(暑期一日一练)2020中考数学复习 第8课时 一元二次方程的根与系数的关系(无答案)

合集下载

中考数学复习《一元二次方程根的判别式、根与系数的关系》

中考数学复习《一元二次方程根的判别式、根与系数的关系》

专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•东城区一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根6.(2023•新郑市模拟)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根8.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】9.(2023•洛阳二模)已知关于x的一元二次方程x2+4x+k=0有两个实数根,则k的值为()A.k=4B.k=﹣4C.k≤4D.k<4 10.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1 B.m≤﹣1 C.m<﹣1D.m≥﹣1且m≠0 11.(2023•东莞市校级一模)已知方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值()A.k>﹣1B.k>1C.k>1且k≠0D.k>﹣1且k≠0 12.(2023春•洞头区期中)关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值是()A.﹣36B.﹣9C.9D.36 13.(2023•阿克苏市一模)若关于x的一元二次方程(k﹣2)x2+2x+3=0有两个实数根,则k的取值范围()A.B.C.k<且k≠2D.且k≠2 14.(2023•贵阳模拟)若关于x的一元二次方程x2﹣4x﹣k=0没有实数根,则k的值可以是()A.﹣5B.﹣4C.﹣3D.2【题型3 由根的判别式证明方程求根的必然情况】15.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.16.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.17.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.18.(2023•金溪县模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两根分别是等腰△ABC两边AB、AC的长,其中BC=10,求k 值.19.(2023•长安区校级一模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:方程有两个不相等的实数根;(2)若该方程的一个根为x=0,且m为正数,求m的值.20.(2022秋•东城区期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m的值,并求出此时方程的解.【题型4 由根与系数的关系求代数式(直接)】21.(2023•红桥区模拟)若一元二次方程x2+4x﹣12=0的两个根分别为x1,x2,则x1+x2的值等于()A.﹣4B.4C.﹣12D.12 22.(2023•五华县校级开学)设一元二次方程x2﹣12x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.3 23.(2023•六盘水二模)已知x1、x2是一元二次方程x2+4x+3=0的两根,则x1+x2+2x1x2的值为()A.﹣2B.﹣1C.1D.2 24.(2023•长丰县模拟)若m,n是方程x2﹣2x﹣3=0的两个实数根,则m+n ﹣mn的值是()A.5B.﹣5C.1D.﹣1【题型5 由根与系数的关系求代数式(代换)】25.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.26.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 27.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 28.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 29.(2022秋•南安市期末)已知一元二次方程x2﹣3x+1=0的两根分别是x1、x2,则x2+x1的值是()A.﹣2B.2C.﹣3D.3 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1 32.(2022秋•嘉陵区校级期末)如果m,n是一元二次方程x2+x=3的两个根,那么多项式m3+4n﹣mn+2022的值等于()A.2018B.2012C.﹣2012D.﹣2018【题型7 构造一元二次方程求代数式的值】33.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 34.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 35.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 36.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023 37.(2023春•江岸区校级月考)设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣6040 38.(2022秋•莲池区校级期末)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.12【题型8 已知方程根的情况判断另一个根】39.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 40.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 41.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 42.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 43.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。

初三数学复习一元二次方程的根与系数的关系试题

初三数学复习一元二次方程的根与系数的关系试题

初三数学复习一元二次方程的根与系数的关系一. 本周教学内容:复习一元二次方程的根与系数的关系[知识点介绍]100212.()如果关于的一元二次方程:≠的两个根是,,x ax bx c a x x ++=那么,·。

x x b a x x ca1212+=-=如果关于的一元二次方程:的两个根是,,那么x x px q x x x x 212120++=+=-=p x x q ,·。

反之也成立。

122. 利用一元二次方程的根与系数的关系的前提是: 〔1〕二次项系数a ≠0,即保证是一元二次方程;〔2〕由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即: ∆=-≥b ac 240例1. 如果是方程的一个根,求的值,并求出方程另一x x kx k k =---=2502个根。

分析:此题考察了对方程中的未知数和参数的认识,以及未知数与参数之间的互相转化,由条件“是方程的一个根”可知是以x x kx k x kx k =---=---=2505022x 为未知数,k 为参数的方程,但把x=2代入方程后,x 由未知数转化为数,方程那么转化为以k 为未知数的方程了,实际上将通过解关于k 的方程来求k 的值。

解法一:由于是方程的一个根,所以把代入方程,x x kx k x =---==25022得22502---=k k ∴;k =-13也就是31402x x +-=;设另一个根为β,由根与系数的关系,有2143213ββ=-+=-()或 ∴。

β=-73解法二:设另一个根为β,据方程的根的意义与根与系数的关系,可列出方程组22502522---==--+=⎧⎨⎩k k k k ββ,或()即有-=+=-⎧⎨⎩3125k k ,;β解这个方程组,得k =-=-⎧⎨⎪⎪⎩⎪⎪1373β剖析:事实上,本例假如把“求k 的值〞一问撤消,直接求“另一个根〞,那么“求k 的值〞将成为解题者需主动采取的步骤,将能表达对才能的更高要求,值得注意。

中考专题:一元二次方程的根与系数的关系

中考专题:一元二次方程的根与系数的关系

( ) ② x12 + x22 = x12 + 2x1x2 + x22 - 2x1x2 = x1 + x2 2 - 2x1x2
③ 1 + 1 = x2 + x1 = x1 + x2 x1 x2 x1 • x2 x1 • x2 x1 • x2
( ) ④ x2 + x1 = x22 + x12 = x12 + x22 = x1 + x2 2 - 2x1x2

9.如果 x1、x2 是一元二次方程 x2﹣kx+k﹣1=0 的两个实数根,且 x1+x2=3,则 k=

10.已知 x1、x2 是一元二次方程 x2+x+m=0 的两个根,且 x1+x2=2+x1x2,则 m=

11.(易错题)关于 x 的一元二次方程 x2+(2k+1)x+k2=0 有两个不相等的实数根.设方程的两个实数根分别为 x1,
5.已知 x1,x2 是一元二次方程 2x2﹣3x﹣4=0 的两个实数根,则 x12 x2 + x1x22 的值是 .
6.一元二次方程
x2﹣2x﹣1=0
的两根分别为
x1,x2,则
1 x1
+
1 x2
的值为

7.若
x1,x2 是方程
x2﹣2x﹣1=0
的两个实数根,则
x2 x1
+
x2 x2
的值为

8.已知 m,n 是一元二次方程 x2﹣4x﹣3=0 的两个实数根,则代数式(m+1)(n+1)的值为
前提:①一般式:ax2 +bx+c = 0 (a≠0);②判别式:∆=b2 - 4ac ≥ 0

中考复习——一元二次方程的根与系数的关系(解析版)

中考复习——一元二次方程的根与系数的关系(解析版)

