溶液聚合的特点及影响因素

合集下载

乙酸乙烯酯的溶液聚合

乙酸乙烯酯的溶液聚合
3
高分子化学实验
溶液聚合
化工系 毕啸天 2010011811
(1)链引发: AIBN 分解:
NC N N CN
2
CN
+
N2
引发单体:
O
+
O CN
NC OCOCH3
(2)链增长:
O R
+
OCOCH3 O
R OCOCH3 OCOCH3
(3)链终止: VAc 在 70 度反应时几乎全部采用歧化终止
2
R OCOCH3 R
1. T. W. Koenig, J. C. Martin, J. Org. Chem., 29, 1520 (1964). 2. M. S. Matheson, E. E. Auer, E. B. Bevilacqua, E. J. Hart, J.Am. Chem. Sot., 71, 2610 (1949). 3. C. G. Swain, P. D. Bartlett, J. Am. Chem. Sot., 68, 2381 (1946). 4. I. Sakurada, Y. Sakaguchi, K. Hashimoto, Kobunshi Kagaku,19, 593 (1962); from CA, 61, 16159D
9.2 在溶液聚合中, 温度如何影响产物的相对分子质量?并分析如何确定自由基聚合的聚合 温度。 温度升高,会造成产物聚合度的降低,会促进链转移反应,生成较多的支链结构,还有 利于以头-头(或尾-尾)方式进行链增长,因此将使产物的相对分子质量降低。 本实验在 70℃下聚合,主要是考虑到以下几点
4
高分子化学实验
高分子化学实验
溶液聚合
化工系 毕啸天 2010011811

高分子化学实验

高分子化学实验

实验一本体聚合——有机玻璃的制造1. 实验目的了解本体聚合的特点,掌握本体聚合的实施方法,并观察整个聚合过程中体系粘度的变化过程。

2. 实验原理本体聚合是不加其它介质,只有单体本身在引发剂或光、热等作用下进行的聚合,又称块状聚合。

本体聚合的产物纯度高、工序及后处理简单,但随着聚合的进行,转化率提高,体系粘度增加,聚合热难以散发,系统的散热是关键。

同时由于粘度增加,长链游离基末端被包埋,扩散困难使游离基双基终止速率大大降低,致使聚合速率急剧增加而出现所谓自动加速现象或凝胶效应,这些轻则造成体系局部过热,使聚合物分子量分布变宽,从而影响产品的机械强度;重则体系温度失控,引起爆聚。

为克服这一缺点,现一般采用两段聚合:第一阶段保持较低转化率,这一阶段体系粘度较低,散热尚无困难,可在较大的反应器中进行;第二阶段转化率和粘度较大,可进行薄层聚合或在特殊设计的反应器内聚合。

本实验是以甲基丙烯酯甲酯(MMA)进行本体聚合,生产有机玻璃平板。

聚甲基丙烯酸甲酯(PMMA)由于有庞大的侧基存在,为无定形固体,具有高度透明性,比重小,有一定的耐冲击强度与良好的低温性能,是航空工业与光学仪器制造工业的重要原料。

以 MMA 进行本体聚合时为了解决散热,避免自动加速作用而引起的爆聚现象,以及单体转化为聚合物时由于比重不同而引起的体积收缩问题,工业上采用高温预聚合,预聚至约 10% 转化率的粘稠浆液,然后浇模,分段升温聚合,在低温下进一步聚合,安全渡过危险期,最后脱模制得有机玻璃平板。

3. 实验仪器及药品三角瓶50ml 1 只烧杯1000ml 1 只电炉1KW 1 只变压器1KV 1 只温度计100 ℃ 1 支量筒50、100ml 各1 只试管10mm×70mm 1 支烧杯400 ml 1 只制模玻璃100mm×100mm 2 块橡皮条3mm×15mm×80mm 3 根另备玻璃纸、描图纸、胶水、试管夹、玻璃棒若干2) 药品:甲基丙烯酸甲酯(MMA)新鲜蒸馏30ml,BP=100.5℃过氧化二苯甲酰(BPO)重结晶0.05g邻苯二甲酸二丁酯(DBP)分析纯(CP)2ml4. 实验步骤1) 制模将一定规格的两块普通玻璃板洗净烘干。

