探讨风电接入对电力系统的影响
分析风电接入对电力系统的影响

分析风电接入对电力系统的影响作者:潘瑞球来源:《科技风》2018年第35期摘要:近些年来,我国综合国力的不断增强同时也带动了我国工业的增强,人们对于能源的利用率正在迅速增加,随着不可再生的传统能源的掠夺式开采,开发与利用新的能源已经成为了我们必须要解决的问题,风力能源作为一种新型能源,作为一种可再生能源近些年来在我国能源使用领域使用广泛,但与此同时,对于风力能源使用还存在着许多的不可控因素,本文将对于风电接入对电力系统的影响做出简单分析,希望能够为我国电力行业的发展做出贡献。
关键词:风电接入;电力系统;影响随着我国对于电力需求的迅速增长,人们也开始不断地对新能源进行开发与利用,将其使用到电力的发展当中,为电力领域做出贡献,而风能源作为一种新型且可再生能源,就被广泛运用在电力系统的运作中,这样不仅能够充分解决了我国电力不足的情况,而且风力能源作为一种清洁能源,与其具备的可再生性,可以更好地为我国的环境保护做出贡献,符合我国可持续发展的目标,我们应加大对风能源的研究,为电力领域做出贡献。
1 风电接入的基本特征及发展现状风电作为一种新型的电力能源,相比于传统发电厂而言,既有与传统发电厂相同的地方,又具备传统发电厂所不具备的特殊性。
我国的地理面积较为辽阔,其中地势地貌也是多种多样,总体来看,我国平原地区的面积在总面积中占比并不是很高,而在风能发电的运作中,地理位置对于风能发电产生着重要的影响。
对于山地高原等不平坦地势来说,风力发电厂的建立与运行会受到一些影响,比如,受到天气影响,使风能带动电力运作的稳定性大大降低,发电量会随着风能的波动而波动,而天气对我们来说存在着很强的不可控性,这样就无法保证风能带动电力的更好运作,加上各种各样因素的影响,如“三北地区”风资源最丰富,但较经济发达的东部地区来说,区域负荷较低,电网建设相对较薄弱,“弃风”现象非常严重,全年可利用的风力能源被大大减少,造成能源的浪费。
我国现如今在风电建设方面投入越来越多的人力以及物力,正全方面的建设风电接入,可以预见的风电接入会在我国政策的支持下进行大力发展,具有广阔的发展前景与发展意义,但是对于风力能源这种不可控因素,对于其运用我们也要充分认识其弊端,因为风电接入的稳定性较差,所以会经常对于日常电网的应用造成干扰,导致电力运行的的安全性存在隐患,所以,根据这一弊端,我们需要对风力能源进行更好的探索与利用,采取相应的措施,以确保电力系统正常平稳的运行。
风电接入对电力系统的影响及控制措施

风电接入对电力系统的影响及控制措施互联网环境下,电力网络日趋复杂,使电网维护和管理难度增加,很容易出现电网瘫痪情况,造成严重的经济损失。
在电力系统中接入风电,能够减少停电损失和故障发生率,使电力网络管理效率得到明显提升。
文章简要论述风电场特点及风力发电机组故障情况,分析风电接入对电力系统的影响,提出具体控制方法。
标签:风电接入;电力系统;保护装置前言:风力发电属于可再生能源发电技术,应用日益普遍。
风力资源丰富,但开发难度大。
一些地区虽然适合风电大规模开发,但都处于电网末端,网架结构简单,一旦把风电接入电网,不仅影响电能质量、继电保护等,还会导致电网稳定性差。
明确风电接入对电力系统的影响,采取专业技术手段加以控制,优化电力系统性能,为客户提供优质电力服务。
1风电场及风力发电机组故障1.1风电场特点风能具备随机性和不可控性,也不能够存储,很难像常规火电厂一样,通过调节汽轮机汽门,对出力进行有效控制,故而,风电机组发出的电能具备波动性和随机性特征。
因风能具备不可控特征,无法依据负荷调度风力发电,使调度难度增加。
当前,风电机组以异步发电机为主,尽管把无功补偿电容器组装设在机端出口,有功功率输出过程中,发电机会以系统为载体,对无功功率进行吸收,而无功需求受有功输出变化影响。
1.2风力发电机组故障特征风力发电机组应用时间并不是很长,尚存在诸多技术桎梏,其故障特征主要表现在以下方面。
具体而言,将控制技术和运行特征作为划分依据,可把风力发电机细分为变速恒频和衡速衡频两类。
前者有双馈式风力发电机、永磁直驱式风力发电机等,后者则以鼠笼式感应风力发电机为主[1]。
在风电故障点、接入点位置已知,且保持不变时,短路电流会受接入的风电机组类型影响,表明不同类型风电机组故障特征存在差异。
2风电接入对电力系统的影响在电力系统中接入风电,会对继电保护产生影响,还容易干扰电网稳定性、电能质量等,甚至影响电流保护。
具体如下:2.1风电接入影响继电保护如果风电机组的切入频率相对比较高,很容易干扰接触器,导致其使用年限缩短,或者对其产生损坏。
探究风电接入对电力系统的影响