中考复习——一元二次方程的根与系数的关系一、选择题1、已知x1,x2是一元二次方程x2-2x=0的两根,则x1+x2的值是().A. 0B. 2C. -2D. 4答案:B解答:∵x1,x2是一元二次方程x2-2x=0的两根,∴x1+x2=2.选B.2、若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1·x2的值是().A. 2B. -2C. 4D. -3答案:D解答:∵x1,x2是一元二次方程x2-2x-3=0的两个根,∴x1·x2=-3.3、关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为().A. m=-2B. m=3C. m=3或m=-2D. m=3或m=2答案:A解答:设x1,x2是x2+2mx+m2+m=0的两个实数根,∴Δ=-4m≥0,∴m≤0,∴x1+x2=-2m,x1·x2=m2+m,∴x12+x22=(x1+x2)2-2x1·x2=4m2-2m2-2m=2m2-2m=12,∴m=3或m=-2;∴m=-2.选A.4、一元二次方程x2-3x-2=0的两根为x1,x2,则下列结论正确的是().A. x1=-1,x2=2B. x1=1,x2=-2C. x1+x2=3D. x1x2=2解答:∵方程x2-3x-2=0的两根为x1,x2,∴x1+x2=-ba=3,x1·x2=ca=-2,∴C选项正确.5、α,β是关于x的一元二次方程x2-2x+m=0的两实根,且1α+1β=-23,则m等于().A. –2B. –3C. 2D. 3答案:B解答:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵1α+1β=αβαβ+=2m=-23,∴m=-3.选B.6、已知m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,则(m+2)(n+2)的最小值是().A. 7B. 11C. 12D. 16答案:D解答:∵m,n是关于x的一元二次方程x2-2tx+t2-2t+4=0的两实数根,∴m+n=2t,mn=t2-2t+4,∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7.∵方程有两个实数根,∴Δ=(-2t)2-4(t2-2t+4)=8t-16≥0,∴t≥2,∴(t+1)2+7≥(2+1)2+7=16.选D.7、若一元二次方程ax2=b,(ab>0)的两个根分别是m+1与2m-4,则ba=().A. -4B. 1C. 2D. 4解答:系数化为1时,由于一元二次方程的两个根互为相反数,所以和为0,即可求得m的值为1,两根分别为2,-2,所以ba=x2=4.8、若x1,x2是一元二次方程x2+x-3=0的两个实数根,则x23-4x12+17的值为().A. -2B. 6C. -4D. 4答案:A解答:∵x1,x2是一元二次方程x2+x-3=0的两个实数根,∴x12+x1-3=0,x22+x2-3=0,∴x22=-x2+3,x12=-x1+3,∴x23-4x12+17=x2·(-x2+3)-4(-x1+3)+17=-x22+3x2-4(-x1+3)+17=-(-x2+3)+3x2-4(-x1+3)+17=4x2-3+4x1-12+17=4(x1+x2)+2,根据根与系数的关系可得:x1+x2=-1,∴原式=4(x1+x2)+2=-4+2=-2.选A.9、方程x2-(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是().A. -2或3B. 3C. -2D. -3或2答案:C解答:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=-2,∵方程x2-(m+6)+m2=0有两个相等的实数根,∴Δ=b2-4ac=(m+6)2-4m2=-3m2+12m+36=0,解得m=6或m=-2,∴m=-2.10、已知a,b,c是△ABC三边的长,b>a=c,且方程ax2+c=0的两根的差的绝对,则△ABC中最大角的度数是().A. 150°B. 120°C. 90°D. 60°答案:B解答:设x1、x2是ax2+c=0的两根,则x1+x2,x1x2=ca=1,∵x1-x2,∴|x1-x2,解以上方程组:(x1+x2)2-4x1x2=2,解得:b,∵b>a=c,∴等腰三角形以b为底,∴∠A=∠C=30°,∴∠B=120°.二、填空题11、若关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab=______.答案:4解答:∵关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,∴由韦达定理,得2528b ab a+=+⎧⎨=⎩,解得,14 ab=⎧⎨=⎩.∴ab=1×4=4.12、若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k=______.答案:-1解答:设方程的两根为x 1,x 2,则x 1x 2=k 2,∵x 1与x 2互为倒数, ∴k 2=1,解得k =1或k =-1; ∵方程有两个实数根,Δ>0,∴当k =1时,Δ<0,舍去,故k 的值为-1. 13、已知一元二次方程x 2+2x -8=0的两根为x 1、x 2,则21x x +2x 1x 2+12xx =______. 答案:-372解答:∵x 1、x 2是方程x 2+2x -8=0的两根, ∴x 1+x 2=-2,x 1x 2=-8. ∴21x x +2x 1x 2+12x x ={}{}222112x x x x ++2x 1x 2=()21212122x x x x x x +-+2x 1x 2=()()22288--⨯--+2×(-8)=4168+--16 =-52-16 =-372. 14、已知关于x 的方程x 2+6x +k =0的两个根分别是x 1、x 2,且11x +21x =3,则k 的值为______. 答案:-2解答:∵关于x 的方程x 2+6x +k =0的两个根分别是x 1、x 2, ∴x 1+x 2=-6,x 1x 2=k ,∵11x +21x =1212x x x x +=3,∴6k-=3, ∴k =-2.15、若关于x 的方程x 2+2mx +m 2+3m -2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为______. 答案:54解答:关于x 的方程x 2+2mx +m 2+3m -2=0有两个实数根x 1、x 2,Δ=4m 2-4(m 2+3m -2)≥0,解得m ≤23由韦达定理可知x 1+x 2=-2m ,x 1·x 2=m 2+3m -2. x 1(x 2+x 1)+x 22 =x 1x 2+x 12+x 22 =(x 1+x 2)2-x 1x 2 =(-2m )2-m 2-3m +2 =3m 2-3m +2=3(m -12)2+54. ∵m ≤23,∴当m =12时,取得最小值为54.16、对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)-5=0的两根记为m 、n ,则m 2+n 2=______. 答案:6解答:∵(x ◆2)-5=x 2+2x +4-5, ∴m 、n 为方程x 2+2x -1=0的两个根, ∴m +n =-2,mn =-1, ∴m 2+n 2=(m +n )2-2mn =6. 故答案为:6.17、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a. 根据该材料填空:已知x 1,x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为______. 答案:10解答:由题意知,x 1+x 2=-6,x 1x 2=3,所以21x x +12x x =222112·x x x x +=()21212122·x x x x x x +-⋅=()26233--⨯=10.三、解答题18、已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围. (2)当该方程的一个根为1时,求a 的值及方程的另一根. 答案:(1)a 的取值范围是a <3. (2)a 的值是-1,该方程的另一根为-3.解答:(1)∵b 2-4ac =(2)2-4×1×(a -2)=12-4a >0, 解得:a <3.∴a 的取值范围是a <3.(2)设方程的另一根为x 1,由根与系数的关系得:111212x x a +=-⎧⎨⋅=-⎩,解得:113a x =-⎧⎨=-⎩, 则a 的值是-1,该方程的另一根为-3.19、已知关于x 的方程x 2-4x +k +1=0有两实数根. (1)求k 的取值范围.(2)设方程两实数根分别为x 1、x 2,且13x +23x =x 1x 2-4,求实数k 的值. 答案:(1)k ≤3. (2)k =-3.解答:(1)∵关于x 的一元二次方程x 2-4x +k +1=0有两个实数根, ∴Δ=(-4)2-4×1×(k +1)≥0, 解得:k ≤3,故k 的取值范围为:k ≤3.(2)由根与系数的关系可得x 1+x 2=4,x 1x 2=k +1, 由13x +23x =x 1x 2-4可得()12123x x x x +=x 1x 2-4, 代入x 1+x 2和x 1x 2的值,可得:121k +=k +1-4, 解得:k 1=-3,k 2=5(舍去), 经检验,k =-3是原方程的根, 故k =-3.20、已知关于x 的一元二次方程x 2+(2m +1)x +m -2=0. (1)求证:无论m 取何值,此方程总有两个不相等的实数根. (2)若方程有两个实数根x 1,x 2,且x 1+x 2+3x 1x 2=1,求m 的值. 答案:(1)证明见解答. (2)8.解答:(1)依题意可得Δ=(2m +1)2-4(m -2), =4m 2+9>0.故无论m 取何值,此方程总有两个不相等的实数根. (2)由根与系数的关系可得:()1212212x x m x x m ⎧+=-+⎨=-⎩, 由x 1+x 2+3x 1x 2=1,得-(2m +1)+3(m -2)=1, 解得m =8.21、已知关于x 的方程x 2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围. (2)若该方程的一个根为1,求a 的值及该方程的另一根. 答案:(1)a 的取值范围是a <3. (2)a 的值是-1,该方程的另一根为-3.解答:(1)∵b 2-4ac =22-4×1×(a -2)=12-4a >0, 解得:a <3.∴a 的取值范围是a <3.(2)设方程的另一根为x 1,由根与系数的关系得:11121?2x x a +=-⎧⎨=-⎩,解得:113a x =-⎧⎨=-⎩,则a的值是-1,该方程的另一根为-3.22、已知x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根. (1)求k 的取值范围. (2)是否存在实数k ,使得等式11x +21x =k -2成立?如果存在,请求出k 的值;如果不存在,请说明理由. 答案:(1)k ≤-1. (2)存在,k 值为.解答:(1)∵一元二次方程x 2-2x +k +2=0有两个实数根, ∴Δ=(-2)2-4×1×(k +2)≥0, 解得:k ≤-1.(2)∵x 1,x 2是一元二次方程x 2-2x +k +2=0的两个实数根, ∴x 1+x 2=2,x 1x 2=k +2, ∵11x +21x =k -2, ∴1212x x x x +=22k +=k -2, ∴k 2-6=0,解得:k 1,k 2, 又∵k ≤-1, ∴k,∴存在这样的k 值,使得等式11x +21x =k -2成立,k 值为. 23、已知关于x 的一元二次方程x 2-4x -m 2=0. (1)求证:该方程有两个不等的实根.(2)若该方程的两个实数根x 1、x 2满足x 1+2x 2=9,求m 的值. 答案:(1)证明见解答.(2)m=解答:(1)∵在方程x2-4x-m2=0中,Δ=(-4)2-4×1×(-m2)=16+4m2>0,∴该方程有两个不等的实根.(2)∵该方程的两个实数根分别为x1、x2,∴x1+x2=4①,x1·x2=-m2②.∵x1+2x2=9③,∴联立①③解之,得:x1=-1,x2=5,∴x1·x2=-5=-m2,解得:m=24、关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.答案:(1)k>34.(2)k=2.解答:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,解得:k>34.(2)∵k>3 4∴x1+x2=-(2k+1)<0,又∵x1·x2=k2+1>0∴x1<0,x2<0∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1,∵|x1|+|x2|=x1·x2,∴2k+1=k2+1,∴k1=0,k2=2,又∵k>34,∴k=2.。

