矩阵的秩的定义

合集下载

第一章7矩阵的秩

第一章7矩阵的秩

x2
x3 x4
c1
2 1 0
c2
4 0 1
3
21
两个定理的推广
定理:矩阵方程 AX B 有解的充要条件是 R( A) R( A, B)
定理:矩阵方程 Amn X O有非零解的充要条件是 R( A) n
22
Cramer 法则
Cramer法则: 如果线性方程组
a11x1 a12x2 a21x1 a22x2 an1x1 an2x2
32
0
0
6
9
1
1 2 2 1 1
1 2 2 1 1
0
0
2
1
0
0
0
2
1
0
0 0 0 0 5
0 0 0 12 1
0
0
0
12
1
0
0
0
0
5
7
矩阵的秩还有以下性质: 5)R(PAQ) = R(A), 其中P, Q为可逆矩阵。 6)max{ R( A), R(B)} R( A, B) R( A) R( B)
A
2
3
5
4 7 1
3 阶子式 | A|=0
2 阶子式
1 2
2 0
3
∴ R(A) = 2
3
例. 求矩阵B 的秩, 其中
2 1 0 3 2
B
0
3 1 2
5
0 0 0 4 3
0
00
0
0
2 1 0 3 2 4 阶子式都 = 0
B
0
0
0
3 1 2
5
2 1 3
0 0 4 3 3 阶子式 0 3 2 0
29

矩阵的秩及其求法

矩阵的秩及其求法

第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。

例如 共有个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。

显然, 矩阵 A 共有 个 k 阶子式。

2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。

规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。

例1 设 为阶梯形矩阵,求R (B )。

解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。

例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。

()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k nk m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果求 a . 解或 例3 则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。

第四节 矩 阵 的 秩

第四节 矩 阵 的 秩
一个 k 级子式.
例如,在矩阵
1 1 3 1
A


0 0
2 0
1 0
4

5

0
0
0
0

中,选第 1, 3 行和第 3, 4 列,它们交点上的元素
所成的 2就是一个 2 级子式. 又如选第 1, 2, 3 行和第1, 2, 4
列,相应的 3 级子式就是
求向量组的极大线性无关组的方法是:把向量 组中的每一个向量作为矩 阵的一列构成一个矩阵, 然后用矩阵的初等行变换把矩阵化成阶梯形矩阵, 在阶梯形矩阵中,每个阶梯中的第一个非零元所在 的列所对应的向量即为极大线性无关组中的向量.
若要用极大线性无关组来表示其余向量,则需进一 步把阶梯形矩阵化成行最简形,这时,不在极大线 性无关组中的列中的元素即为用极大线性无关组表 示该列所对应的向量的表示系数.


2 3

,
3


3 5

,

4


7
;
1

1


1


4


1

本若请本若请本若请本若请本本若若请请本若节想请单节想本单若节想请单节想本单若节节想想请单单节想内结本单若击内请结节击想内结本单若击内请结节击想内 内结 结本单若击击内请结容束节击想返本容单若束内请返结容束节击想返本容单若束内请返结容 容束 束节击想返返本容单若束已本内请返结回节已击想本本容单若回束已本内请返结回节已击想本本容单若回束已 已本 本内请返结回回节已击想本结本堂容单若回束按内结请返结本堂若节已击想按本结请本 本堂容单若 若回束按内结请 请返结本堂若节已击想按本结 结请本堂 堂容单若回束按按内结请返结堂束节课已击想按本钮容束单回束节课想内结返结钮堂束单节 节课已击想 想按本钮容束单单回束节课想内结返结钮堂束 束单节课 课已击想按本钮钮容束单回束课内,结返结钮堂.已击按本内,!结容束回束课.击内 内,结!返结 结钮堂.已击击按本内,!结容束回束课.击内,,结!返结钮堂..已击按本,!!容束回束课.结!返钮堂容束已按本,返容 容束回束 束课.结!返返钮堂容束已按本,返容束回束课.结!返钮堂已按本,束回课.已本结!钮堂回已 已按本 本,束回回课.已本结!钮堂回已按本,束回课.结!钮堂按,结堂束课.按结 结!钮堂堂按按,结堂束课.按结!钮堂按,束课.!钮束课,钮束束课课.!钮钮束课,钮束课.!钮,.,!.,,!..,!!.,!.!