溶液聚合引发剂用量_概述说明以及解释

溶液聚合引发剂用量_概述说明以及解释

溶液聚合引发剂用量概述说明以及解释1. 引言1.1 概述溶液聚合引发剂是在溶液聚合反应中起到催化作用的物质,能够引发单体分子之间的化学反应,从而实现高分子链的生长和扩展。

溶液聚合引发剂的用量对于聚合反应的效果具有重要影响。

正确控制引发剂的用量可以提高聚合反应的效率、降低成本,并且可通过调整用量来控制高分子材料的结构和性能。

1.2 文章结构本文将围绕溶液聚合引发剂用量展开讨论,文章结构如下所示:第二部分将重点介绍溶液聚合引发剂以及影响其用量的因素。

我们将阐述不同类型的引发剂及其特点,并分析影响用量选择的因素,如反应温度、催化活性等。

第三部分将探讨目前在溶液聚合引发剂用量方面存在的问题与挑战。

我们将详细说明使用过量或不足引发剂所带来的问题,并对目前对溶液聚合引发剂用量控制面临的挑战和机遇进行讨论。

第四部分将介绍解决溶液聚合引发剂用量问题的方法和技术。

我们将探讨溶液聚合引发剂定量测定技术,以及设计和优化反应条件来减少引发剂用量的方法。

此外,还会提及控制系统和智能化技术在溶液聚合过程中的应用。

最后,我们将在第五部分给出对溶液聚合引发剂用量问题的总结,并展望未来研究和应用方向。

1.3 目的本文旨在全面了解和探讨溶液聚合引发剂用量的重要性、现状与问题,并提出解决这些问题的方法与技术。

通过对引发剂用量进行优化与控制,有助于提高聚合反应效率,降低生产成本,并为高分子材料的结构与性能调控提供指导。

2. 溶液聚合引发剂用量的重要性2.1 介绍溶液聚合引发剂溶液聚合引发剂(initiators)是在溶液聚合反应中起到引发剂作用的化学物质。

它们能够启动并推动单体分子之间的化学键形成,从而实现高分子化合物的生长和生成。

溶液聚合引发剂通常通过提供活性自由基或离子来引发反应,并促进单体分子之间的结合。

2.2 影响溶液聚合引发剂用量的因素溶液聚合引发剂用量受多种因素的影响。

首先是所需的高分子产率,即期望最终得到多少目标高分子化合物。

甲基丙烯酸甲酯 溶液聚合 单体转化率

甲基丙烯酸甲酯 溶液聚合 单体转化率

甲基丙烯酸甲酯溶液聚合单体转化率
摘要:
1.甲基丙烯酸甲酯的概述
2.溶液聚合的概念及其应用
3.单体转化率的定义和计算方法
4.甲基丙烯酸甲酯在溶液聚合过程中的单体转化率
5.影响甲基丙烯酸甲酯溶液聚合单体转化率的因素
6.提高甲基丙烯酸甲酯溶液聚合单体转化率的方法
正文:
一、甲基丙烯酸甲酯的概述
甲基丙烯酸甲酯(MMA)是一种有机化合物,分子式为C6H10O2,是一种常见的单体,广泛应用于聚合物生产、涂料、粘合剂等领域。

