设,()3213f x x x =-+,则()22f x x x '=-,∴()11f '=,故点()()1,1f 处的切线斜率为1.(2)由题设,()()2221f x x x m '=-++-,又2244(1)40m m ∆=+-=>,∴()(1)(1)f x x m x m '=-+++-,且11m m -<+, 当0f x 时,11m x m -<<+,()f x 单调递增; 当0fx时,1x m <-或1x m >+,()f x 单调递减;∴()f x 在(1,1)m m -+上递增,在(,1)m -∞-、(1,)m ++∞上递减.4.已知函数()()22x xf x ae a e x =+--,讨论()f x 的单调性.【解析】()f x 的定义域为R ,()()()22211(21)x x x xf x ae a e ae e '=+--=-+,若0a ≤,则()0f x '<恒成立,故()f x 在(),-∞+∞上为减函数; 若0a >,则当ln x a <-时,()0f x '<,当ln x a >-时,()0f x '>, 故()f x 在()ln ,a -+∞上为增函数,在(),ln a -∞-上为减函数,综上,当0a ≤时,()f x 在(),-∞+∞上为减函数;当0a >时,()f x 在()ln ,a -+∞上为增函数,在(),ln a -∞-上为减函数. 5.已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.【解析】(1)()()21a f x x a x ax a x x'=--=--,令()0f x '=,得20x ax a --=.因为0a >,则240a a ∆=+>,即原方程有两根设为12,x x 0x >,所以10x =<(舍去),2x =则当x ⎛∈ ⎝⎭时,()0f x '<,当x ⎫∈+∞⎪⎪⎝⎭时,()0f x '> ()f x在⎛ ⎝⎭上是减函数,在⎫+∞⎪⎪⎝⎭上是增函数.(2)由(1)可知()()2min f x f x =.①若()20f x =,则()()220,0,f x f x ⎧=⎪⎨='⎪⎩,即222222210,20,x alnx ax x ax a ⎧--=⎪⎨⎪--=⎩,可得2212ln 0x x --=,设()12ln h x x x =--,()h x 在()0,∞+上单调递减所以()0h x =至多有一解且()10h =,则21x =,代入解得12a =. ②若()20f x <,则()()220,0,f x f x ⎧<⎪⎨='⎪⎩,即222222210,20,x alnx ax x ax a ⎧--<⎪⎨⎪--=⎩,可得2212ln 0x x --<,结合①可得21>x ,因为211ex <<,21111ln e 2ee ef a a ⎛⎫=-- ⎪⎝⎭2102e e a a =+->,所以()y f x =在21,ex ⎛⎫⎪⎝⎭存在一个零点.当4x a >时,()2ln f x ax a x ax >--()ln 0a x x =->,所以()y f x =在()2,x +∞存在一个零点.因此()y f x =存在两个零点,不合题意 综上所述:12a =.6.已知函数()()e 1xf x m x =++()m ∈R .(1)当1m =时,求()f x 在()()22f ,处的切线方程; (2)讨论()f x 的单调性.【解析】(1)当1m =时,()e 2x f x x =+,()22e 4f =+,()e 2x f x '=+,()22e 2f '=+,故()f x 在()()22f ,处的切线方程为()()()22e 4e 22y x -+=+-,即()22e 2e 0x y +--=;(2)()e 1xx m f =++',当10m +≥,即1m ≥-时,()0f x '>,()f x 在R 上单调递增; 当10+<m ,即1m <-时,由()0f x '>,得()ln 1x m >--,由()0f x '<,得()ln 1x m <--, ∴()f x 在()()ln ,1m -∞--上单调递减,在()(),ln 1m --+∞上单调递增. 综上所述,当1m ≥-时,()f x 在R 上单调递增;当1m <-时,()f x 在()()ln ,1m -∞--上单调递减,在()(),ln 1m --+∞上单调递增. 7.设函数2()(2)ln ()f x x a x a x a R =+--∈. (1)若1a =,求()f x 的极值; (2)讨论函数()f x 的单调性.【解析】(1)当1a =时,2()ln f x x x x =--(0)x >, 所以2121(21)(1)()21x x x x f x x x x x--+-'=--==, 当1x >时,()0,()f x f x '>单调递增,当01x <<时,()0,()f x f x '<单调递减, 所以当1x =时,该函数有极小值(1)0f =,无极大值. (2)由2()(2)ln (0)f x x a x a x x =+-->,22(2)(2)(1)()2(2)a x a x a x a x f x x a x x x+--+-'⇒=+--==,当0a ≥时,当1x >时,()0,()f x f x '>单调递增,当01x <<时,()0,()f x f x '<单调递减; 当0a <时,1()02af x x '=⇒=-,或21x =,当2a =-时,22(1)()0x f x x-'=≥,函数在0x >时,单调递增, 当2a <-时,12a ->, 当01x <<时,()0,()f x f x '>单调递增,当12a x <<-时,()0,()f x f x '<单调递减, 当2a x >-时,()0,()f x f x '>单调递增, 当20a -<<时,12a -<, 当02a x <<-时,()0,()f x f x '>单调递增, 当12a x -<<时,()0,()f x f x '<单调递减, 当1x >时,()0,()f x f x '>单调递增,综上所述:当0a ≥时, ()f x 在(1,)+∞上单调递增,在(0,1)上单调递减;当2a =-时,()f x 在(0,)+∞上单调递增;当2a <-时,()f x 在(0,1)单调递增,在(1,)2a -单调递减,在(,)2a -+∞上单调递增; 当20a -<<时,()f x 在(0,)2a -单调递增,在(,1)2a -单调递减,在(1,)+∞上单调递增 8.