完整版一元二次方程根与系数的关系的关系含答案

完整版一元二次方程根与系数的关系的关系含答案

21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系-, B重难点解读—————————根据方程中两根的关系确定方程中字母的值☆重难点的取值范围;1)求实数k○随堂例题(2222的kx=16+x满足、2)若xxx+x?,求实数(-1=0)(xx1例已知关于的方程+2k-1x+k有211212.、x两个实数根x值. 21.)则m的值为(自主解答:(1)∵关于x的方程x+(2k-1)x+k-1=0的两个根,且x+x=1-xx,22D21121.-2 D.1或-2 C.A.有两个实数根x,x, -1或2 B21222,+(m+2)x+m=02.已知关于x的一元二次方程x 0,-1∴△=(2k-1)-4(k)=-4k+5≥取何值,原方程总有两个不相m(1)求证:无论55等的实数根;11?,是原方程的两根,x且(=-22)若x,21xx22有两(2)∵关于x的方程x+(2k-1)x+k-1=021.求m的值2.?,∴x+x=1-2k,xx=k-1个实数根x,x22111222取0,∴无论m解:(1)△=(m+2)-4m=m+4>222,+x)-2x?x=16+x?x=∵x+x(x22211112何值,原方程总有两个不相等的实数根;2222 -4k-12=0,即,k(∴1-2k-1)-2×(k)=16+(k-1),x是原方程的两根,(2)∵x 或解得k=-2k=6(不符合题意,舍去).21 =m.+x∴x=-(m+2),xx .∴实数k的值为-22211xxm?112?题目中提到两个实数根,即隐【一中名师点拨】21? =-2,=∵=-xxxxm当根据方程中两根的;含着根的判别式大于等于02211是分式方程的解,且符合,经检验,m=2解得m=2关系确定方程中字母的值,关键是把这种关系式的值为2.题意,∴m +x转化为含x及x.x的形式2211○随堂训练22-m-1=0x-2mx+m是方程,20171.(烟台)若xx21课后达标基础训练22的值x+a-1=0的两个实数根互为相反数,则a呼和浩特)2017关于x的一元二次方程x+(a-2a)1.( B )为(0.2或.2 B.0 C.1 DA2) A 已知关于x的方程x+x-a=0的一个根为2,则另一个根是(2.(2017新疆)6.3 DA.-3 B.-2 C.2 D )x-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( 3.已知m,n是一元二次方程2D.-6 B.-2 C.0 A.)x,x为根的一元二次方程是( A =30,4.已知实数xx满足x+x=11,xx,则以2121112222+11x+30=0.Ax-11x+30=0 B.x22-11x-30=0.x+11x-30=0 D.xC3311222x=+ 2 ;+=;x=+ 是方程、5.已知xx2x+3x-4=0的两根,那么xx=;x·x??2212111242xx12237. ;=??xx?21442 -1 .的值为,则a+b+ax+b+1=0的解为x=x=26.已知关于x的方程x21323232x+1=0 .x-7.以-2+和为两根的一元二次方程是2. 的值-5,求方程的另一根及m8.已知方程5x+mx-10=0的一根是,解:设方程的另一个根为km2?k?,得,解得则-5k=-2m=23. ,又k-5=55已知关于x的一元二次方程kx+x-2=0有两个不相等的实数根.29.的取值范围;k)求实数1(.,求k的值.x,x,且满足x+x+3x?x(2)设方程两个实数根分别为212121112-,解得k>且△22 =30=1-4k?(-2)>0解:(1且k≠0;(2)根据题意得x+x=-,)根据题意得k≠21k8221122222,k=-)-=3,整理得3k+2k-1=0,解得?+xxx=-,∵x+3x?x=3,∴(x+x)+xx=3,∴,k=-,2m-x+=有两个实数10已知关的一元二次方x21的取值范围;1)求实数m(2-5+3xx的值.=6-xx,求(x-x)(2)若x+x2112112232222≤;,∴m2m-3)-4m=4m-12m+9-4m=-12m+9,∵△≥0,∴-12m+9≥0解:(1)△=(4222,∴-2m-3=03-2m=6-m,∴mx+x=6-xx,∴+x=-(2m-3)=3-2m,xx=m,又∵(2)由题意可得x22111122322+x)-4xxx+3xx-5==1,∴(x-x)+3xx-5=m=3,m=-1,又∵m≤(,,∴m=-1,∴x+x=5xx2111112122221122422(x+x)-xx-5=5-1-5=19.2211能力提升(2017仙桃)若α、β为方程2x-5x-1=0的两个实数根,则2α+3αβ+5β的值为( B )2211.A.-13 B.12 C.14 D.1511221. ,则= ≠0)满足a-a-2018=0,b-b-2018=0(12.若非零实数a,ba??ba2018 1522,的两根是一个矩形两邻边的长,且矩形的对角线长为k+1)x+k+1=013.已知关于x的方程x-(4求k= 2 .已知关于x的一元二次方程x+(2k+1)x+k-2=0的两根为x和x,且(x-2)(x-x)=0,则k的值2214.是 -2211219 .或-422=0. -4x-m已知关于x的一元二次方程x15.(2017黄石))求证:该方程有两个不等的实根;(1 ,求m的值.满足x、xx+2x=9(2)若该方程的两实根211222222,)-m=16+4m >0(=0中,△=-4)-4×1×(-4x-m解:(1)∵在方程x ∴该方程有两个不等的实根;,x、x(2)∵该方程的两个实数根分别为212=-m②.=4+x①,x?xx∴2211=5,,③,∴联立①③解得+2x ∵x=9x=-1x211252.±?x∴xm=,解得=-5=-m21.。

