渗流力学
渗流力学知识点总结

渗流力学知识点总结一、渗流基本理论1.渗流的基本概念渗流是指流体在多孔介质中的流动现象。
多孔介质是由孔隙和固体颗粒组成的介质,流体可以通过孔隙和固体颗粒之间的空隙进行流动。
渗流现象在自然界和工程领域都有着广泛的应用,如地下水的运移、石油的开采、地下储层的注水等。
2.渗透性与渗透率渗透性是指单位压力下单位面积介质对流体的渗透能力,通常用渗透率来描述。
渗透率是介质内渗流速度与流体粘滞力之比。
一般来说,渗透性越大,渗透率越高,介质对流体的渗透能力越强。
3.渗透压力与渗透率渗透压力是指多孔介质内部由于孔隙中流体分布不均匀而产生的压力。
渗透压力的大小与介质的孔隙结构、流体的性质、地下水位等因素有关,它是影响渗流速度和方向的重要因素。
4.达西定律达西定律是描述渗透性与渗流速度之间关系的定律,它指出在流体粘滞力不考虑的条件下,渗透速度与渗透压力成正比,与渗透率成反比。
达西定律为渗流理论研究提供了重要的基础。
二、多孔介质渗流规律1.多孔介质的渗流特性多孔介质是由孔隙和固体颗粒组成的介质,它具有复杂的微观结构和介质性质。
渗流在多孔介质中受到许多因素的影响,如介质的孔隙度、渗透率、渗透性等,这些因素决定了渗流规律的复杂性和多样性。
2.渗流方程渗流方程是描述多孔介质中流体运移规律的方程,它通常由渗流方程和质量守恒方程两部分组成。
渗流方程描述了流体在多孔介质中的流动规律,它是渗流力学研究的核心内容。
3.多孔介质的稳定性多孔介质中的渗流现象可能受到介质本身的稳定性限制。
孔隙结构、流体的性质以及渗透压力等因素都会影响介质的稳定性,这对渗流速度和方向产生重要影响。
4.非均质多孔介质中的渗流非均质多孔介质中的渗流现象通常较为复杂,其渗透率、孔隙度、渗透性等参数都可能在空间上呈现非均匀性。
对非均质多孔介质中渗流规律的研究对于实际工程应用具有重要意义。
三、非线性渗流1.非线性渗流模型非线性渗流模型是描述介质非线性渗流现象的数学模型。
渗流力学复习

渗流力学:是争论流体在多孔介质中的运动形态和运动规律的科学渗流:流体通过多孔介质的流淌。
稳定渗流:在渗流过程中,假设压力、渗流速度等运动要素不随时间变化。
任一时刻,通过任一过流断面的质量流量恒定且相等。
油气藏:是油气储集的场所和流淌的空间。
渗透性:多孔介质允许流体通过的力量。
确定渗透率:当岩石中的孔隙流体为一相时,岩石允许流体通过的力量。
有效渗透率:当岩石在有两种以上流体存在时,岩石其中一相的通过力量。
比外表积:单位体积岩石全部岩石颗粒的总外表积或孔隙内外表积。
抱负构造模型:岩石的孔隙控件看成是由一束等直径的微毛细管组成。
修正抱负构造模型:变截面弯曲毛细管模型。
力学分析:重力〔动力或阻力〕、惯性力〔阻力〕、粘滞力〔阻力〕、弹性力〔动力〕、毛管力〔动、阻力〕供给压力:油藏中存在液源供给区时,在供给边缘上的压力。
井底压力:油井正常工作时,在生产井井底所测得的压力。
折算压力:选择一基准面,基准面上处的压力为折算压力。
渗流速度:渗流量与渗流截面积之比。
真实速度:渗流量与渗流截面的孔隙面积之比。
线性渗流:当渗流速度较低时,属层流区域,则粘滞力占主导地位,而惯性阻力很小,可无视,这时压差与流量呈线性关系。
渗流的三种方式:单向流、平面径向流、球面对心流贾敏现象:当液滴或者气泡在直径变化的毛管中运动时,由于变形而产生的附加阻力。
确定孔隙度:岩石总孔隙体积与岩石视体积之比。
连续流体:把流体中的质点抽象为一个很小体积重包含着很多分子的集合体,致电中流体的性质与四周质点中的流体性质成连续函数关系。
连续多孔介质:把多孔介质中的质点抽象为一个很小体积单元,该体积单位的介质性质与四周体积单元中的介质性质成连续函数关系。
连续介质场:抱负的连续多孔介质及其所包含的连续流体的整体系统。
压力梯度曲线:在直角坐标系中,依据最初的探井所实测到的油藏埋藏深度H 和实测压力 P 所得的关系曲线地层压力系数:P=a+bH,直线的斜率称为压力系数单相渗流:地层中只有一种流体在流淌。
渗流力学_缩印版

