椭圆题型及方法总结

合集下载

椭圆题型及方法总结

椭圆题型及方法总结

椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。

2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。

3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。

4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。

5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。

6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。

以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。

高考椭圆大题知识点总结

高考椭圆大题知识点总结

高考椭圆大题知识点总结椭圆是高中数学中的一个重要内容,也是高考中常出现的考点。

椭圆是平面几何中的一种特殊曲线,它具有许多有趣的性质和特点。

在解题过程中,我们应该了解椭圆的定义、性质和相关公式,从而灵活运用椭圆的知识来解答高考试题。

一、椭圆的定义和基本性质椭圆是指平面上到两个定点的距离之和等于常数的点的轨迹。

这两个定点称为焦点,两焦点间的距离称为焦距。

椭圆的形状由焦距和离心率决定,离心率小于1时,椭圆比较扁,离心率等于1时,椭圆退化为圆。

椭圆的主要性质有:对称性、切点和法线、焦点和直线的性质等。

在解题时,我们需要根据具体情况运用这些性质,简化计算步骤,提高解题效率。

二、椭圆的标准方程和一般方程椭圆的标准方程可以表示为:(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a为椭圆的长半轴长度,b为椭圆的短半轴长度。

当椭圆的中心在原点时,方程可以简化为x²/a²+y²/b²=1。

而一般方程则可以表示为:Ax²+Bxy+Cy²+Dx+Ey+F=0。

在解题时,我们常常需要将椭圆的方程进行转化,使其符合标准方程的形式,以便于进行求解和分析。

三、椭圆的焦点和直线的关系椭圆的焦点是反映椭圆性质的重要元素之一。

根据焦点和椭圆的关系,我们可以推导出椭圆的两个焦点与椭圆上的点的连线的交点分别位于椭圆的法线和切线上的性质。

根据焦点和直线的关系,我们可以解决一些有关焦点和直线的题目,如:已知一个点在椭圆上,连接该点和椭圆的两个焦点,然后以该点为圆心,过两个焦点的直线为半径画圆,证明所得的圆和椭圆相切等。

四、椭圆的参数方程和极坐标方程除了直角坐标系表示椭圆外,我们还可以使用参数方程和极坐标方程来描述椭圆。

在解题时,椭圆的参数方程和极坐标方程常常能够简化计算步骤,提高解题效率。

椭圆的参数方程可以表示为:x = a*cosθ,y = b*sinθ。

椭圆总结(全)

椭圆总结(全)

椭圆总结一、椭圆的定义:(隐含条件)平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。

其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。

二、 方程1、标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。

其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。

其中22b a c -=2、 一般方程:)0,0(122>>=+B A By Ax Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。

要求能熟练的把一般方程转化成标准方程,并找出a,b,c.三、性质:对于焦点在x 轴上,中心在原点:12222=+b y a x (a >b >0)有以下性质:1、范围:|x|≤a ,|y|≤b ;[][]22121212,*,0PF a c a c PF PF b a F PF F BF ∈-+⎡⎤∈⎣⎦∈角,2、对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);3、顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);4、通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,通径最短=ab 225、离心率:e=ca==(焦距与长轴长之比)()1,0∈;e 越大越扁,0=e 是圆。

(文理通用)椭圆题型总结(完美全面)

(文理通用)椭圆题型总结(完美全面)

椭圆题型归纳一、知识总结1、椭圆的概念在平面内与两定点21F F 、的 等于常数(大于21F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 。

集合}2{21a MF MF M P =+=,c F F 221=,其中0>a ,0>c ,且c a ,为常数。

(1)若c a >,则集合P 为 ;(2)若c a =,则集合P 为 ; (3)若c a <,则集合P 为 。

b ab aa x a ≤≤-b x b ≤≤- (1)确定椭圆的标准方程包括“定位”和“定量”两方面:“定位”是指确定椭圆与坐标系的相对位置,在中心为原点的情况下,确定焦点位于哪条坐标轴上,以判断椭圆方程的标准形式。

“定量”是指确定22,a b 的具体数值,常用待定系数法。

(2)当椭圆的焦点位置不明确时(或无法确定)求其标准方程时,可设方程为221(0,0,),x y m n m n m n+=>>≠且可避免讨论和繁琐的计算。

也可以设为221A>0,B>0,A B Ax By +=≠(),这种形式在解题中较为方便。

(3)求动点的轨迹方程时,应首先充分的挖掘图形的几何性质,看能否确定轨迹的类型,而不要起步就代入坐标,以避免陷入繁琐的化简计算中二、例题剖析题型一、椭圆的定义例1、设定点)30(1-,F ,)30(2,F ,动点满足条件,则点的轨迹是A 、椭圆B 、线段C 、不存在D 、椭圆或线段例2、下列说法中正确的是( )A.已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于8的点的轨迹是椭圆;B. 已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于6的点的轨迹是椭圆;C.到12(4,0),(4,0)F F -两点的距离之和等于点(5,3)M 到12,F F 的距离之和的点的轨迹是椭圆;D.到12(4,0),(4,0)F F -的距离相等的点的轨迹的方程。