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。

A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)1.探索一元二次方程的根与系数的关系.(重点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(难点)韦达定理:如果12x x ,是一元二次方程 20(0)ax bx c a −+=≠的两个根,由解方程中的公式法得,12x x ==. 那么可推得1212b cx x x x a a+=−⋅=,这是一元二次方程根与系数的关系.题型1:求根与系数关系例1.(2023春·江苏南京·九年级专题练习)若1x ,2x 是一元二次方程2230x x −−=的两个根,则12x x +的值是( ) A .2 B .2− C .3 D .3−【答案】A【分析】根据一元二次方程根与系数的关系可得12x x +的值.【详解】解:一元二次方程2230x x −−=的二次项系数是1a =,一次项系数2b =−,∴由根与系数的关系,得122x x +=.故选:A .【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=−,12cx x a =,牢记公式是解题的关键.12x x 是【答案】D【分析】利用两根之积等于ca 即可解决问题.【详解】解:一元二次方程22410x x −+=的两个根为1x、2x ,1212x x ∴=,故选:D .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于ba −,两根之积等于c a ”是解题的关键.题型2:利用根与系数的关系式求代数式的值【答案】4/0.75【分析】根据根与系数的关系求出12x x +和12x x ⋅的值,然后代入221212x x x x +计算即可.【详解】解:∵22310x x +−=,∴1232x x +=−,1212x x ⋅=−,∴()2212121212313224x x x x x x x x ⎛⎫==−⨯−=⎪⎝++⎭. 故答案为:34.【点睛】本题考查了一元二次方程根与系数的关系,若1x ,2x 为方程20(0)ax bx c a ++=≠的两个根,则1x ,2x 与系数的关系式:12b x x a +=−,12cx x a ⋅=. 例4.(2023春·江苏南京·九年级专题练习)若m ,n 分别是一元二次方程2410x x −+=的两个根,则23m m n −+的值为( ) A .3 B .4 C .5 D .6【答案】A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m −+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x −+=的两个根,∴2410m m −+=,m +n =4, ∴241m m −=−,∴2234143m m n m m m n −+=−++=−+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=−,12cx x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 例5.已知12x x ,是方程2133022x x −−=的两根,求下列各式的值:(1)1211x x +;(2)2212x x −;(3)2212x x +;(4)12||x x−.【答案】(1)2−;(2)−3)42;(4). 【解析】解:由韦达定理,得:126x x +=,123x x =−.原式=12122x x x x +=−;原式()()()1212126x x xx x x=+−=−=±6=±=±•=±原式=()21212242x x x x +−=;原式12x x −==.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用.例6.已知2212510520.1m m n n mn n m−−=+−=≠+,,求的值. 【答案】5−.【解析】由22510m m −−=,可得:25120m m −−=,整理得:21520m m +−=,又由于2520n n +−=,所以可知1m 、n 是方程2520x x +−=的两根, 由韦达定理,可得:15n m +=−.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,而且还考查了一元二次方程的根的灵活应用,要注意观察.例7.已知αβ,是方程:2240x x −−=的两根,求代数式3+8+6αβ的值. 【答案】30.【解析】由题及韦达定理可得:2240αα−−=,2αβ+=,得:224αα=+.3+8+6αβ=286ααβ⋅++=()2486ααβ+++=22486ααβ+++=()224486ααβ++++=()81430αβ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,运用了降次等的思想方法.题型3:已知含字母的一元二次方程的一个根,求另一个根及字母的值例8.(2023春·江苏徐州·九年级校考阶段练习)已知关于x 的方程220x x a +−=的一个根为2,则另一个根是______. 【答案】4−【分析】根据一元二次方程根与系数的关系即可求解.【详解】解:设方程220x x a +−=的另一个根为2x ,则222x +=− 解得:24x =−, 故答案为:4−.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200axbx c a ++=≠的两根,12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解题的关键.例9.若方程:2980kx x −+=的一个根为1x =,则k =________;另一个根为________. 【答案】1;8x =.【解析】将1x =代入方程,可得:1k =,再由韦达定理可得:128x x =,得另一根为8x =.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的应用.题型4:有关一元二次方程的根与系数关系的创新题例10.已知一个直角三角形的两个直角边的长恰好是方程:22870x x −+=两个根,求这个直角三角形的周长. 【答案】7.【解析】解:设直角三角形的三边长为a ,b ,c ,且c 是斜边长,由题知,4a b +=,72ab =,由勾股定理,可得:222c a b =+,所以3c =,所以直角三角形的周长7a b c ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,并且考查了直角三角形的性质,即勾股定理的应用.例11.(2023春·江苏苏州·九年级苏州中学校考开学考试)已知关于x 的一元二次方程22430x mx m −+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x −=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==−=,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x −=,∴()()2222121212416124x x x x x x m m −=+−=−=,解得:1m =±, ∵0m >, ∴1m =.根与系数的关系是解题的关键.【答案】(1)③;(2)4;(3)10【分析】(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)设关于x 的方程260x x c −+=的两个根为12,x x ,然后根据“三倍根方程”可令213x x =,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)先把一元二次方程进行因式分解变形,然后根据“三倍根方程”的关系可进行求解.【详解】(1)解:由2320x x −+=可得:121,2x x ==,不满足“三倍根方程”的定义;由230x x −=可得:120,3x x ==,不满足“三倍根方程”的定义;由28120x x −+=可得:122,6x x ==,满足“三倍根方程”的定义;故答案为③;(2)解:设关于x 的方程260x x c −+=的两个根为12,x x ,由一元二次方程根与系数的关系可知:126x x +=,12x x c =,令213x x =,则有146x =, ∴132x =,292x =, ∴274c =; (3)解:由()20x m n x mn −++=可得:()()0x m x n −−=,∴12,x m x n==,令3m n =,则有:2222233910mn n m n n n ==++.【点睛】本题主要考查一元二次方程根与系数的关系及解法,熟练掌握一元二次方程根与系数的关系是解题的关键.一、单选题1.(2022秋·江苏无锡·九年级统考期中)关于下列一元二次方程,说法正确的是( ) A .2560x x ++=的两根之和等于5 B .231x x −=的两根之积等于1C .20x x m ++=两根不可能互为倒数D .210x mx ++=中m =0时,两根互为相反数【答案】C【分析】根据一元二次方程根的判别式以及一元二次方程根与系数的关系进行判断即可求解.【详解】A. 2560x x ++=的两根之和等于5−,故该选项不正确,不符合题意;B. 231x x −=,即方程2310x x −−=的两根之积等于1−,故该选项不正确,不符合题意;C. 20x x m ++=,∵1,1,a b c m ===,24140b ac m ∆=−=−≥,解得14m ≤,∵1m ≠,两根之积为m ,∴方程两根之积不可能互为倒数,故该选项正确,符合题意;D. 210x mx ++=中0m =时,即21x =−,此方程无实根,故该选项不正确,不符合题意.故选C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12bx x a +=−,12c x x a =.一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【答案】A【分析】利用根与系数的关系12bx x a +=−即可求解.【详解】解:利用根与系数的关系,可得:1222b a a x x a +=−−=−=,x 的方程220ax ax c −+=的一个解为11x =−,()212213x x ∴=−=−−=,故选:A .【点睛】本题主要考查根与系数的关系,解题的关键是熟练掌握根与系数的关系.【答案】D【分析】根据两根之和为10−,以及两根之间的数量关系,求出两个根,再根据两根之积等于26a +,求出a 的值即可.