2.7 矩阵的秩

2.7   矩阵的秩

注:若n阶方阵A可逆的充要条件为A为满秩.
1 2 3 0 0 1 0 1 r ( A) 3; A 0 0 1 0
1 2 0 1 r ( B ) 2; B 0 0
1 1 2 C 0 1 1 r (C ) 3 0 0 2
§2.7 矩阵的秩
一、矩阵的秩的概念 定义 在 m n 矩阵 A中,任取 k 行 k 列 k min{ m , n} , 位于这些行与列交叉处的 k 2 个元素,依照它们在 A 中的位置次序不变而得的 k 阶行列式,称为矩阵 A 的一个 k 阶子式.
k k m n 矩阵共有 CmCn 个 k 阶子式.
设A为一个mn矩阵, 当A=O时, 它的任何子式都 为零; 当AO时, 它至少有一个元素不为零, 即它 至少有一个一阶子式不为零. 这时再考察二阶子式 如果A中有二阶子式不为零, 则往下考察三阶子式, 依此类推, 最后必达到A中有r阶子式不为零, 而再 没有比r更高阶的不为零的子式. 这个不为零的子式 的最高阶数r, 反映了矩阵A内在的重要特性, 在矩阵 的理论与应用中都有重要意义.
A,B,C都是满秩矩阵
定理 矩阵经初等变换后, 其秩不变.
证: 仅考察经一次初等变换的情形. 设矩阵 Amn 经初等变换变为 Bmn , 且 r ( A) r , r ( A) r2 1
当对A施以互换两行或以某行非零数乘某一行的变换时, 矩阵B中任何r 1 阶子式等于某一非零数c与A的某个r 1 1 1 阶子式的乘积, 其中c=1或其它非零数. 因为A的任何 r1 1 阶子式皆为零, 因此B的任何 r1 1阶子式也都为零.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵 可逆的充分必要条件,理解伴随矩阵的概念,会用 伴随矩阵求逆矩阵.

高等代数3.4 矩阵的秩

高等代数3.4 矩阵的秩

由引理,这个方程的系数矩阵
a11 a21 ar1
a12

a1n
a22 a2n

ar 2 arn

,
的行秩 r . 因此在它的行向量中可以找到 r 个是
线性无关的,不妨设为
(a11, a21,, arபைடு நூலகம்) , (a12 , a22 ,, ar2 ) ,
x11 + x22 + … xrr = 0
只有零解,这也就是说,齐次线性方程组
a11x1 a21x2 ar1xr 0 ,

a12
x1


a22 x2 ar2 xr

0
,
a1n x1 a2n x2 arn xr 0 ,
只有零解.
ain
)

i

ai1 a11
1
,
i 2,, n .
由 | A | = 0 可知 n - 1 级矩阵
a22 a2n


an 2 ann
的行列式为零. 根据归纳法假定,这个矩阵的行向
量组线性相关. 因而向量组
2

a21 a11
1
,
3

a31 a11
1
, ,n

an1 a11
1
线性相关,这就是说,有不全为零的数 k2 , … , kn
使
k2
( 2

a21 a11
1)



kn
( n

an1 a11
1)

0
.
改写一下,有

矩阵秩的概念

矩阵秩的概念

设 A 经初等列变换变为 B, 则 AT 经初等行变换变为BT ,
因为 R( AT ) R(BT ),
且 R( A) R( AT ), R(B) R(BT ), 所以 R( A) R(B). 综上,若 A 经有限次初等变换变为B( 即 A ~ B), 则 R( A) R(B).
证毕
初等变换求矩阵秩的方法:
A
3 2
2 0
3 1
6 1 5 3
1 6 4 1 4
r1 r4 1 6 4 1 4
r2 r4
0
4
3
1 1
r3 2r1 r4 3r1
0 0
12 16
9 12
7 11 8 12
r3 3r2
1 0
6 4
4 3
1 1
4 1
r4 4r2
0 0
0 0
0 0
2 0 1 2 0 5 0 1 5 2 1 5
0.
RA 2.
另解
对矩阵
A
1 0Βιβλιοθήκη 3 22 12 3
做初等变换,
2 0 1 5
1 3 2 2 1 3 2 2 0 2 1 3 ~ 0 2 1 3,
2 0 1 5 0 0 0 0
显然,非零行的行数为2,
RA 2.
此方法简单!
二、矩阵秩的求法
因为对于任何矩阵Amn ,总可经过有限次初 等行变换把它变为行阶梯形 问题:经过有限次初等变换, 矩阵的秩变吗?
定理3 若 A ~ B,则 RA RB.
证 先证明:若A经一次初等行变换变为B, 则R( A) R(B). 设 R( A) r,且 A 的某个 r 阶子式 Dr 0.
1 6 4 1 4
r1 r4