proo oKdp B⎰一、概念1、折算压力及其公式和其实质:油藏中任一点的实测压力均与其埋藏深度有关,为了确切地表示地下的能量分布情况,必须把地层内各点的压力折算到同一水平面上,经折算后的压力称为折算压力,通常选取原始油水界面为折算平面。
折算压力在实质上代表了该点流体所具有的总的机械能。
公式:p ZM =p M +ρgΔD M 2、非活塞式水驱油方式: 由于油水粘度差、毛细管现象、油水重率差以及地层本身非均质性等因素的影响,水渗入到油区后,不可能把全部的石油都置换出去,而会出现一个油水同时混合流动的两相渗流区,这种驱油方式称为非活塞式的水驱油。
在非活塞式水驱油时,从供给边界到生产井排之间可以分为三个区,即纯水区、油水混合区和纯油区。
混合区逐渐扩大到生产井排。
3、气井绝对无阻流量及其二项式表达式,物理意义:天然气井在井底压力为1个大气压时 气井流量。
(AOF q A B=-表示气井的(最大)气井稳定试井时,按二项式处理试井资料,其流动方程为p e 2-p a 2=Aq sc +Bq 2sc4、导压系数定义式、单位及其物理意义:导压系数η=K/φμC t ; m 2·Pa/Pa·s,物理意义:表示压力波在地层中的传导能力,或单位时间内压力传播的面积。
5.井干扰现象及其实质:在油层中有许多井同时,其中任一口井工作制度的改变,如新井投产、事故停产或更换油嘴等等,必然会引起其它井的产量或井底压力发生变化,这种现象叫做井干扰现象。
其实质为地层中能量重新平衡(或压力重新分布)。
二、简答题1.单相弱可压缩液体不稳定渗流基本微分方程为,----该类型方程称为热传导型方程。
2.油气储集层是油气储集场所和油气运移通道,特点:储容性,渗透性,比表面大,结构复杂。
3.流体渗流中受到的力主要有粘滞力、岩石及流体的弹性力和毛细管力。
4.渗流力学是研究流体在多孔介质中流动规律的一门学科。
5.油井不完善类型有打开程度不完善、打开性质不完善和双重不完善。
渗流力学1

渗流力学渗流力学,也称为多孔介质流动力学,是关注多孔介质中油气水等流体的运动与物质传输的一门交叉学科。
本文将从渗流力学的基本概念、渗透性与渗流规律、渗流模型及其数学描述、渗透率测定以及渗流在工程领域的应用等方面进行综述。
一、基本概念多孔介质即为孔隙率大于零的介质,多数包括岩石、土壤等。
我们通常所知的原油、水等都是沿着孔隙流动的,因此对于研究油气水等流体在多孔介质中的运动及物质传输,渗流力学便成为了必不可少的工具。
渗流力学研究的流体如下:1.单相流体:包括气体和液体。
2.不可压缩单相流体:流体密度不随流速变化的流体。
3.不可压缩多相流体:指含空气、水和油的混合流体。
4.可压缩流体:长跑中会考虑的空气。
快速均匀地离开多孔介质的流体称之为洁净流体。
二、渗透性与渗流规律多孔介质的渗透性是流体运动过程中一个重要的参数,通常用渗透率(permeability)来表示。
渗透率取决于多孔介质的孔隙度、孔隙分布及孔隙形态。
它反映的是一个多孔介质通过润湿的介质进行渗透时,所需要克服阻力的大小。
渗透流指液体、气体或气体-液体等多相流体沿渗透介质流动,而渗透介质包括孔洞和颗粒。
颗粒通常被认为是刚性球形粒子。
渗透性是多孔介质的透水能力。
它是空隙中液体流动的干扰抵消与力的关系,并通过Darcy’s Law来描述非细长孔径多孔介质的渗透流。
Darcy's Law的一般表述为:q = -K(∆p)/μ其中,q是流体的流量,K是渗透性,∆p是流体受力的压力差,μ是流体的黏度。
此外,根据流量公式Q = S × q,可以计算出平均流速v和渗透系数K’:v = q/SK' = Kμ其中,S是截面积。
三、渗流模型及其数学描述渗流过程通常分为传导和对流两种方式。
1.传导传导表示沿着渗透介质孔隙内的流动。
其过程可以用贾格尔-盖茨方程来理解。
dP/dx = -η(k/φ) dv/dx其中,η是粘度,k是渗透系数,φ是孔隙度,v是流量。
渗流力学达西定律公式

