高频电子线路实验指导书(八个实验)

合集下载

高频电路实验指导书

高频电路实验指导书

高频电路实验指导书新疆农业大学计算机与信息工程学院电子实验室2009 年3 月目录第一部分高频电路实验系统介绍一、实验系统概述 (2)二、实验箱箱体结构说明 (2)三、高频实验模块介绍及实验说明 (4)第二部分高频电路实验部分实验一单调谐回路谐振放大器及通频带展宽实验 (5)实验二丙类功率放大器实验 (7)实验三(1)电容反馈三点式振荡器实验....................... •. (9)实验三(2)石英晶体振荡器实验.................. ... ................ .. (11)实验四幅度调制器实验 (13)实验五调幅波信号的解调实验 (15)实验六变容二极管频率调制电路实验 (17)实验七频率解调电路实验 (19)实验八相位调制器实验 (20)实验九集成混频器电路实验 (21)高频电路实验系统介绍一、高频电路实验系统概述本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

实验箱带有一个0Hz~120KHz的低频信号源、一个20KHz~10MHz的高频信号源、一个音频接口单兀。

此外高频W型实验系统还带有一个频率计单兀(高频川型无此单元)。

实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。

高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内。

高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验。

二、实验箱箱体结构说明箱体结构如图一所示:图一1、电源接口实验箱提供-8V、+5V、-5V、-12V、+12V五组电源输出。

当电源正常时,各组电源对应的指示灯均被点亮。

2、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为OHz —120KHZ连续可调。

使用时先选择波形,然后将“频率选择”开关打到合适的档位,再通过“频率调节”旋钮调出所需要的频率。

高频电子线路实验指导书

高频电子线路实验指导书

实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。

2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。

3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。

4)、比较LC 与晶体振荡器的频率稳定度。

二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。

三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。

1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。

2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。

L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。

C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。

电信系-高频电子线路实验指导书

电信系-高频电子线路实验指导书

.0目 录实验1 单调谐回路谐振放大器实验2 高频功率放大与发射实验3 幅度调制与解调5实验4 变容二极管调频与鉴频实验5 发送部分联试实验实验6 接收部分联试实验实验7 发射与接收完整系统的联调附 录实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:放大器静态工作点LC并联谐振回路单调谐放大器幅频特性2.做本实验时所用到的仪器:单调谐回路谐振放大器模块双踪示波器万用表频率计高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用扫频仪观察静态工作点对单调谐放大器幅频特性的影响;4.用扫频仪观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

其基本部分与图1-1相同。

图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。

高频电子线路实验指导书(八个实验)

高频电子线路实验指导书(八个实验)

目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (9)实验五振幅调制器(实验板3) (11)实验六调幅波信号的解调(实验板3) (14)实验七变容二极管调频管振荡器(实验板4).............................. 错误!未定义书签。

实验八相位鉴频器(实验板4)...................................................... 错误!未定义书签。

实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (17)实验十集成电路(锁相环)构成的频率解调器(实验板5) (20)实验十一利用二极管函数电路实现波形转换(主机版面) ....... 错误!未定义书签。

实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。

(2)接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。

《高频电子线路》实验指导书

《高频电子线路》实验指导书

《高频电子线路》实验指导书南昌工学院人工智能学院前言本高频电子试验箱共包含十个标配实验单元模块和三个选配实验单元模块.其中标配模块包含有信号源模块、频率计模块、小信号选频放大模块、正弦波振荡及VCO模块、AM调制及检波模块、FM鉴频1模块、收音机模块、混频及变频模块、高频功放模块、综合实验模块。

选配模块包含有FM鉴频2、码型变换模块和谐振回路及滤波模块。

本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。

本试验箱共设置了二十个重要实验和四个选做实验:其中有十五个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