已知函数()2()ln(1)2f x x a x x =++++(其中常数0a >),讨论()f x 的单调性; 【解析】21231()(21)11ax ax a f x a x x x +++=++=++, 记2()231g x ax ax a =+++,28a a ∆=-,①当0∆≤,即08a <≤时,()0g x ≥,故'()0f x ≥,所以()f x 在(1,)-+∞单调递增.②当0∆>,即当8a >时,()0g x =有两个实根1x ,2x 注意到(0)10g a =+>, (1)610g a =+>且对称轴3(1,0)4x =-∈-,故12(),1,0x x ∈-,所以当11x x -<<或2x x >时,()0>g x ,()0f x '>,()f x 单调递增;当2i x x x <<时,()0g x <,()0f x '<,()f x 单调递减.综上所述,当08a <≤时,()f x 在(1,)-+∞单调递增;当8a >时,()f x 在(-和)+∞上单调递增,在上单调递减.专项突破四 利用函数单调性比较大小一、单选题1.已知ln 33a =,1e b =,ln 55c =,则以下不等式正确的是( ) A .c b a >> B .a b c >>C .b a c >>D .b c a >> 【解析】令()ln x f x x =,则()21ln x f x x -'=, 当0e x <<时,()()0,f x f x '>单调递增,当e x >时,()()0,f x f x '<单调递减,因为e<35<,所以()()()e 35f f f >>,所以b a c >>故选:C2.设11011,ln2,10a b c e ===,则( ) A .c a b >> B .a c b >> C .c b a >> D .a b c >> 【解析】根据题意,111,ln2110a b =>=<,则a b >, 构造函数()1(0)x f x e x x =-->,所以()10x f e x ='->恒成立,所以()1xf x e x =--在()0,∞+上单调递增,所以()110111001010f e f ⎛⎫=-->= ⎪⎝⎭,即1101110e >,所以c a >,故c a b >>.故选:A3.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b c a >> C .c a b >> D .b a c >>【解析】根据题意,ln55a =,1ln =e b e e -=,ln88c =. 令()ln x f x x =,则()21ln x f x x -'=,由()0f x '<得x e >;由()0f x '>得0x e <<; 则函数()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又58e <<,所以()()()58f e f f >>,因此b a c >>.故选:D .4.已知函数()sin f x x x =,ln 22a f ⎛⎫= ⎪⎝⎭,sin 3b f π⎛⎫= ⎪⎝⎭,(ln )c f π=,则a ,b ,c 大小( ) A .a c b <<B .a b c <<C .b a c <<D .c b a <<【解析】由题意,函数()sin f x x x =,可得()sin cos f x x x x '=+,当(0,)2x π∈时,可得()0f x '>,()f x 单调递增,又由ln 21,sin ln 1223e ππ==>=,且3ln 2π<=, 所以ln 20sin ln 232πππ<<<<,所以a b c <<.故选:B. 5.已知()232ln 3ln 31,,e 3ea b c -===,则a 、b 、c 的大小关系为( ) A .c b a >> B .c a b >> C .b c a >> D .a b c >> 【解析】由题可知22e ln ln 3ln e 3,,e 33a b c e ===,构造函数ln ()x f x x=,则21ln ()x f x x -'=, 所以()f x 在()0,e 单调递增,()e,∞+单调递减,所以()()max e f x f =,即c 最大;对于a 、b ,构造函数()()2e ,(e)g x f x f x x ⎛⎫=-> ⎪⎝⎭, 因为()222222e e ln ln 2ln e e e e x x x x x f x x-⎛⎫=== ⎪⎝⎭,令()()22ln e x x h x -=,得()21ln e x h x -'=, 在(,)e +∞上,()()22221ln 1ln 111ln 0e e x x g x x x x--⎛⎫=-=--> ⎪⎝⎭',()g x 单调递增; 所以()()3e 0g g >=,从而()2e 303f f ⎛⎫-> ⎪⎝⎭,(3)b f =,2()3e a f =,即b a >,综上,c b a >>.故选:A 6.