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳椭圆是平面内与两个定点距离之和等于常数的点的轨迹。

这两个定点被称为椭圆的焦点,椭圆的焦距是两个焦点之间的距离。

另外,椭圆也可以被定义为平面内一个点到一个定直线距离与到一个定点距离之比等于常数的轨迹。

这个定点是椭圆的焦点,定直线是椭圆的准线,这个常数是椭圆的离心率。

需要注意的是,当两个定点之间的距离等于常数时,椭圆的轨迹是线段,而当两个定点之间的距离小于常数时,椭圆的轨迹不存在。

椭圆的标准方程有两种形式,一种是焦点在x轴上的形式,另一种是焦点在y轴上的形式。

这些方程可以用来确定椭圆的形状和位置。

需要注意的是,椭圆的焦点位置可以通过方程中分母的大小来判断。

如果分母中x的系数大于y的系数,那么焦点在y轴上,反之则在x轴上。

如果椭圆过两个定点,但焦点位置不确定,可以设椭圆方程为mx+ny=1,其中m和n都是正数。

在解题时,需要牢记椭圆的几何性质。

例如,如果一个点到椭圆的左焦点的距离是到右焦点距离的两倍,那么这个点的横坐标可以通过解方程得到。

又例如,如果一个点在椭圆上,那么它到两个焦点的距离之和等于椭圆的长轴长度。

1.椭圆的基本性质椭圆方程为x2/a2 + y2/b2 = 1 (a>b>0),其中a和b分别为长轴和短轴长。

椭圆的中心在原点(0,0)处,长轴与x轴平行。

椭圆的顶点分别为(a,0)。

(-a,0)。

(0,b)。

(0,-b),离心率为e=c/a,其中c为焦点到中心的距离,焦距为2c。

椭圆的准线方程为y=±(b/a)x,通径方程为y=kx或x=h,其中k和h为常数。

椭圆关于x轴和y轴对称,且具有中心对称性。

椭圆上任意一点到两焦点的距离之和等于长轴长,即PF1 + PF2 = 2a。

椭圆上任意一点到两焦点的距离之差等于该点到准线的距离,即PF1 - PF2 = 2b。

椭圆上点的横坐标的范围为-x ≤ x ≤ x,纵坐标的范围为-y ≤ y ≤ y。

2.典型练1) 题目描述:给定椭圆方程x2/a2 + y2/b2 = 1,已知长轴位于x轴上,长轴长为8,短轴位于y轴上,短轴长为6,焦点在x轴上,焦点坐标为(5,0)和(-5,0),求离心率e、左顶点坐标、下顶点坐标和椭圆上点的横坐标的范围、纵坐标的范围以及x+y的取值范围。

椭圆综合题型分类总结大全(定点定值问题、圆锥曲线与向量、圆锥曲线弦长与面积等)

椭圆综合题型分类总结大全(定点定值问题、圆锥曲线与向量、圆锥曲线弦长与面积等)

椭圆综合题型分类总结大全一、直线与椭圆位置关系的常规解题方法:1.设直线的方程(注意:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别)2.设交点坐标(注意:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组,得到新的一元二次方程4.求出韦达定理(注意:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化,常有以下类型:①“以弦AB 为直径的圆过点0”(注意:需讨论K 是否存在,OA ⊥OB ) ②“点在圆内、圆上、圆外问题”“直角、锐角、钝角问题”⇔“向量的数量积大于、等于、小于0问题”⇔12120x x y y +>③“等角、角平分、角互补问题”即斜率关系(120K K +=或12K K =); ④“共线问题”(如:AQ QB λ=⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题”即坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.二、基本解题思想1、“常规求值”问题:找等式关系,“求范围”问题需要找不等式;2、“是否存在”问题:应当假设存在去求,若求出答案则假设成立,若不存在则计算时会无解;3、证明定值问题的方法:⑴常把变量用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明(此方法用得少)4、处理定点问题的方法:⑴常把方程参数分离,使参数乘以的因式为0,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;、题型一、椭圆与向量(1)给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知A、B与PQ的中点三点共线;(5)给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6)给出,等于已知是的定比分点,为定比,即(7)给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。

椭圆的复习(基本知识+常考题型)

椭圆的复习(基本知识+常考题型)