此外,还有选做实验,学生也可以根据我们所提供的单元电路自行设计系统实验。

本实验系统力求电路原理清楚,重点突出,实验内容丰富。

其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。

同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。

由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。

编者实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。

2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。

为保险起见,建议拔下电源线后再安装实验模块。

3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。

确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。

经仔细检查后方可通电实验。

4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6、各模块中的贴片可调电容是出厂前调试使用的。

出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。

高频电子线路实验指导书

高频电子线路实验指导书

图 5-2 1496构成的调幅器 1.直流调制特性 (1)调RP2电位器使载波输入端平衡:在调制信号输入端IN2加峰值为 100mv, 频率为1kHz的正弦信号,调节RP2电位器使输出端信号最小, 然后去掉输入信号。 (2)在载波输入端IN1加峰值VC为10mv,频率100kHz的正弦信号,用万 用表测量A,B之间的电压VAB,用示波器观察OUT输出端的波形,以 VAB=0.1V为步长,记录RP1由一端跳到另一端的输出波形及其峰值电 压,注意观察相位的变化,根据公式 计算出系数K值,并填入下表: 表5-1 VAB VO(P-P) K 2.实现全载波调幅(AM) (1) 调节RP1使VAB=0.1V,载波信号仍为VC(t)=10sin2π×10^5t(mV),将低 频信号Vs(t)= Vssin2π×10^3t(mV)加至调制器输入端IN2,画出 VS=30mA 和100mA时的调幅波形(标明峰峰值和谷谷值),并测出 其调制度m。 (2) 加大示波器的扫描速率,观察并记录m=100%,和m>100%两种调制度 在过0点附近的波形情况。 (3)载波信号VC(t)不变,将调制信号改为Vs(t)=100sin2π×10^3t(mV), 调 节RP1观察输出波形VAM(t)的变化情况,记录m=30%和m=100%的调幅 波所对应的VAB值. (4) 载波信号不变,将调制信号改为方波,幅值为100mV,观察并记录 VAB=0V,0.1V,0.15V时的已调波. 3. 实现抑制载波调幅(DSB) (1)调RP1使调制端平衡,并在载波信号输入端IN1加VC(t)=10sin2π×10^ 5t(mV) 信号调制信号端IN2不变,观察并记录波形. (2)载波输入端不变,调制信号输入端IN2加Vs(t)=100sin2π×10^ 3t(mV)的信号,观察记录波形,并标明峰峰值电压. (3)加大示波器的扫描速率,观察并记录已调波在零点附近波形,比较 它与m=100%调幅波的区别. (4)所加载波信号和调制信号均不变,微调RP2为某一个值,观察及记

《高频电子线路》实验指导书

《高频电子线路》实验指导书
整理并分析原因。 5.本放大器的动态范围是多少(放大倍数下降 1dB 的折
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE


原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷

高频电子线路实验指导书(电子科技大学中山学院)

高频电子线路实验指导书(电子科技大学中山学院)

高频电子线路实验指导书(电子科技大学中山学院)高频电子线路实验指导书高频电子线路实验指导书(初稿)宋景唯编2005 年10月电子科技大学中山学院电子工程系目录高频D型电子实验箱总体介绍 (2)实验一高频小信号调谐放大器 (5)实验二谐振功率放大器 (43)实验三正弦波振荡器 (15)实验四集电极调幅与大信号检波 (26)实验五环形混频器 (35)实验六变容二极管调频 (50)实验九小功率调频发射机的设计 (58)实验十调频接收机的设计 (62)高频电子线路简易调试说明书 (64)附实验原理图G1-G10…………………………………………………………….高频D型电子实验箱总体介绍一、概述本高频D型电子实验箱的实验内容及实验顺序是根据高等教育出版社出版的〈〈高频电子线路〉〉一书而设计的(作者为张肃文)。

在本实验箱中设置了十个实验,它们是:高频小信号调谐放大器实验、二极管开关混频器实验、高频谐振功率放大器实验、正弦波振荡器实验、集电极调幅及大信号检波实验、变容二极管调频实验、集成模拟乘法器应用实验、模拟锁相环应用实验、小功率调频发射机设计和调频接收机设计。

其中前八个实验是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容。

后两个实验是系统实验,是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

本实验装置采用“积木式”结构,将高频实验所需的直流电源、频率计、低频信号源和高频信号源设计成一个公共平台。

它的具体实验模块以插卡形式插在主实验板上上,以便各学校根据自己的教学安排做任意扩展。

所有模块与公共平台之间连接采用香蕉头自锁紧插件。

模块之间采用带弹簧片式连接线,可靠性好,性能稳定,测试结果准确,可让学生自主实验,为开放实验室,提供良好的硬件基础。

另外,将发射模块和接收模块同时使用还可以完成收发系统实验。

使用前请仔细阅读主实验板上的使用注意事项。

二、主机介绍主机上提供实验所需而配备的专用开关电源,包括三路直流电源:+12V、+5V、-12V,共直流地;直流电源下方是频率计和高低频信号源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三 LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (8)实验五振幅调制器(实验板3) (10)实验六调幅波信号的解调(实验板3) (13)实验七变容二极管调频管振荡器(实验板4) (16)实验八相位鉴频器(实验板4) (18)实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (20)实验十集成电路(锁相环)构成的频率解调器(实验板5) (23)实验十一利用二极管函数电路实现波形转换(主机版面) (25)实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图 1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。