若2e 2e x x y y ---<-,则( )A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【解析】令()2e x x f x -=-,则()2ln 2e 0x x f x -'=+>恒成立,故()2e x x f x -=-单调递增,由2e 2e x x y y ---<-可得:x y <,故()ln 1ln10y x -+>=,A 错误,B 正确;x y 可能比1大,可能等于1,也可能()0,1x y -∈,故不能确定ln x y -与0的大小关系,CD 错误. 故选:B7.已知21ln 2ln3,,e 49a b c ===,则( ) A .a b c <<B .c a b <<C .b a c <<D .c b a <<【解析】设2ln ()x f x x =,则()()()e ,2,3a f b f c f ===,又312ln ()-'=x f x x ,于是当)x ∞∈+时,()0f x '<,故2ln ()x f x x =2e 3=<<,则有()()()3e 2f f f <<,即c a b <<.故选:B. 8.已知函数()f x '为函数()f x 的导函数,满足()tan ()x f x f x '⋅>,6a π⎛⎫= ⎪⎝⎭,4b π⎛⎫= ⎪⎝⎭,3c π⎛⎫= ⎪⎝⎭,则下面大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<【解析】根据题意,()()tan ()tan ()0x f x f x x f x f x ''⋅>⇔⋅->,变换可得:()()()()cos tan 0tan 0tan sin f x f x x x f x x f x x x ⋅⎛⎫⎛⎫''->⇔-> ⎪ ⎪⎝⎭⎝⎭2sin ()0cos sin x f x x x '⎛⎫⇔> ⎪⎝⎭, 解析可得,0,2x π⎛⎫∈ ⎪⎝⎭,cos 0x >,()0sin f x x '⎛⎫> ⎪⎝⎭,,2x ππ⎛⎫∈ ⎪⎝⎭, cos 0x <,()0sin f x x '⎛⎫< ⎪⎝⎭,所以函数()()sin f x g x x =在0,2π⎛⎫ ⎪⎝⎭上单调递增, 所以643sin sin sin 643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,即2643f f πππ⎛⎫⎛⎫⎛⎫< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:A. 9.已知ln a ππ=,2ln 2b =,c e =,则a ,b ,c 的大小关系为( ) A .a c b <<B .c a b <<C .c b a <<D .b a c << 【解析】ln a ππ=,2ln 2b =,ln e c e e ∴== 构造函数()ln x f x x=且()2ln 1()ln x f x x -'= 当1x e <<时ln 1x <,此时()2ln 1()0ln x f x x -'=<;当x e >时ln 1x >,此时()2ln 1()0ln x f x x -'=>. 故()ln x f x x=当()1,x e ∈单调递减,当(,)x e ∈+∞单调递增. 故min ()()f x f e e c === 故,a c b c >> ,2224(4)ln 22ln 2ln 4b f ⋅==== 又40(4)()f f ππ>>∴> 即b a > ,故c a b <<,故选: B10.若01a b <<<,则( )A .e e ln ln b a b a -<-B .e e ln ln b a b a -≥-C .e e a b b a ≤D .e e a b b a >【解析】对于A,B,令()e ln x f x x =- ,则1()e x f x x'=-, 当01x <<时,1()e x f x x'=-单调递增,且2132123()e 20,()e 0232f f ''=-<=-=>> 故存在012(,)23x ∈ ,使得0()0f x '=, 则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增,由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定,故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x-', 当01x <<时,()0g x '<,故e g()=xx x 单调递减, 所以当01a b <<<时,()()g a g b > ,即e e a b a b> ,即e e a b b a >, 故C 错误,D 正确,故选:D 11.设20222020a =,20212021b =,20202022c =,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 【解析】∵ln2020ln 2022ln20202021ln2021ln 2021ln20212022a b ==,构造函数()()2ln 1x f x x e x =≥+,()()21ln 1x x x f x x x +-'=+, 令()1ln g x x x x =+-,则()ln 0g x x '=-<,∴()g x 在)2,e ⎡+∞⎣上单减,∴()()2210g x g e e ≤=-<,故()0f x '<, ∴()f x 在)2,e ⎡+∞⎣上单减,∴()()202020210f f >>,∴()()2020ln 1ln 2021f a b f => ∴ln ln a b >.∴a b >,同理可得ln ln b c >,b c >,故a b c >>,故选:A二、多选题12.