【详解】解:设方程的两个根为,m n ,4=m n ,由根与系数的关系可得:10m n +=−,即:410n n +=−, 解得:2n =−, ∴()428m =⨯−=−,∵()268216mn a =+=−⨯−=,∴5a=; 故选D .【点睛】本题考查一元二次方程根与系数的关系.熟练掌握两根之和等于ba −,两根之积等于c a ,是解题的关键.【答案】A【分析】根据:若一元二次方程()200ax bx c a ++=≠ 两根分别为12x x ,,则有:1212b x x a c x x a ⎧+=−⎪⎪⎨⎪⋅=⎪⎩, 代入数据计算即可.【详解】解:设方程的另一根为1x ,由根据根与系数的关系可得:11115x mx +=⎧⎨⨯=⎩,解得:156x m =⎧⎨=⎩故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,关键要理解一元二次方程的两根之和只与二次项系数和一次项系数有关,两根之积只与二次项系数和常数项有关,从而快速计算结果.5.(2022·江苏南京·南师附中树人学校校考二模)方程()()1210x x +−+=的根的情况,下列结论中正确的是( ) A .两个正根 B .两个负根 C .一个正根,一个负根 D .无实数根【答案】C 【分析】先把方程()()1210x x -++=化为210x x +−=,再根据2Δ41450b ac =-=+=>可得方程有两个不相等的实数根. 【详解】解:∵()()1210x x -++=(p 为常数),∴210x x +−=,∴2Δ41450b ac =-=+=>,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为1−, ∴一个正根,一个负根. 故选:C .【点睛】本题考查一元二次方程根的判别式以及根与系数关系,注意利用偶次方的非负性判断代数式的符号是解决问题的关键. 二、填空题6.(2023·江苏盐城·统考一模)已知关于x 的一元二次方程280x kx +−=的一个根是2-,则它的另一个根为______. 【答案】4【分析】利用根与系数之间的关系来求解. 【详解】解:设方程的另一个根为m ,关于x 的一元二次方程280x kx +−=的一个根是2-,由根与系数之间的关系可得 28m −=− 4m ∴=,故答案为:4.【点睛】本题主要考查了一元二次方程根与系数之间的关系.解题的关键是一元二次方程20ax bx c ++=的两根如果为1x 、2x ,则有12b x x a +=−,12cx x a ⋅=. 7.(2022秋·江苏盐城·九年级统考期中)已知一元二次方程2202210x x −−=的两个根分别是1x 、2x ,则代数式221212x x x x +的值为______. 【答案】2022−【分析】结合题意利用一元二次方程根与系数的关系求得122022x x +=,121x x =−,代入即可求解.【详解】解:一元二次方程2202210x x −−=的两个根分别是1x、2x ,122022x x ∴+=,121x x =−,()2212121212x x x x x x x x ∴+=+12022=−⨯2022=−,故答案为:2022−.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值;熟练掌握根与系数的关系是解题的关键.【答案】2【分析】由根与系数的关系可得12123x x x x m+==,,结合12121x x x x +−=可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:∵12x x ,是方程230x x m −+=的两个根,∴12123x x x x m+==,, ∵121231x x x x m +−=−=,∴2m =. 故答案为2.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程()200ax bx c a ++=≠的两根时,1212cb a a x x x x +=−=,.9.(2023秋·江苏扬州·九年级校考期末)已知1x、2x 是关于x 的方程2250x x −−=的两个根,则12x x +值等于________. 【答案】2【分析】根据一元二次方程根与系数的关系得出两根之和即可求解. 【详解】解:1x 、2x 是关于x 的方程2250x x −−=的两个根,12221x x −∴+=−=,故答案为:2.【点睛】本题主要考查了一元二次方程的根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系为:12b x x a +=−,12cx x a ⋅=.【答案】6【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案. 【详解】解:由题意可得, ∵1x ,2x 是一元二次方程2560x x +−=的两个根,∴12551x x +=−=−,12661x x −==−,∴121212115566x x x x x x +−+===− 故答案为:56.【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握12b x x a +=−,12cx x a =.11.(2023秋·江苏南京·九年级统考期末)关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,则p 的取值范围是______. 【答案】21p −<<−【分析】根据一元二次方程根的判别式和根与系数得关系解答即可.【详解】由题意得: 221x x p −−=,∴22(1)0x x p −−+=,∴[]224(2)41(1)48b ac p p ∆=−=−−⨯⨯−+=+,∴122b x x a +=−=,12(1)cx x p a ⋅==−+,∵关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,∴480(1)0p p +>⎧⎨−+>⎩,解得:21p −<<− ∴p 的取值范围是:21p −<<− 故答案为:21p −<<−【点睛】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握相关知识点是解题的关键.【答案】1−/1−【分析】依据根与系数的关系即12bx x a +=−,12c x x a =代入即可求出m n 、的值,最后代入计算即可.1是方程20x mx n ++=的两个根,))11m∴+=−,)()1·1n=,即m =−1n =,1m n ∴+=−, 故答案为:1−.【点睛】本题考查了根与系数的关系,二次根式的混合运算;解题的关键是熟练掌握一元二次方程根与系数的关系.13.(2023·江苏南京·统考二模)若α、β为2240x x +−=的两根,则22ααβα++的值为______. 【答案】0【分析】由已知中α,β是方程2240x x +−=的两个实数根,结合根与系数的关系转化求解即可.【详解】解:α,β是方程2240x x +−=的两个实数根,可得2αβ+=−,∴22()2220ααβαααβααα++=++=−+=.∴22ααβα++的值为0.故答案为:0.【点睛】本题考查的知识点是一元二次方程根与关系,若α,β是一元二次方程20(0)ax bx c a ++=≠的两根时,b a αβ+=−,ca αβ=.14.(2023秋·江苏南京·九年级统考期末)设12,x x 是关于x 的方程2320x x −+=的两个根,则12x x +=_____________.【答案】3【分析】直接利用根与系数的关系12bx x a +=−求解.【详解】解∶根据根与系数的关系12bx x a +=−得123x x +=.故答案为:3.【点睛】本题考車了根与系数的关系∶若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.15.(2023秋·江苏南京·九年级南京外国语学校仙林分校校考期末)设1x 、2x 是方程230x mx m +−+=的两个根,则1212x x x x +−=___________. 【答案】3−【分析】根据根与系数关系,求出两根之和、两根之积即可. 【详解】解:1x 、2x 是方程230x mx m +−+=的两个根,所以,12x x m+=−,123x x m =−+,1212(3)3x x x x m m +−=−−−+=−,故答案为:3−.【点睛】本题考查了一元二次方程根与系数关系,解题根据是熟记根与系数关系,求出两根之和、两根之积.16.(2022秋·江苏淮安·九年级校考期末)若一元二次方程2220x x −−=有两个实数根1x ,2x ,则1212x x x x +−的值是________. 【答案】4【分析】根据一元二次方程根与系数的关系,即可求得.【详解】解:一元二次方程2220x x −−=有两个实数根1x ,2x,122x x ∴+=,122x x =−,()1212224x x x x ∴+−=−−=,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键. 三、解答题17.(2023·江苏扬州·统考二模)已知关于x 的一元二次方程()2120x m x m −−+−=(1)求证:该方程总有两个实数根.(2)若该方程两个实数根的差为3,求m 的值. 【答案】(1)证明见解析 (2)0或6【分析】(1)由()2120x m x m −−+−=,可知1a =,()1b m =−−,2c m =−,根据()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,证明即可;(2)由()2120x m x m −−+−=,可得121bx x m a +=−=−,122c x x m a ⋅==−,由该方程两个实数根的差为3,可得()2129x x −=,即()()221212124x x x x x x −=+−⋅,()()21429m m −−−=,计算求解即可.【详解】(1)证明:()2120x m x m −−+−=,1a =,()1b m =−−,2c m =−,∴()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,∴该方程总有两个实数根;(2)解:∵()2120x m x m −−+−=,∴121b x x m a +=−=−,122cx x m a ⋅==−,∵该方程两个实数根的差为3,∴()2129x x −=,∵()()221212124x xx x x x −=+−⋅,∴()()21429m m −−−=,解得0m =或6m =, ∴m 的值为0或6.【点睛】本题考查了一元二次方程根的判别,一元二次方程根与系数的关系,完全平方公式的变形.解题的关键在于对知识的熟练掌握与灵活运用.18.(2020秋·江苏南京·九年级统考期中)已知关于x 的方程()220x mx m −+=−.