(2)接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1*V E ,V B 是三极管的基极和发射极对地电压。

3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。

把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压V i ,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大。

此时调节V i 由0.02V 变到0.8V ,逐点记录V 0电压,并填入表1.2里。

V i 的各点测量值可根据(各自)实测情况来确定。

(2)当e 分别为500Ω、2K 时,重复上述过程,将结果填入表1-2里。

在同一坐标纸上画出I C 不同时的动态范围曲线,并进行比较和分析。

(3)用扫频仪调回路谐振曲线。

仍选R =10K ,R 0 =1K 。

将扫描仪射频输出送入电路输出端,电路输出接至扫描仪检波器输入端。

观察回路谐振曲线(扫描仪输出衰减档位应根据实际情况来选择适当位置),调回路电容C T ,使f 0 =10.7 MHz 。

(4)测量放大器的频率特性当回路电阻R =10K 时,选择正常放大区的输入电压V i ,将高频信号发生器输出端接至电路输入端,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f 0 =10.7 MHZ 为中心频率,然后保持输入电压V i 不变,改变频率f 由中心频率向两边逐点偏离,测得在不同频率f 是对应的输出电压V 0,将测得的数据填入表1-3里。

频率偏离范围可根据(各自)实测情况来确定。

计算0=10.7MHZ 时的电压放大倍数及回路的通频带和值。

(5)改变谐振回路电阻,即分别为2K Ω、470Ω时,重复上述测试,并填入表1-3里。

,比较通频带情况。

(二)双调谐回路谐振放大器 1、实验线路,见图1-2图1-2双调谐回路谐振放大器原理图(1)用扫描仪调双回路谐振曲线接线方法同上3(3)。

观察双回路谐振曲线,选C=3pf,反复调整C T1、C T2使两回路谐振在10.7MHZ。

(2)测双回路放大器的频率特性按图1-2所示连接电路,将高频信号发生器输出端接至电路输入端,选C = 3pf,置高频信号发生器频率为10.7MHz,反复调整C T1、C T2使两回路谐振,使输出电压幅度为最大,此时的回路谐振频率为中心频率,然后保持高频信号发生器输出电压不变,改变频率f由中心频率向两边逐点偏离,测得对应的输出频率f和电压值,将测得的数据填入表1-4里。

表 1-4五、实验报告要求1、写出实验目的。

2、画出实验电路的直流和交流等效电路,计算直流工作点,与实验实测结果比较。

3、写明实验所用仪器、设备及名称、型号。

4、整理实验数据,并画出幅频特性。

(1)单调谐回路接不同回路电阻时的幅频特性和通频带,整理并分析原因。

(2)双调谐回路耦合电容C对幅频特性通频带的影响。

从实验结果找出单调谐回路和双调谐回路的优缺点。

5、本放大器的动态范围是多少(放大倍数下降1dB的折弯点V0定义为放大器的动态范围),讨论I C对动态范围的影响。

实验二丙类高频功率放大器(实验板2)一、预习要求1、明确本实验的目的。

2、复习功率谐振放大器的工作原理及特点。

3、分析图2-1所示的实验电路,说明各元器件作用。

二、实验目的1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的计算与设计方法。

2、了解电源电压V C与集电极负载对功率放大器功率和效率的影响。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、万用表5、实验板2四、实验内容1、实验电路图,见图2-1。

按图接好实验板所需电源,将实验板上A、B两点短接,利用扫描仪调回路谐振频率,使其谐振在6.5 MHz频率上。

图2-1 功率放大器(丙类)原理图2、接负载50Ω,测I0电流。

在输入端接f =6.5MHz、V i=120mV信号,测量各工作电压,同时用示波器测量输入、输出峰值电压,将测得的数据填入表2-1里。

表 2-1V i:输入电压峰--峰值V0:输出电压峰--峰值I0:电源给出总电流=P i:电源给出总功率(P i=V C I0),(V C:为电源电压)P0:输出功率P a:为管子损耗功率(P a=I C V CE)3、加75Ω负载电阻,同2测试,并填入表2-1内。

4、加120Ω负载电阻,同2测试,并填入表2-1内。

5、改变输入端电压V i=84mV,同2、3、4测试,并填入表2-1测量。

6、改变电源电压V C=5V,同2、3、4测试,并填入表2-1内。

五、实验报告要求1、根据实验测量结果,计算各种情况下I C、P0、P i、η。

2、说明电源电压、输出电压、输出功率的相互关系。

3、总结在功率放大器中对功率放大晶体管有哪些要求。

实验三 LC 电容反馈式三点式振荡器(实验板1)一、预习要求1、明确本实验的目的。

2、复习LC 振荡电路的工作原理。

3、分析图3-1电路的工作原理及各元件的作用,并计算晶体管静态工作电流I C 的最大值(设晶体管的β值为50)。

4、实验电路中,电感量L 1= 3.3uh ,若电容C =120pf ,C ′= 680pf 时振荡频率各为多少?二、实验目的1、掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式电路设计及电叁数计算。