探究风电接入对电力系统的影响摘要:工业的发展对于能源的有着更为迫切的需求。
虽然现阶段人们对能源的利用率在不断的增加,但是受到传统粗放式的资源开发利用模式的影响,导致我国资源匮乏问题日医院案中。
风电能源作为一种新型的能源,具有环保性的特征,在各行各业中广泛应用可以提升资源利用效率与质量。
而风力能源在实践中还是收到诸多因素的影响,分析风电接入电力系统产生的影响,对于我国电力行业的发展来说具有重要的贡献。
基于此,文章主要对风电接入对电力系统的影响进行了简单的分析研究。
关键词:风电接入;电力系统;影响随着各行各业对电力需求的不断增长,人们加强对新能源的开发与利用,在电力开发中风能源作为一种新型的可再生能源,在电力系统运作中广泛应用。
合理的运用风电资源可以提升资源利用效率,解决我国电力资源不足的问题,也为我国环境保护工作开展奠定了基础。
加强对风能源的研究分析,对于电力领域的持续发展来说具有重要的价值与意义。
而在风电接入会在不同程度上对电力系统产生影响,分析这些影响因素,探究合理有效的完善对策与手段,对于我国社会经济的持续发展来说具有重要的价值与意义。
1.风电接入对电网的影响随着国际上风力资源开发以及风力发电技术的逐渐成熟,现阶段风电建设的规模呈现大规模的发展趋势,但是在实践中其对电网的影响问题也逐渐凸显,其主要表现在以下几个方面:1.1电网方面异步电机因为没有设置独立的励磁装置,在并网时则会出现冲击电流,其强度是额定电流的数倍,持续零点几秒左右之后电机才可以进入到稳定的状态中。
而针对大容量地区电网中,在接入风力发电机组之后,瞬时的冲击电流并不会对电网运行造成较为显著的影响,而相对于一些容量较小的电网则就会产生较为严重的影响,导致电网电压出现大幅度的下降,这样就会给在在同一电网上链接的电气设备产生不良影响。
1.2电压方面在风电场并网运行中如果端电压出现升高或者降低的变化则就会导致电网侧无功功率出现变化,这样则就会导致电网局部出现电压失稳的问题,造成电网电压出现不同程度的波动、闪变以及失衡、波形畸变等相关问题,直接的影响了电网电压变整体的稳定性,降低了电压质量。
刍议风电接入对电力系统的影响及控制措施

刍议风电接入对电力系统的影响及控制措施摘要;随着现代电力系统中风力发电技术的积极引入,系统经济性、能源性、效益性逐渐凸显。
在可再生能源快速发展的背景下,国家对可再生能源发电的重视程度越来越高,某种程度上为我国风力发电的建设与发展奠定了坚实基础。
我国属于风力资源大国,但在实际开发过程中面临诸多艰难险阻,如,通常可用于大规模风电开发的区域主要集中在电网末端,将风电接入电网后,将影响电网整体质量和性能,不利于继电保护的开展和电网稳定性的维持。
因此,文章深入探讨风电接入电力网络后对整个系统的影响,并结合实际进行相关控制措施的有效制定。
关键词:风电接入;电力系统;影响;控制措施1.电力系统恢复的基本理论通常情况下,电力系统运行过程中出现临时停电现象时,将及时启动相关停电恢复措施。
但从目前实际来看,停电恢复所涉及内容除了电力供应的恢复外,还与电力网络整体安全性、稳定性、可靠性等息息相关。
传统电力恢复方式主要有两种,一种是并行恢复,另一种是串行恢复。
其中,并行恢复主要恢复对象是电力设备和电力网络,而串行恢复则重点强调对局部或整个电力网络的恢复,在具体选择恢复方式时,应以电网实际规模大小为选择依据。
电力恢复可分为启动、骨架重构和负荷恢复三个阶段:第一,启动阶段。
一般,启动工作需耗用将近30~60分钟时间,在启动工作开展前,需对相关电力设备和电力网络状态进行全面检查,判断其是否处于停运状态。
在启动过程中一切需遵循常规步骤,首先确保启动电源,使电力设备运行状态逐渐恢复。
第二,骨架重构阶段。
骨架重构阶段所持续时间大约为3~4小时,并且需在确保启动工作正式完成后方可开展。
值得注意的是,在重构骨架过程中,应尽可能的保证节点的丰富性。
第三,负荷恢复阶段。
不同于其他阶段,该阶段在时间上的消耗较长,大约在12小时以上,该阶段的开展主要是为了确保电力负荷的有效恢复,在规定时间内确保每一个电气设备恢复自身负荷。
除此之外,在负荷恢复阶段,还应加快实现对整个系统的重新构建与完善,按照相关要求所规定顺序对具体内容就进行恢复,对等级较高的负荷或者与电源负荷相临近的电器进行优先恢复。
大规模风电场接入对电力系统调峰的影响