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 【答案】(1)见解析(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到2(2)4m ∆=−+,然后根据判别式的意义得到结论; (2)设方程的另一个为t ,利用根与系数的关系得到2,22t m t m +==−,然后解方程组即可. 【详解】(1)证明:∵1,,2a b m c m ==−=−,∴22224()41(2)48(2)4b ac m m m m m −=−−⨯⨯−=−+=−+, ∵2(2)0m −≥, ∴2(2)40m −+>,∴0∆>,∴不论m 为何值,该方程都有两个不相等的实数根; (2)解:设方程的另一个为t ,根据根与系数的关系得:2,22t m t m +==−, ∴222t t +−=,解得0=t , ∴2m =,∴m 的值为2,另一个根为0.【点睛】本题考查了判别式的意义以及根与系数的关系:若x1,x2是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.一、单选题1.(2022·江苏·九年级专题练习)设一元二次方程2210x x −−=的两根为1x ,2x ,则1122x x x x −+的值为( ) A .1 B .﹣1 C .0 D .3【答案】D【分析】先利用一元二次方程根与系数的关系得122x x +=,121x x =−,再变形得到11221212x x x x x x x x −+=+−,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得122x x +=,121x x =−,∴1122x x x x −+1212x x x x =+−()21=−−3=,故选:D .【点睛】本题考查利用一元二次方程根与系数的关系求代数式的值,若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解决问题的关键.2.(2022秋·江苏常州·九年级校考阶段练习)若m 、n 是方程210x x +−=的两个实数根,则22m m n ++的值为( ) A .4 B .2 C .0 D .-1【答案】C【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +−=的两个实数根,∴210m m +−=,1bm n a +=−=−,∴21m m +=,∴()()222110m m n m m m n ++=+++=−=,故选:C .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 3.(2022秋·江苏南京·九年级校考阶段练习)若关于x 的方程260x mx =--的一个根是2−,则另一个根是( ) A .2 B .﹣2 C .﹣3 D .3【答案】D【分析】根据根与系数关系得出两根之积为-6,进而可以求出另一个根. 【详解】解:关于x 的方程260x mx =--的一个根是2−, 根据根与系数关系可知,两根之积为-6,则另一个根为632=−-,故选:D .【点睛】本题考查了一元二次方程根与系数关系,解题关键是利用根与系数关系求出两根之积为-6. 4.(2022秋·九年级课时练习)若α和β是关于x 的方程210x bx +−=的两根,且2211αβαβ−−=−,则b 的值是( ) A .-3 B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ−=−,代入2211αβαβ−−=−得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +−=的两根,∴+=,1b αβαβ−=−,∴222()1211b αβαβαβαβ−−=−+=−+=− ∴=5b − 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca 是解题的关键.5.(2022秋·江苏苏州·九年级校考阶段练习)设x 1,x 2是方程x 2+5x ﹣6=0的两个根,则x 12+x 22的值是( ) A .5 B .13C .35D .37【答案】D【分析】根据根与系数的关系可以得到x1+x2=-5,x1x2=-6,然后利用将代数式的值代入,计算x12+x22=(x1+x2)2-2x1x2的值.【详解】解:根据题意得x1+x2=-5,x1x2=-6, x12+x22=(x1+x2)2-2x1x2=25+12=37. 故选:D .【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx x a +=−,12cx x a •=.【答案】C【分析】设直角三角形的斜边为c ,两直角边分别为a 与b .根据一元二次方程根与系数关系可得8a b +=,14ab =.再根据勾股定理即可求.【详解】解:设直角三角形的斜边为c ,两直角边分别为a 与b ,直角三角形两直角边是方程28140x x −+=的两根,8a b ∴+=,14ab =,根据勾股定理可得:2222()2642836c a b a b ab =+=+−=−=,6c ∴=.故选:C .【点睛】本题考查勾股定理,一元二次方程根与系数关系,熟练掌握一元二次方程根与系数关系是解题的关键.7.(2020秋·江苏连云港·九年级校考阶段练习)两根均为负数的一元二次方程是( ) A .2712+5=0x x - B .26135=0x x -- C .24215=0x x ++ D .2158=0x x -+【答案】C【分析】因为两根均为负数,所以两实数根的和小于零,两根之积大于零.解题时检验两根之和ba −是否小于零,及两根之积ca 是否大于零.【详解】解:A.125>07x x =,1212>07x x +=,两根均为正数;B.125<06x x =-,1213>06x x +=,两根为一正一负;C.125>04x x =,1221<04x x +=-,两根均为负数;D.128<0x x =-,1215<0x x +=-,两根为一正一负.故答案为:C .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()2=00ax bx c a ++¹的两根时,12=bx x a +−,12=c x x a .二、填空题8.(2022秋·江苏连云港·九年级校考阶段练习)若a ,b 是方程2220x x +−=的两个实数根,则代数式23a a b ++的值为______. 【答案】0【分析】由一元二次方程的解的定义可得出2220a a +−=,即得出222a a +=.根据一元二次方程根与系数的关系可得出2a b +=−,从而即可求出22320a a b a a a b ++=+++=.【详解】∵a ,b 是方程2220x x +−=的两个实数根,∴2220a a +−=,221a b +=−=−,∴222a a +=,∴22322(2)0a b a a a a b ++=+++=+−=. 故答案为:0.【点睛】本题考查一元二次方程的解的定义,一元二次方程根与系数的关系.掌握方程的解就是使方程成立的未知数的值和熟记一元二次方程根与系数的关系:12b x x a +=−、12cx x a ⋅=是解题关键. 9.(2023春·江苏泰州·九年级泰州市姜堰区第四中学校考阶段练习)设方程2202310x x −−=的两个根分别为12x x 、,则1212x x x x +−的值是___________. 【答案】2024【分析】先根据根与系数的关系可求121220231x x x x +==−,,再把12x x +,12x x 的值整体代入所求代数式计算即可.【详解】解:∵方程2202310x x −−=的两个根分别为12x x、,∴121220231x x x x +==−,,∴1212202312024x x x x =−++=.故答案是:2024.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与系数的关系:若方程的两根为12x x、,则1212b cx x x x a a +=−⋅=,.10.(2023·江苏南京·九年级专题练习)已知1x 、2x 是一元二次方程250x x −−=的两个实数根,则221122x x x x −+的值是________.【答案】16【分析】先根据根与系数的关系得到121215x x x x +==−,,然后利用整体代入的方法计算.【详解】解:根据题意得121215x x x x +==−,,所以()222211221212313516x x x x x x x x −+=+−=−⨯−=().故答案为:16.【点睛】本题考查了根与系数的关系:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−⋅=.11.(2022春·江苏南通·九年级校考阶段练习)已知:m 、n 是方程2310x x +−=的两根,则22(33)(33)m m n n ++++=_____.【答案】16【分析】根据m 、n 是方程2310x x +−=的两根,即可得到3m n +=−,1mn =−,2310m m +−=,2310n n +−=,从而得到231m m +=,231n n +=,代入计算即可得到答案.【详解】解:∵m 、n 是方程2310x x +−=的两根,∴3m n +=−,1mn =−,2310m m +−=,2310n n +−=,∴231m m +=,231n n +=,∴()()22(33)(33)131316m m n n ++++=++=,故答案为:16.【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键. 三、解答题12.(2022秋·江苏·九年级专题练习)已知关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x . (1)求m 的取值范围;(2)当11x =−时,求另一个根2x 的值. 【答案】(1)3m ≤ (2)23x =【分析】(1)根据题意得()()22420m ∆=−−−≥,解不等式即可求解; (2)根据根与系数的关系得122x x +=,根据11x =−,即可求解.【详解】(1)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴()()22420m ∆=−−−≥,解得3m ≤,所以m 的取值范围为3m ≤;(2)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴122x x +=, ∵11x =−, ∴23x =.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.13.