椭圆基本知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点12,F F 距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集2121{||||2,2||2}M P PF PF a a F F c =+=>=,这里两个定点12,F F 叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(若1212||||||PF PF F F +=时,P 的轨迹为线段21F F ;若1212||||||PF PF F F +<,则无轨迹)。

2.标准方程: ①焦点在x 轴上:22221(0)x y a b a b+=>>; 焦点12(,0),(,0)F c F c -②焦点在y 轴上:22221(0)y x a b a b+=>>; 焦点12(0,),(0,)F c F c -注意:①在两种标准方程中,总有0a b >>,且222ca b =-;②两种标准方程可用一般形式表示:221x y m n+= 或221mx ny += 二.椭圆的简单几何性质:1.范围:(1)椭圆22221(0)x y a b a b+=>>横坐标a x a -≤≤ ,纵坐标b y b -≤≤(2)椭圆22221(0)y x a b a b+=>> 横坐标b x b -≤≤,纵坐标a y a -≤≤2.对称性:椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3.椭圆的顶点:椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率:我们把椭圆的焦距与长轴长的比22c a ,即ac称为椭圆的离心率, 记作e (10<<e ),2221()c b e aa==-0e =是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

椭圆大题题型及方法总结

椭圆大题题型及方法总结

椭圆大题题型及方法总结
椭圆在大题中的题型一般有以下几种:
1. 求椭圆方程:这是基础中的基础,可以直接设方程,也可以根据已知条件设方程。

2. 探究椭圆的性质:例如探究椭圆的焦点位置、焦距大小、离心率等性质。

3. 求椭圆上的点的坐标:通常会涉及到椭圆上的点与其他图形的关系,例如与直线、圆、柱形等的关系。

4. 用韦达定理求解椭圆的问题:韦达定理是椭圆考试中的一个重要知识点,通常会在第 2 问或第 3 问中使用。

5. 与三角形相关的问题:椭圆通常会与三角形联系起来,涉及到三角形的面积、周长、角度等问题。

6. 探究椭圆与其他图形的关系:例如椭圆与圆的关系、椭圆与直线的关系等。

针对以上题型,有一些常用的方法和技巧,例如:
1. 画图是一个必不可少的步骤,有助于更好地理解题意和解决问题。

2. 熟悉椭圆的定义和性质,有助于更好地解答题目。

3. 韦达定理是椭圆考试中的一个重要知识点,需要熟练掌握。

4. 注意椭圆与其他图形的关系,例如椭圆与直线的关系、椭圆与圆的关系等,可能需要使用勾股定理、余弦定理等知识。

5. 考试中需要仔细阅读题目,理解题意,抓住关键信息,有针
对性地解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆题型及方法总结
(一)句子填空:
方法点睛:弄清逻辑上的衔接
这部分对我国考生而言有很高的难度,因为它考查了中国人说话写文章最缺少严密的逻辑性。

西文,尤其是商务文章极其讲究逻辑的缜密性,中心思想明确,意群段之间有清晰的.逻辑关系,句与句之间紧密相连。

知道了这样的思维差异,在解题时便有了方向:通过各种衔接手段来解题。

词汇的衔接、语法的衔接,最重要的是逻辑上的衔接。

其实,任何两句话之间的逻辑关系不外乎两种情况:不是顺着意思讲下去顺接,就是意思发生了转折逆接。

判断空格前后句之间的顺逆接关系,再寻找正确的选项解题就容易多了。

平时考生在做阅读训练的时候要特别注意句子之间的逻辑关系。

(二)阅读理解题:
方法点睛:跳跃式阅读
这部分其实是前两部分的综合。

在读文章时只需抓住文章和各段的Main Idea即可,有较强阅读能力的考生尽可能快地速读出句子之间的逻辑关系,而细节跳跃式阅读法效果很好。

解题时,学生要放松心态,因为题目不难,只是在做一个定位+同义词、近义词游戏罢了。

值得注意的是这部分与四六级及考研阅读理解题不同,BEC阅读理解题目不能过细地去推敲,正确选项一般都是原句+改写。

(三)完型填空题:
方法点睛:习惯用法结合语境
考点词汇一般不是商务术语,是四级以下的普通词汇。

大多题目较容易,有个别题目较难。

学生应该从搭配、习惯用法结合语境的方法解题。

不过,想在此部分得满分是极难的。

考生不要轻信自己的语感,这种感觉可能是错觉,真正的语感是以长期积累的实力为基础的。

语法题:牢记BEC知识点。

没有必要去把语法知识详细完全地进行复习,而只需将BEC经常考核的知识点简要地总结并牢记在大脑里就可以了。

BEC语法题历年考试所涉及的语法点十分有限。

名称记不清,记忆像猩猩--牢记住考点语法名称,完全可以在这两部分获得满分。

相关文档
最新文档