下列命题为真命题的个数是( )A.ln3< B.ln π<C.15< D.3eln2<【解析】设函数()0f x x =>,则()f x '==当20e x <≤时,()0f x '>,当2e x >时,()0f x '<,故()0f x x =>在2(0,e ) 上递增,在2(e ,)+∞ 上递减, 对于A ,由234e << ,故(3)(4)f f <,<, 即2ln 2,ln 322<<,A 正确; 对于B ,2e<π <e ,故(e)(π)f f <<ln πB 错误; 对于C ,21615e >> ,故(16)(15)f f <4ln 24<<故ln 22ln15<<,则ln 15<<,故C 正确; 对于D ,28e > ,故2(8)(e )f f <22e<,即3eln2<D 正确,故选:ACD专项突破五 函数与导函数图像关系一、单选题1.函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦ 【解析】()0f x '≥的解集即为()y f x =单调递增区间结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦,故选:C . 2.如图是函数y =f (x )的导函数()y f x '=的图象,则下列判断正确的是( )A .在区间()2,1-上f (x )单调递增B .在区间(1,3)上f (x )单调递减C .在区间()4,5上f (x )单调递增D .在区间(3,5)上f (x )单调递增 【解析】由导数图象知,在区间32,2⎛⎫-- ⎪⎝⎭上小于0,在3,12⎛⎫- ⎪⎝⎭上大于0,函数f (x )先减后增,A 错误; 在区间()1,2上大于0,在()2,3上小于0,函数f (x )先增后减,B 错误;在区间()4,5上大于0,函数f (x )单调递增,C 正确;在区间()3,4上小于0,在()4,5上大于0,函数f (x )先减后增,D 错误.故选:C.3.函数f (x )的图象如图所示,则()0x f x '⋅<的解集为( )A .()()320,1--,B .()(),13,-∞-⋃+∞C .()()2,10,--⋃+∞D .()(),31,-∞-⋃+∞ 【解析】由函数图象与导函数大小的关系可知:当()(),3,2,1x x ∞∈--∈-时,()0f x '<,当()()3,2,1,x x ∞∈--∈+时,()0f x '>,故当()()(),3,2,0,1,,x x x ∞∈--∈-∈+∞时,()0x f x '⋅>;当()0,1x ∈时,()0x f x '⋅<;当()3,2x ∈--时,()0x f x '⋅<,故()0x f x '⋅<的解集为()()320,1--,.故选:A4.若函数()y f x =的导函数图象如图所示,则该函数图象大致是( )A .B .C .D .【解析】由导函数图像可知,原函数的单调性为先单增后单减再单增,符合的只有A 选项. 故选:A5.已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( ) A .B .C . D . 【解析】1()sin 2f x x x '=-,()'f x 为奇函数,则函数()f x '的图像关于原点对称,排除选项A 、D ,令()()g x f x '=,1()cos 2g x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭,()0g x '<,()g x 在0,3π⎛⎫ ⎪⎝⎭递减,故选B . 6.已知函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f ''<-<B .()()()()222242f f f f '<<-C .()()()()222442f f f f ''<<-D .()()()()422422f f f f ''-<<【解析】由函数()f x 的图象可知,当0x ≥时,()f x 单调递增,所以(2)0f '>,(4)0f '>,(4)(2)0f f ->,由此可知,()'f x 在(0,)+∞上恒大于0,因为直线的斜率逐渐增大,所以()'f x 单调递增,结合导数的几何意义, 故(4)(2)(2)(4)42f f f f -''<<-,所以()()()()224224f f f f ''<-<,故选:A .。

利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数练习(三)导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) <a<21 <-1或a>21 >21>-2 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0 B.a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 3.函数f (x )=x +9x的单调区间为________.4 函数32x x y -=的单调增区间为 ,单调减区间为___________________5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 36.函数y =ln(x 2-x -2)的单调递减区间为__________.7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.8.已知x ∈R ,求证:e x≥x +1.9.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。