二、溶液聚合的概念及其应用
溶液聚合是一种在溶剂中进行的聚合反应,其特点是反应条件温和,能够获得较高分子量的聚合物。

溶液聚合被广泛应用于丙烯酸酯类单体的聚合,如甲基丙烯酸甲酯。

三、单体转化率的定义和计算方法
单体转化率是指在聚合过程中,单体转化为聚合物的量占总单体质量的比例。

其计算公式为:单体转化率=(单体消耗量/单体初始量)×100%。

四、甲基丙烯酸甲酯在溶液聚合过程中的单体转化率
在甲基丙烯酸甲酯的溶液聚合过程中,单体转化率是一个重要的控制参
数,影响着聚合物的产量和性能。

五、影响甲基丙烯酸甲酯溶液聚合单体转化率的因素
影响甲基丙烯酸甲酯溶液聚合单体转化率的因素主要有:溶剂的类型和浓度、引发剂的种类和浓度、反应温度和时间等。

六、提高甲基丙烯酸甲酯溶液聚合单体转化率的方法
提高甲基丙烯酸甲酯溶液聚合单体转化率的方法主要有:选择合适的溶剂和引发剂,优化反应条件,以及采用合适的聚合反应器等。

1 离子型聚合与自由集溶液聚和对溶剂的要求有何区别

1 离子型聚合与自由集溶液聚和对溶剂的要求有何区别

1 离子型聚合与自由集溶液聚和对溶剂的要求有何区别?离子聚合:需使中性分子生成离子对,此时要求较高的能量,所以生成的粒子不稳定,必须在聚合之前用溶剂在低温下使之稳定,不能使用强极性溶剂,多在低温弱极性溶剂中反应,选择溶剂的原则应考虑极性大小。

溶剂的极性增加有利于链增长,使聚合速率加快,而阴离子对溶剂的要求是采用极性较低或中等极性的溶剂,极性较高可分解成强亲电基团或强亲核基团;自由基溶液聚合对溶剂的要求是:1.选择溶剂的连转移常数Cs较小的溶剂2.选择良溶剂,构成均相体系,有可能的消除自动加速效应。

2阴离子配位催化剂的主要组成由哪儿?住催化剂:由周期表中第3-8族的过渡金属构成的化合物助催化剂:由周期表中1-3族的金属的有机化合物组成第三组分:通常是具有给电子能力的路易斯碱,如含N,P,和O等化合物,可以提高催化剂的定向性和引发活性3如何提高配位催化剂的效率加入第三组分,扩大催化剂的表面积,增加活性组分的有效活性中心4什么是活性聚合引发体系的引发之前,预先100%迅速变为活性中心,然后以相同的速率同时引发单体增长,直至单体耗尽任保持活性。

5 何谓定向聚合能制备立构规整性聚合物的聚合反应。

立构规整性聚合物也称立构规整性高分子、定向聚合物。

自然界存在着许多立构规整性聚合物,如天然橡胶、纤维素、蛋白质和淀粉等6 目前那些高分子是采用离子型和配位阴离子型合成工艺来生产的? 写出反应式并注明所用催化剂7.铝-钛催化剂为何能制的结构规整的聚烯烃乙烯先于钛原子配位,然后插入Ti-C键并与之形成桥键。

当单体与聚合物链的次甲基生成r键的同时,原来的碳铝桥键破裂而形成新的碳铝桥键,因此增长一个链节。

如此重复进行则的聚乙烯大分子。

8.比较正.负离子聚合,配位阴离子聚合,自由基聚合的特征自由基:慢引发,快增长,速终止,有转移阴离子:快引发慢增长无终止阳离子:快引发慢增长易转移难终止配位聚合:1.采用Z-N催化剂2.聚合机理为配位聚合3.具有定向性4.配位聚合用的单体有选择性5.溶剂要求严格缩聚反应1.试述缩聚反应的分类及实施方法分类:按反应热力学特征分为:可逆缩聚和不可逆缩聚;按所生成产物结构分:线性缩聚和体型缩聚;按参加反应单体分类:均缩聚异缩聚和共缩聚实施方法:熔融缩聚:聚合温度高于单体和缩聚物熔点,反应在熔融状态下进行。