(2022秋·江苏盐城·九年级滨海县第一初级中学校联考阶段练习)已知关于x 的一元二次方程22430x mx m −+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的平方和为10,求m 的值. 【答案】(1)见解析 (2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为1x,2x ,然后根据一元二次方程根与系数的关系可得124x x m+=,2123x x m ⋅=,再根据两个实数根的平方和为10,可得()222121212210x x x x x x +=+−=,由此可解.【详解】(1)证明:由题意得:1a =,4b m =−,23c m =,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为1x ,2x ,则有124x x m +=,2123x x m ⋅=,∵221210x x +=,∴()222222121212216231010x x x x x x m m m +=+−=−⨯==,解得:1m =±, ∵0m >, ∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.14.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程()21360x m x m −++−=.(1)求证:方程总有两个实数根; (2)若12127x x x x ++=,求m 的值. 【答案】(1)见解析 (2)3m =【分析】(1 (2)根据一元二次方程根与系数的关系可得1212136x x m x x m +=+=−,,整体代入12127x x x x ++=中,解出m 的值即可.【详解】(1)∵该一元二次方程为()21360x m x m −++−=,∴()1136a b m c m ==−+=−,,,∴()()2222414361025(5)0b ac m m m m m ⎡⎤−=−+−⨯−=−+=−≥⎣⎦,∴该方程总有两个实数根; (2)∵1212136b cx x m x x m a a +=−=+==−,,又∵12127x x x x ++=,∴1367m m ++−=,解得:3m =.【点睛】本题考查根据判别式判断一元二次方程根的情况,一元二次方程的根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a +=−和12cx x a ⋅=是解题关键. 15.(2022秋·江苏·九年级专题练习)关于x 的方程:2(x ﹣k )=x ﹣4①和关于x 的一元二次方程:(k ﹣1)x 2+2mx+(3﹣k )+n =0②(k 、m 、n 均为实数),方程①的解为非正数. (1)求k 的取值范围;(2)如果方程②的解为负整数,k ﹣m =2,2k ﹣n =6且k 为整数,求整数m 的值;(3)当方程②有两个实数根x 1、x 2,满足(x 1+x 2)(x 1﹣x 2)+2m (x 1﹣x 2+m )=n+5,且k 为正整数,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≤2且k≠1;(2)m =﹣2或﹣3;(3)成立,见解析【分析】(1)先解出方程①的解,根据一元二次方程的定义和方程①的根为非正数,得出k 的取值范围,即可;(2)先把k =m+2,n =2m ﹣2代入方程②化简,通过因式分解法,用含m 的代数式表示出一元二次方程的两个实数根,根据方程②的解为负整数,m 为整数,即可求出m 的值;(3)根据(1)中k 的取值范围和k 为正整数得出k =2,化简一元二次方程,并将两根和与积代入计算,得出关于m 、n 的等式,结合根的判别式,即可得到结论. 【详解】(1)∵关于x 的方程:2(x ﹣k )=x ﹣4, 解得:x =2k ﹣4,∵关于x 的方程2(x ﹣k )=x ﹣4的解为非正数, ∴2k ﹣4≤0,解得:k≤2, ∵由一元二次方程②,可知k≠1, ∴k≤2且k≠1;(2)∵一元二次方程(k ﹣1)x2+2mx+(3﹣k )+n =0中k ﹣m =2,2k ﹣n =6, ∴k =m+2,n =2k ﹣6=2m+4﹣6=2m ﹣2,∴把k =m+2,n =2m ﹣2代入原方程得:(m+1)x2+2mx+m ﹣1=0, 因式分解得,[(m+1)x+(m ﹣1)](x+1)=0,∴x1=﹣11mm−+=211m−+,x2=﹣1,∵方程②的解为负整数,m为整数,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3;(3)|m|≤2成立,理由如下:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,∵(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=21mk−−=﹣2m,x1x2=31k nk−+−=1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5 ①,△=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣4(n+1)≥0 ②,把①代入②得:4m2﹣8m2+16≥0,即m2≤4,∴|m|≤2.【点睛】本题主要考查一元一次方程与一元二次方程,涉及解一元一次方程,一元二次方程以及一元二次方程的根与系数的关系,根的判别式,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系,根的判别式,是解题的关键.16.(2022秋·江苏·九年级专题练习)关于x的方程2220x ax a−++=有两个不相等的实数根,求分别满足下列条件的取值范围:(1)两根都小于0;(2)两根都大于1;(3)方程一根大于1,一根小于1.【答案】(1)-2<a<-1;(2)2<a<3;(3)a>3【分析】由关于x的方程x2-2ax+a+2=0有两个不相等的实根,得出△=(-2a)2-4(a+2)>0,解得a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,利用根与系数的关系得到α+β=2a,αβ=a+2,再分别根据:(1)由两根都小于0,得出α+β=2a<0,αβ=a+2>0,此求出a的取值范围;(2)由两根都大于1,得出(α-1)(β-1)>0,且对称轴212a−−>,依此求出a的取值范围;(3)由一根大于1,一根小于1,得出(α-1)(β-1)<0,依此求出a的取值范围;【详解】解:∵关于x的方程x2-2ax+a+2=0有两个不相等的实根,∴△=(-2a)2-4(a+2)>0,∴a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,α+β=2a,αβ=a+2.(1)∵两根都小于0,∴α+β=2a<0,αβ=a+2>0,解得:-2<a<0,又22a−−<,a<0;∵a<-1或a>2,∴-2<a<-1;(2)∵两根都大于1,∴(α-1)(β-1)>0,∴αβ-(α+β)+1>0,∴a+2-2a>-1,∴a<3,又212a−−>,a>1;又a<-1或a>2,∴2<a<3;(3))∵一根大于1,一根小于1,∴(α-1)(β-1)<0,∴αβ-(α+β)+1<0,∴a+2-2a<-1,∴a>3.【点睛】本题考查了根的判别式,根与系数的关系,属于基础题,关键是要熟记x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba−,x1x2=ca.17.(2022秋·江苏·九年级专题练习)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:【答案】(1)43(2)4(3)存在,当k=﹣2时,1212212x xy yx x−−=【分析】(1)根据a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出a bb a+的值.(2)根据a+b+c=0,abc=16,得出a+b=-c,ab=16c,a、b是方程x2+cx+16c=0的解,再根据c2-4•16c≥0,即可求出c的最小值.(3)运用根与系数的关系求出x1+x2=1,x1•x2=k+1,再解y1y2-1221x xx x−=2,即可求出k的值.【详解】(1)∵a、b是方程x2+15x+5=0的二根,∴a+b=﹣15,ab=5,∴a bb a+=()22a b abab+−215255−−⨯=43,故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=16 c,∴a、b是方程x2+cx+16c=0的解,∴c2﹣4•16c≥0,c2﹣34c≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.(3)存在,当k=﹣2时,1212212x xy yx x−−=.由x2﹣y+k=0变形得:y=x2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x2+k ,并整理得:x2﹣x+k+1=0, 由题意思可知,x1 , x2是方程x2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧−−+>⎪+⎪⎪=+⎪⎪=−−⎨⎪+−⎪−−=−−−=⎪⎪⎪⎩即:23420k k k ⎧<−⎪⎨⎪+=⎩解得:k=﹣2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【答案】(1)x1x2=x3x4= (2)454.【分析】(1)利用换元法解方程,设y =x2,则原方程可化为y2﹣5y+6=0,解关于y 的方程得到y1=2,y2=3,则x2=2或x2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a2、b2看作方程2x2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【详解】(1)解:42560x x −+=,设2y x =,则原方程可化为2560y y −+=,解得12y =,23y =,当=2y 时,22x =,解得1x 2=x当=3y 时,23x =,解得3x 4=x −所以原方程的解为1x 2=x 3x 4x =故答案为:1x ,2=x 3x =4x =(2)解:∴实数a ,b 满足:422710a a −+=,422710b b −+=且a b ≠,2a ∴、2b 可看作方程22710x x −+=的两不相等的实数根,2272a b ∴+=,2212a b =g ;∴2424222714522224a b a b a b +=+-=-´=g ()(); 故答案为:454.【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.。