线性代数§3.3矩阵的秩

线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n

第三节矩阵的秩

第三节矩阵的秩

1 0 3 6
1 2 3 4 1 0 5 1
r2 2 r1 r3 2 r1
r4 3 r1
1 0 0 0
2 0 0 0
2 4 2 61 2 1 3r2 2 r3 r 2
r4 3 r2
1 0 0 0 1 0 0 0
1 2 r2 r3 3 0 ~ r1 2 r 2 0 0
0 1 0 0
1 3 2 3 0 0
0 0 1 0
16 9 1 9 , 1 3 0
最后一个行阶梯形矩阵具有下述特性: 每一个非零行的第一个非零元素均为1,且含这些元素的 列的其它元素都为0. 这个矩阵称为矩阵A的行最简形
4 3 1 0
1 1 5 5
4 1 3 0
r1 r4 r2 r4 r3 2 r1 r4 3 r1
1 0 0 0
6 4 12 16
4 3 9 12
1 1 7 8
1 11 12 4
矩阵I称为A的标准形,其特点是:I的左上角是一个r 阶单位阵 ( r R ( A )), 其它元素都是0. 可见若 A ~ B , 则A与B有相同的标准形.
特别地,当A为n阶方阵且 A 0 时, 可知 R ( A ) n , 故A的标准形为单位阵E,即 A ~ E . 因此称行列式值 不为零的方阵为满秩方阵; 称行列式值为零的方阵为 降秩方阵
从这个行阶梯形矩阵不仅可看出矩阵的秩. 继续施行 初等行变换,还可化为最简单的形式:
1 0 0 0 2 3 0 0 1 2 0 0 0 2 3 0 2 1 1 0
1 1 r2 0 3 ~ 1 r3 3 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的秩的定义
矩阵的秩是线性代数中一个重要的概念,它描述了矩阵中线性无关的行或列的个数。

矩阵秩的定义可以通过矩阵的行阶梯形式来描述,即将矩阵化简为上三角形式时,非零行的个数就是矩阵的秩。

矩阵的秩在很多应用中都扮演着重要的角色。

首先,在线性方程组的求解中,矩阵的秩可以用来判断方程组的解的情况。

当矩阵的秩等于方程组的未知数个数时,方程组有唯一解;当矩阵的秩小于方程组的未知数个数时,方程组有无穷多解;当矩阵的秩小于方程组的未知数个数时,方程组无解。

在线性映射和线性变换中,矩阵的秩也起着重要的作用。

对于一个线性映射或线性变换,矩阵的秩等于其定义域的维数和值域的维数中的较小值。

这个结论可以用来判断线性映射或线性变换是否是一一对应的。

在求解矩阵的逆和矩阵的特征值等问题中,矩阵的秩也是一个重要的参考指标。

矩阵的逆存在的充分必要条件是矩阵的秩等于其行(或列)的个数;而矩阵的特征值的个数等于矩阵的秩。

矩阵的秩还与矩阵的行列式有密切的关系。

对于一个n阶矩阵,它的秩r等于其非零行列式的最高次数。

这个结论可以用来求解矩阵的秩,特别是对于较大的矩阵,可以利用行列式的性质来简化计算。

总结来说,矩阵的秩是一个非常重要的概念,它在线性代数中有着
广泛的应用。

通过矩阵的秩,我们可以判断线性方程组的解的情况,判断线性映射或线性变换是否是一一对应的,求解矩阵的逆和矩阵的特征值等等。

了解和掌握矩阵的秩的定义和性质,对于深入理解线性代数的基本概念和方法是非常重要的。

希望通过这篇文章的阐述,读者能够对矩阵的秩有一个清晰的认识,并在实际问题中能够灵活运用矩阵的秩来解决各种线性代数相关的问题。

通过深入理解矩阵的秩的定义和性质,读者可以更好地理解线性代数的基本概念和方法,从而提高数学思维能力和问题解决能力。

相关文档
最新文档