高聚物合成工艺-第七章 溶液聚合

高聚物合成工艺-第七章 溶液聚合

介质pH值
pH<4,NaSCN易分解,生成的硫化物有阻聚和链转 移作用,pH>7,CN水解,生成NH3,又会与聚 丙烯腈作用生成共轭双键并形成脒基而显黄色,故 控制pH值在4.8~5.2。
引发剂和分子量调节剂
常用偶氮二异丁腈,分子量调节剂异丙醇,用量为 0.2%~0.8%和0~3%。
浅色剂二氧化硫脲
7.5.2 聚丙烯腈结构、性能和应用
• 白色粉末,密度1.14g/cm3,大分子链中丙烯腈以头 -尾相连。由于主链强极性侧基-CN的相互作用, 分子呈无规结构,不易结晶,一般认为有三种不同 的聚集区域,非晶的低序区、非晶的中序区和准晶 的高序区。
• 聚丙烯腈具有独特物理和化学结构,呈某些特性。 热弹性
聚合时间与温度
聚合时间的长短会影响聚合转化率,聚合物 的分子量及其分布。聚合温度的影响也极大。 温度低,引发速度慢,温度高,则产物的颜色 太深。同时温度的高低还会影响转化率和分子 量。通常聚合时间为1~2小时,聚合温度控 制在35~55℃。
添加剂及杂质
加入少量表面活性剂,可提高聚合反应的初速度。 “NaClO3-Na2SO3”体系聚合时,加入Fe2+可 加速聚合。氧等杂质起到阻聚作用。
= Xn0
+ CS [M]
7.2.3 溶剂对聚合物分子结构、形态的影响
• 在无溶剂存在的自由基聚合反应中,随单体转化 率增高和聚合物浓度的增大,自由基向已生成的 大分子链进行链转移的几率增多,因此产生支链 结构。在溶剂存在的反应体系中,可降低向大分 子进行链转移的机会,从而减少大分子的支链, 降低支化度。
二氧化硫脲的加入量为0.5~1.2%,可改善聚合物色 泽。
7.5.1.3 聚丙烯腈水相沉淀溶液聚合工艺
• 水相沉淀的特点及工艺流程

实验五 醋酸乙烯酯的溶液聚合

实验五 醋酸乙烯酯的溶液聚合

高分子化学实验报告08高分子材料与工程(1)班刘奕杉0814121024刘莹0814121025醋酸乙烯酯的溶液聚合实验目的(1)通过聚醋酸乙烯酯的制备,掌握溶液聚合的一般方法和基本实验技巧。

(2)通过实验了解醋酸乙烯酯的特点。

实验原理溶液聚合是将单体和引发剂溶于适当的溶剂中进行的聚合反应,生戊的聚合物能济于溶剂的叫均相溶液聚合,聚合物不溶于溶剂而析出者,称异相溶液聚合或沉淀聚合。

在聚合过程中存在向溶剂链转移的反应,使产物分子量降低。

因此,在选择溶剂时必须注意溶剂的活性大小。

各种溶剂的链转移常数变动很大,水为零,苯较小,卤代烃较大。

一般根据聚合物分子量的要求选择合适的溶剂。

另外还要注意溶剂对聚合物的溶解性能,选用良溶剂时,反应为均相聚合,可以消除凝胶效应,遵循正常的自由基动力学规律。

选用沉淀剂时,则成为沉淀聚合,凝胶效应显著。

产生凝胶效应时,反应自动加速,分子量增大,劣溶剂的影响介于其间,影响程度随溶剂的优劣程度和浓度而定。

本实验以偶氮二异丁腈为引发剂,甲醇为溶剂的醋酸乙烯酯的溶液聚合,属于自由基聚合反应实验步骤在装有搅拌器、回流冷凝管和温度汁的反应瓶中加入醋酸乙烯酯20g(可折算成体积后用移液管虽取),再将另一小烧杯重预先准备好的偶氮二异丁腈溶液(0.05g 溶于5mI 甲醇中)倒入反应瓶,升温,控制反应瓶内温度61—63℃,注意观察体系内粘度的变化,3h 后。