2、掌握振荡回路Q 值对频率稳定度的影响。

3、掌握振荡器反馈系数不同时,静态工作电流I EQ 对谐振起振及振幅的影响。

三、实验仪器1、双踪示波器2、频率计3、万用表4、实验板1图 3-1 LC 电容反馈式三点式振荡器原理图四、实验内容(一)单调谐回路谐振放大器实验电路见图3-1。

实验前根据图3-1所示原理图,在实验板上找到相应器件及插孔,并了解其作用。

1、检查静态工作点(1)在实验板+12V 插孔上接入+12V 直流电源,注意电源极性不能接反。

(2)反馈电容C 不接,C ′接入(C ′= 680pf ),用示波器观察振荡器停振时的情况。

注意:连接C ′接线要尽量短。

(3)改变电位器R P 测得晶体管V 的发射极电压V E ,V E 可连续变化,记下V E 的最大值,计算I E 值 I E =EER V 设:R E =1K Ω2、振荡频率与振荡幅度的计算实验条件:I e=2mA、C=120pf、C′=680pf、R L=110KΩ(1)改变C T电容,当分别接入C9、C10、C11时,记录相应的频率值,并填入表3-1里。

(2)改变C T电容,当分别接入C9、C10、C11时,用示波器测量相应振荡电压的峰--峰值V P-P ,并填入表3-1里。

表 3-13、测试当C、C′不同时,起振点振幅与工作电流I ER的关系(R=111KΩ)。

(1)取C=C3=100pf、C′= C4 =1200pf,调电位器R P使I EQ(静态值)分别为表3-2所示各值用示波器测量输出振荡振幅V P- P(峰--峰值)并填入表3.2。

5 6 7C′= C8 =120pf,分别重复测试表3-2的内容。

4、频率稳定度的影响(1)回路LC叁数固定时,改变并联在L上的电阻使等效Q值变化时,对振荡频率的影响。

实验条件:f = 6.5 MHz时,C/C′= 100/120pf、I EQ =3mA,改变L的串联电阻R,使其分别为1KΩ、10KΩ、110KΩ,分别记录电路的振荡频率,并填入表3-3。

注意:频率计后几位跳动变化的情况。

(2)回路LC叁数及Q值变化时,改变I EQ对振荡频率的影响。

实验条件:f = 6.5 MHz、C/C′= 100/120pf、R =110KΩ、I EQ =3mA,改变晶体管I EQ,使其分别为表3-3所示各值,测出振荡频率,并填入表3-4。

五、实验报告要求1、写出实验目的。

2、写明实验所用仪器、设备及名称、型号。

3、画出实验电路的直流和交流等效电路,整理实验数据,分析实验结果。

4、以I EQ为横轴,输出电压峰--峰值V P-P为纵轴,将不同C/C′值下测得的三组数据,在同一坐标纸上绘制成曲线。

5、说明本振荡回路有什么特点。

实验四石英晶体振荡器(实验板1)一、预习要求1、明确本实验的目的。

2、查阅晶体振荡器的有关资料,说明为什么用石英作为振荡回路元件就能使振荡器的频率稳定度大大提高。

3、试画出并联谐振型晶体振荡器和串联谐振型晶体振荡器的实际电路,并阐述两者在电路结构及应用方面的区别。

二、实验目的1、了解晶体振荡器的工作原理及特点。

2、掌握晶体振荡器的设计方法及参数计算方法。

三、实验仪器1、双踪示波器2、频率计3、万用表4、实验板1图 4-1 晶体振荡器原理图四、实验内容实验电路图,见图4-1。

1、测振荡器静态工作点,调图中R P ,测得I Emin和I Emax的值。

2、测量当工作点在上述范围时的振荡频率及输出电压。

3、负载不同时对频率的影响,R L分别取110KΩ、10KΩ、1KΩ,测出电路振荡频率,填入表4-1,并与LC振荡器比较。

五、实验报告要求1、写出实验目的。

2、画出实验电路的交流等效电路。

3、整理实验数据。

4、比较晶体振荡器与LC振荡器带负载能力的差异,并分析原因。

相关文档
最新文档