2023年中考数学----《一元二次方程之根与系数的关系》知识点总结与专项练习题(含答案解析)

2023年中考数学----《一元二次方程之根与系数的关系》知识点总结与专项练习题(含答案解析)

2023年中考数学----《一元二次方程之根与系数的关系》知识点总结与专项练习题(含答案解析)知识点总结1. 根与系数的基本关系:若21x x ,是一元二次方程02=++c bx ax 的两个根,则这两个根与系数的关系为:ac x x a b x x =⋅−=+2121,。

同时存在:00222121=++=++c bx ax c bx ax ,。

2. 常考推广公式:①()2122122212x x x x x x −+=+。

②()1221221221x x x x x x x x +=+。

③21212112122111x x x x x x x x x x x x +=+=+。

④()21212212122212121212221122x x x x x x x x x x x x x x x x x x x x −+=+=+=+。

⑤()()()2212121p x x p x x p x p x +++=++。

⑥()()212212214x x x x x x −+=−。

专项练习题1、(2022•益阳)若x =﹣1是方程x 2+x +m =0的一个根,则此方程的另一个根是( )A .﹣1B .0C .1D .2【分析】根据根与系数的关系即可求出答案.【解答】解:设x 2+x +m =0另一个根是α,∴﹣1+α=﹣1,∴α=0,故选:B.2、(2022•青海)已知关于x的方程x2+m x+3=0的一个根为x=1,则实数m的值为()A.4 B.﹣4 C.3 D.﹣3【分析】根据方程根的定义,将x=1代入方程,解出m的值即可.【解答】解:关于x的方程x2+mx+3=0的一个根为x=1,所以1+m+3=0解得m=﹣4.故选:B.3、(2022•贵港)若x=﹣2是一元二次方程x2+2x+m=0的一个根,则方程的另一个根及m 的值分别是()A.0,﹣2 B.0,0 C.﹣2,﹣2 D.﹣2,0【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得m的值,即可求得方程的另一根.【解答】解:设方程的另一根为a,∵x=﹣2是一元二次方程x2+2x+m=0的一个根,∴4﹣4+m=0,解得m=0,则﹣2a=0,解得a=0.故选:B.4、(2022•呼和浩特)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045 B.4044 C.2022 D.1【分析】把x=x1代入方程表示出x12﹣2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.【解答】解:把x=x1代入方程得:x12﹣x1﹣2022=0,即x12﹣2022=x1,∵x1,x2是方程x2﹣x﹣2022=0的两个实数根,∴x1+x2=1,x1x2=﹣2022,则原式=x1(x12﹣2022)+x22=x12+x22=(x1+x2)2﹣2x1x2=1+4044=4045.故选:A.5、(2022•黔东南州)已知关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,若x1=﹣1,则a﹣x12﹣x22的值为()A.7 B.﹣7 C.6 D.﹣6【分析】根据根与系数的关系求出x2,a的值,代入代数式求值即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣a=0的两根分别记为x1,x2,∴x1+x2=2,x1•x2=﹣a,∵x1=﹣1,∴x2=3,x1•x2=﹣3=﹣a,∴a=3,∴原式=3﹣(﹣1)2﹣32=3﹣1﹣9=﹣7.故选:B .6、(2022•宜宾)已知m 、n 是一元二次方程x 2+2x ﹣5=0的两个根,则m 2+m n +2m 的值为( )A .0B .﹣10C .3D .10【分析】由于m 、n 是一元二次方程x 2+2x ﹣5=0的两个根,根据根与系数的关系可得m +n =﹣2,mn =﹣5,而m 是方程的一个根,可得m 2+2m ﹣5=0,即m 2+2m =5,那么m 2+mn +2m =m 2+2m +mn ,再把m 2+2m 、mn 的值整体代入计算即可.【解答】解:∵m 、n 是一元二次方程x 2+2x ﹣5=0的两个根,∴mn =﹣5,∵m 是x 2+2x ﹣5=0的一个根,∴m 2+2m ﹣5=0,∴m 2+2m =5,∴m 2+mn +2m =m 2+2m +mn =5﹣5=0.故选:A .7、(2022•乐山)关于x 的一元二次方程3x 2﹣2x +m =0有两根,其中一根为x =1,则这两根之积为( )A .31B .32C .1D .﹣31 【分析】直接把x =1代入一元二次方程即可求出m 的值,根据根与系数的关系即可求得.【解答】解:∵方程的其中一个根是1,∴3﹣2+m =0,解得m =﹣1,∵两根的积为,∴两根的积为﹣,故选:D .8、(2022•巴中)α、β是关于x 的方程x 2﹣x +k ﹣1=0的两个实数根,且α2﹣2α﹣β=4,则k 的值为 .【分析】α2﹣2α﹣β=α2﹣α﹣(α+β)=4,然后根据方程的解的定义以及一元二次方程根与系数的关系,得到关于k 的一元一次方程,即可解得答案.【解答】解:∵α、β是方程x 2﹣x +k ﹣1=0的根,∴α2﹣α+k ﹣1=0,α+β=1,∴α2﹣2α﹣β=α2﹣α﹣(α+β)=﹣k +1﹣1=﹣k =4,∴k =﹣4,故答案是:﹣4.9、(2022•日照)关于x 的一元二次方程2x 2+4mx +m =0有两个不同的实数根x 1,x 2,且x 12+x 22=163,则m = . 【分析】根据根与系数的关系得到x 1+x 2=﹣2m ,x 1x 2=,再由x 12+x 22=变形得到(x 1+x 2)2﹣2x 1x 2=,即可得到4m 2﹣m =,然后解此方程即可.【解答】解:根据题意得x 1+x 2=﹣2m ,x 1x 2=,∵x 12+x 22=,∴(x 1+x 2)2﹣2x 1x 2=,∴4m 2﹣m =,∴m 1=﹣,m 2=,∵Δ=16m 2﹣8m >0,∴m >或m <0,∴m =不合题意,故答案为:﹣.10、(2022•内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 .【分析】根据x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,可得x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,把+=x 12+2x 2﹣1变形再整体代入可得=4﹣k ,解出k 的值,并检验即可得k =2.【解答】解:∵x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,∴x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,∴x 12=2x 1﹣k +1,∵+=x 12+2x 2﹣1,∴=2(x 1+x 2)﹣k ,∴=4﹣k ,解得k =2或k =5,当k =2时,关于x 的方程为x 2﹣2x +1=0,Δ≥0,符合题意;当k =5时,关于x 的方程为x 2﹣2x +4=0,Δ<0,方程无实数解,不符合题意; ∴k =2,故答案为:2.10、(2022•绥化)设x 1与x 2为一元二次方程21x 2+3x +2=0的两根,则(x 1﹣x 2)2的值为 .【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x 1+x 2=﹣6,x 1x 2=4,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=(﹣6)2﹣4×4=36﹣16=20,故答案为:20.11、(2022•鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则a 1+b1的值为 .【分析】由实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,知a 、b 可看作方程x 2﹣4x +3=0的两个不相等的实数根,据此可得a +b =4,ab =3,将其代入到原式=即可得出答案.【解答】解:∵实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,∴a 、b 可看作方程x 2﹣4x +3=0的两个不相等的实数根,则a +b =4,ab =3,则原式==,故答案为:.12、(2022•湖北)若一元二次方程x2﹣4x+3=0的两个根是x1,x2,则x1•x2的值是.【分析】根据根与系数的关系直接可得答案.【解答】解:∵x1,x2是一元二次方程x2﹣4x+3=0的两个根,∴x1•x2=3,故答案为:3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8课时 一元二次方程的根与系数的关系
【课前展练】
1.一元二次方程2210x x --=的根的情况为( )
A.有两个相等的实数根
B.有两个不相等的实数根 C.只有一个实数根
D.没有实数根 2. 若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = ,该方程的另一个根x 2 = .
3.若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 .
4.设x 1,x 2是方程2x 2+4x -3=0的两个根,则(x 1+1)(x 2+1)= __________,x 12+x 22=_________, 12
11x x +=__________,(x 1-x 2)2=_______. 5.已知αβ,为方程2420x x ++=的二实根,则=---24732
βαα . 6.关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数;当m = 时,两根互为相反数.
【要点提示】
熟练掌握一元二次方程)0(02≠=++a c bx ax 根的判别式(ac b 42-=∆)与方程根的关
系,能正确判断所给方程的根的存在性。

熟练掌握一元二次方 )0(02≠=++a c bx ax 两实数
根21、x x 与系数的关系,会求一元二次方程两根的对称代数式的值, 会根据根的特点求字母系数的值, 能根椐两根构造一元二次方程。

【考点梳理】
考点一:一元二次方程根的判别式:
关于x 的一元二次方程()002
≠=++a c bx ax 的根的判别式为 . (1)ac b 42->0⇔一元二次方程()002
≠=++a c bx ax 有两个 实数根,即=2,1x .
(2)ac b 42
-=0⇔一元二次方程有 相等的实数根,即==21x x .
(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根. 考点二: 一元二次方程根与系数的关系
若关于x 的一元二次方程2
0(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么
=+21x x ,=⋅21x x .
【典型例题】
例1: 下列命题:
对于一元二次方程20(0)ax bx c a ++=≠
① 若0a b c ++=,则240b ac -≥;
② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;
③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;
④ 若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.
其中正确的是( )
A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④.
例2:当k 为何值时,方程2610x x k -+-=,(1)两根相等; (2)有一根为0; (3)两根互为倒数.
例3:菱形ABCD 的一条对角线长为6,边AB 的长是方程01272
=+-x x 的一个根,则菱形ABCD 的周长为 .
例4:已知关于x 的方程222(1)0x k x k --+=有两个实数根12,x x .(1)求k 的取值范围; (2)若12121x x x x +=-,求k 的值;
例5:(湖南怀化)如图,已知二次函数22)(m k m x y -++=的图象与x 轴相交于两个不同的点
1(0)A x ,、2(0)B x ,,与y 轴的交点为C .设ABC △的外接圆的圆心为点P .
(1)求P ⊙与y 轴的另一个交点D 的坐标;(2)如果AB 恰好为P ⊙的直径,且ABC △的面积等于5,求m 和k 的值.
【小结】在中考试题中常出现有关根的判别式、根与系数关系的综合解答题. 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件. 应用一元二次方程根与系数的关系时,应注意:① 根的判别式042
≥-ac b ;② 二次项系数0a ≠。

在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力.。

相关文档
最新文档