停止反应,将瓶内的物料倒入表面皿中,放入50℃真空烘箱中干燥.得无色透明树脂,称重。

在升温前,应将引发剂充分振荡,均匀分散在单体中。

实验过程补充说明:反应后期,聚合物极粘稠,搅拌阻力较大,加入了少量甲醇。

前期的引发剂量不够,反应比较平和,循环水的量比起前几次的小在反应的中期补加一定的引发剂。

实验装置图实验注意事项1 转速要保持一定,以保证反应稳定进行,聚合产物较为均一。

2 为避免反应过程中出现冻胶甚至产物结块,引发剂的滴加速度要慢,如反应过程中发现可能出现的冻胶时,应加快搅拌速度,并适当补加一些甲醇。

高分子科学实验

高分子科学实验
1.搅拌在聚醋酸乙烯乳液生产中的作用?
2.为什么要严格控制单体滴加速度和聚合反应温度?
六、注意事项
1.单体醋酸乙烯酯是一种低分子量的合成树脂,具有酸性气味,外观为无色的液体,不溶于水。沸点71~73℃。高度易燃,应远离火种存放。使用时应避免吸入蒸气。
2.本实验添加的聚乙烯醇具有保护胶体的作用,用量应控制为单体量的2%~4%。
四、实验步骤
1.安装好实验装置,检查电动搅拌器是否正常工作。
2.将称量好的6克乳化剂聚乙烯醇、1克助乳化剂OP-10、78克去离子水加入三颈瓶中,开启搅拌器,溶解后加入单体20克。用5毫升水溶解1克的过硫酸铵溶液,一半加入三颈瓶中,加热。
3.控制瓶内温度为65℃~70℃。将40g单体醋酸乙烯酯加入滴液漏斗,匀速地往瓶中滴加,控制在30min加完。
七、思考题
1.聚乙烯醇在反应中起什么作用?为什么要与乳化剂OP-10混合使用?
2.为什么大部分的单体和过硫酸铵用逐步滴加的方式加入?
3.过硫酸铵在反应中起什么作用?其用量过多或过少对反应有何影响?
4.为什么反应结束后要用碳酸氢钠调整pH为5~6?
实验四乙酸乙烯酯的溶液聚合
1.实验目的
(1)掌握溶液聚合的特点,增强对溶液聚合的感性认识。
要使界面聚合反应成功地进行,需要考虑的因素有:将生成的聚合物及时移走,以使聚合反应不断进行;采用搅拌等方法提高界面的总面积;反应过程有酸性物质生成,则要在水相中加入碱;有机溶剂仅能溶解低分子量聚合物;单体最佳浓度比应能保证扩散到界面处的两种单体为等摩尔比时的配比,并不是1:1。
本实验根据试剂情况采用二元胺与二元酰氯的不搅拌界面缩聚方法。反应如下
高分子科学实验
材料科学与工程学院
高分子教研室
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶液聚合的特点及影响因素
溶液聚合的特点主要包括:
1.溶剂作为传热介质,聚合强度容易控制。

2.溶液聚合中聚合物浓度较低,能消除自动加速现象。

3.聚合物分子量比较均一。

4.不易进行链自由基向大分子转移而生成支化或交联的产物,反应后的物
料也可直接使用。

然而,溶液聚合也存在一些缺点:
1.由于单体浓度小,聚合速率低,设备利用率低。

2.单体浓度低和向溶剂链转移结果,致使聚合物分子量不高,聚合物中夹
带微量溶剂。

3.溶解回收麻烦,多为易染、易爆的有毒物。

此外,影响溶液聚合的因素有:
1.聚合温度:溶液聚合通常在较为温和的条件下进行,有利于保持聚合物
的结构和性能。

2.分散性:溶液聚合可以获得分散性良好的聚合产物,有利于后续的加工
和利用。

相关文档
最新文档