大规模风电场接入对电力系统调峰的影响一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,在全球能源布局中占据了越来越重要的地位。
大规模风电场的接入,无疑为电力系统的清洁能源供应注入了新的活力,然而,与此其对于电力系统调峰的影响也不容忽视。
本文旨在探讨大规模风电场接入对电力系统调峰的影响,分析风电出力的随机性、波动性以及反调峰特性对电力系统调峰能力的要求,并研究如何通过优化调度策略、改进电网结构等方式来应对这些挑战,以确保电力系统的安全、稳定、经济运行。
文章将介绍风电出力的基本特性,包括其随机性、波动性以及反调峰特性,并分析这些特性对电力系统调峰能力的影响。
接着,文章将深入探讨大规模风电场接入对电力系统调峰的影响机制,包括风电出力波动对系统调峰能力的影响、风电反调峰特性对系统调峰策略的影响等方面。
在此基础上,文章还将提出一系列应对策略,包括优化调度策略、改进电网结构、提升储能技术应用等,以期减轻大规模风电场接入对电力系统调峰的压力,提高电力系统的稳定性和经济性。
文章将总结研究成果,并展望未来的研究方向,以期为相关领域的学术研究和实践应用提供参考和借鉴。
二、风电场接入对电力系统调峰的基本原理风电作为一种可再生能源,其接入电力系统对调峰产生了显著影响。
理解这种影响的基本原理对于优化电力系统的运行和确保电力系统的稳定性至关重要。
风电场的接入对电力系统调峰的影响主要体现在以下几个方面。
风电的出力特性决定了其在不同时间段的出力波动较大。
由于风的随机性和间歇性,风电场的出力在一天之内会有很大的变化,这使得风电场在电力系统中起到了一种“负荷”的作用。
在风力充足的时候,风电场可以提供大量的电力,减轻其他电源的供电压力;而在风力不足的时候,风电场的出力会大幅下降,甚至可能为零,这时就需要其他电源来弥补这部分电力的缺失。
风电场的接入改变了电力系统的调峰需求。
在传统的电力系统中,调峰主要由燃煤机组、燃气机组等可控电源来完成。
风电接入对电网的影响

风电的接入对电网的影响1.对电网频率的影响风电出力波动将会产生严重的有功功率平衡问题。
风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。
因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。
电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。
2.对电网电压的影响风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。
随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。
影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。
系统要求节点电压与额定值的偏差不允许超过一定的范围。
因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。
风电接入系统的所带来的电压与无功功率问题亟待解决。
综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。
[1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73.[2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36.[3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.。
风电并网对电力系统的影响

风电对电力系统的影响由于风速变化是随机性的,因此风电场的出力也是随机的。
风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。
在风电容量比较高的电力网中,可能会产生质量问题。
例如电压波动和闪变、频率偏差、谐波等问题。
即可分为:对电能质量的影响,对稳定性的影响,对保护装置的影响。
1.对电能质量的影响风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量 ,,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。
电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。
电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机自动控制设备的正常工况等。
影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。
并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。
风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。
另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。
异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过 5~6 倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。
风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。
但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。
2.对稳定性的影响风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。
因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃[11,13]。
风电接入对电力系统的影响分析