15.已知函数f (x )=2x -b(x -1)2,求导函数f ′(x ),并确定f (x )的单调区间.强化提高题:16.设f (x )、g (x )是R 上的可导函数,f ′(x ),g ′(x )分别为f (x )、g (x )的导函数,且满足f ′(x )g (x )+f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (b )g (a )17.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________. 18.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________..19.函数y =x 2e -x的单调递增区间是________.20 若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是_______________21.若函数y =-34x 3+bx 有三个单调区间,则b 的取值范围是________.22.定义在R 上的奇函数f(x)在[-a,-b ](a>b>0)上是减函数且f(-b)>0,判断F (x )=[f(x)]2在[b,a ]上的单调性并证明你的结论.23.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.24.若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.25.设函数f(x)=x+xa(a>0).(1)求函数在(0,+∞)上的单调区间,并证明之;(2)若函数f(x)在[a-2,+∞]上递增,求a 的取值范围.26.已知函数y =ax 与y =-b x在(0,+∞)上都是减函数,试确定函数y =ax 3+bx 2+5的单调区间.27 设x x eaa e x f a +=>)(,0是R 上的偶函数,(1)求a 的值;(2)证明)(x f 在(0,+∞)上是增函数。

28.求证:方程x -12sin x =0只有一个根x =0.29已知f (x )=x 2+c ,且f [f (x )]=f (x 2+1)(1)设g (x )=f [f (x )],求g (x )的解析式;(2)设φ(x )=g (x )-λf (x ),试问:是否存在实数λ,使φ(x )在(-∞,-1)内为减函数,且在(-1,0)内是增函数.课外延伸题:30.方程x 3-3x +c =0在[0,1]上至多有_______个实数根31.若函数f (x )=x 3-3x +a 有三个不同的零点,则实数a 的取值范围是________.32.(2010湖北黄冈中学模拟,19)已知定义域为[0,1]的函数f(x)同时满足:①对于任意的x ∈[0,1],总有f(x)≥0;②f(1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f(x 1+x 2)≥f(x 1)+f(x 2).(1)求f(0)的值;(2)求f(x)的最大值.33.已知函数f(x)=(m x -1)2+(xn -1)2的定义域为[m,n)且1≤m<n ≤2.(1)讨论函数f(x)的单调性;(2)证明:对任意x 1、x 2∈[m,n ],不等式|f(x 1)-f(x 2)|<1恒成立.高考链接题:34.(2009·广东文,8)函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)35.(2010·新课标全国文)设函数f (x )=x (e x-1)-ax 2.(1)若a =12,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.36.(2009江西)设函数()xe f x x=(1) 求函数()f x 的单调区间;(2)若0k >,求不等式'()(1)()0f x k x f x +->的解集.;'导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) <a<21 <-1或a>21 >21>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0 B.a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3(1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4 .∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1). 令-3(x +1)(x -1)<0,解得x >1或x <-1. ∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2. 8.已知x ∈R ,求证:e x≥x +1.证明:设f (x )=e x-x -1,则f ′(x )=e x-1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0. 9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(x x x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1) 10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间.解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围; 解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围. 解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。

相关文档
最新文档