风电接入对电力系统的影响分析【摘要】风能是一种可再生的绿色能源,风能具有随机性、间歇性、不稳定性的特点,会给系统的电能质量、稳定性等造成严重的影响。
阐述了当前风力发电的特点,综述了风电接入电网对电力系统带来的影响。
【关键词】电力系统风电影响1 引言随着现代工业的飞速发展,人类对能源的需求显著增加,然而煤炭、石油、天然气等常规化石能源日趋匮乏。
为了实现能源的可持续发展,新能源和可再生能源得到了全世界范围内的日益关注。
风能是一种洁净的可再生能源,可以说取之不尽、用之不竭。
风能的大规模利用成为世界范围内解决能源短缺、减少有害气体排放的一项有效措施。
但是由于风力发电的自身特性,风电的大规模接入将对电力系统运行产生一定影响。
2 风力发电的特点大型风电场并网时具有与常规能源发电厂不同的特点,主要体现在以下几个方面:(1)出力不可控性。
风电机组的输出功率随着风速的频繁波动而不断变化,呈现出很强的随机性,风电场出力的间歇性和波动性将影响系统的发电可靠性,导致系统备用容量增加。
(2)不可调度性。
由于风能的不可控性,因而不可能根据负荷的大小来对风电场进行调度,给电力系统调度带来了不小压力。
(3)目前广泛采用的风电机组一般是异步发电机,在发出有功功率的同时,发电机会从系统中吸收无功功率,并且无功需求随有功输出的变化而变化。
3 风电并网对电力系统的影响风力发电机的原动力是自然风,风的随机性和间歇性决定了风力发电机的输出也是波动和间歇的。
当风电场容量较小时,这些特性不会对电力系统运行产生明显影响,但随着风电渗透率的增加,风电接入对电力系统的影响就越来越显著。
风电并网对电力系统的影响主要体现在以下几个方面。
3.1 对电网的冲击大型风电场的风力发电机以异步发电机为主。
由于异步发电机没有独立的励磁装置,在并网前发电机本身没有电压,因此并网时会出现一个暂态过渡过程,将流过冲击电流,其大小是额定电流的4~7倍,而最大瞬时电流可能达到额定值的8倍,然后在零点几秒内进入稳态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨风电接入对电力系统的影响
风电是一种清洁、可持续的能源,已经成为了世界各国发展可再生能源的主要选择之一。
近年来,随着国内对可再生能源的推广和利用,风电在国内的发展也越来越迅速。
风电接入电力系统对于电力系统自身以及国家经济的发展都具有重要的意义。
那么,本文将从三个方面探讨风电接入对电力系统的影响。
一、对电网的稳定性和可靠性的影响
从技术层面上来看,风电的不可控因素对电网稳定性产生一定影响。
由于风资源的不稳定性,风电场并不能保证始终能够输出稳定的电力,而这些波动将反映到电网的负荷平衡、电压稳定等方面,特别是在高密度风电接入网络中,对电力系统的影响会更加明显。
面对这样的挑战,研究人员通过协调各类技术手段,包括电力系统调度、风电场运行控制、电力系统各层面的管理和规划等,来增强电网的稳定性和可靠性。
二、对环保的影响
风电正是因为具有良好的环保性而得到了广泛的关注和追捧。
风电作为一种利用自然能源的发电方式,没有排放污染物和温室气体,降低了对环境造成的影响。
同时,大规模建设风电项目也能促进电力行业实现减排和优化能源结构的目标,从而实现可持续发展。
所以,风电接入电力系统,对于环境保护方面的影响非常大。
三、对电力市场的影响
风电产业的发展对电力市场带来了巨大影响,其实际的贡献在于降低电力市场价格。
在中国,随着风电装机容量增加,其在全国电力供应结构中的比例也在逐年提高。
根据中国电力规划纲要,到2021年和2030年,风电装机容量分别将达到扩容到2.2亿千瓦和4.5亿千瓦。
在此背景下,大规模开发风电必然导致电力市场竞争加剧,更新换代速度加快,同时也为电力市场参与者带来了新的机会和挑战。
总而言之,风电的广泛应用以及与传统能源的搭配,有利于促进可持续能源的发展,减少对环境的破坏,助推我国向低碳经济转型,并对全球气候变化产生积极的影响。
风电接入电力系统,其正向作用显而易见,但同时也需要在合理规划、科学管理、可持续发展等方面加以强化和探索。