渗流力学达西定律公式
摘要:
1.渗流力学简介
2.达西定律的概念
3.达西定律的公式
4.达西定律的应用
正文:
1.渗流力学简介
渗流力学是研究流体在多孔介质中渗流规律的学科,它广泛应用于地下水文学、土壤力学、水利工程等领域。
在渗流力学中,达西定律是一个重要的基本定律,对于分析流体在多孔介质中的渗流特性具有重要意义。
2.达西定律的概念
达西定律,又称达西- 威斯巴赫定律,是由法国工程师达西
(C.V.Darcy)和德国工程师威斯巴赫(R.E.Weisbach)分别于19 世纪提出的。
该定律描述了在多孔介质中,流体渗流速度与压力差成正比,即渗流速度等于压力差除以阻力系数。
3.达西定律的公式
达西定律的数学表达式为:
Q = KiA
其中,Q 表示渗流量,K 表示渗透率,i 表示压力差,A 表示渗流面积。
4.达西定律的应用
达西定律在实际工程中有广泛的应用,如计算地下水的渗流速度、分析土壤的渗水性能、设计水利工程等。
通过达西定律,可以更好地了解流体在多孔介质中的渗流规律,从而为相关领域的研究和实践提供理论依据。
总结来说,渗流力学中的达西定律是描述多孔介质中流体渗流规律的一个重要定律。
渗流力学达西定律公式

渗流力学中的达西定律公式是描述液体在多孔介质中流动的重要公式。
公式如下:
q=-K*A*(ΔP/L)
其中,q表示流速,K表示多孔介质的渗透率,A表示多孔介质的横截面积,ΔP表示压力差,L表示渗流路径的长度。
这个公式表明,流速与压力差成正比,与渗流路径的长度和多孔介质的渗透率成反比。
它基于一系列物理假设,包括液体是不可压缩的,多孔介质是各向同性的,流动是稳态的,以及忽略重力和惯性力的影响。
值得注意的是,达西定律公式只适用于层流状态,不适用于湍流状态。
在层流条件下,液体在多孔介质中流动时,流速与压力差成正比,并且流量与横截面积和压力差的乘积成正比。
在湍流条件下,流速和压力差之间的关系更为复杂,需要考虑更多的因素。
此外,渗透率K是描述多孔介质性质的重要参数。
它反映了多孔介质对液体流动的阻力,并与多孔介质的孔隙率、孔隙大小和分布等因素有关。
在多孔介质中,渗透率越大,表示阻力越小,流速越大。
在实际应用中,达西定律公式被广泛应用于石油、水文地质等领域。
通过测量多孔介质的渗透率、横截面积、压力差等参数,可以计算出流速和流量等参数,从而更好地了解液体在多孔介质中的流动规律。
这有助于优化资源开发、提高能源利用效率、保护生态环境等方面的工作。
(完整版)渗流力学有关概念

渗流力学有关概念2.3.1渗流力学指专门研究流体通过各种多孔介质渗流时的运动形态和运动规律的科学。
它是现代流体力学的一个重要分支,是油藏工程、油藏数值模拟的理论基础。
2.3.2不可压缩流体 {刚性流体 )又称为刚性流体,是指随着压力的变化,体积不发生弹性变'形的流体。
2.3.3可压缩流体 (弹性流体 )又称弹性流体,是指随压力的变化,体积发生弹性膨胀或收缩的流体。
2 .3 . 4体相流体指分布在多孔介质孔道的中轴部分,其性质不受界面影响的流体。
2.3.5边界流体指分布在孔道壁上形成一个边界层,其性质受界面影响的流体。
2.3.6地下流体流场指地下流体与岩石相互作用所占据的、并能在其中流动的场所或空间。
2.3.7变形介质当地层中的液体压力降低时,岩石发生变形而使孔隙空间减小,渗透率降低,这种孔隙空间发生变形的多孔介质称为变形介质。
2.3.8可变渗透率地层变形多孔介质的渗透率不是常数,而是压力的函数,具有这种性质的油、气层称为可变渗透率地层。
2.3.9多孔介质以固相介质为骨架,含有大量互相交错又互相分散的微小孔隙或微毛细管孔隙的介质叫多孔介质。
油气储层就是多孔介质的一种。
2.3.10双重孔隙介质 {裂缝孔隙介质 }又称裂缝孔隙介质,是指由孔隙介质和裂缝介质两个水动力学系统构成,两个系统按一定规律进行流体交换。
2.3.11渗流与地下渗流流体在多孔介质中的流动称为渗流。
流体在地层中流动叫做地下渗流。
2.3.12单相渗流指在多孔介质中只有一种流体以一种状态参与流动。
如在地层压力高于饱和压力条件下,油藏中的原油流动,气藏中的气体流动等。
2.3.13两相渗流与多相渗流指在多孔介质中有两种流体同时参与流动叫两相渗流,如油层中的油、水两相流动。
同时有两种以上互不混溶的流体参与流动叫多相渗流,如油层中的油、气、水三相流动。
2.3.14多组分渗流指含有多种组分的烃质和非烃质混合的流体在多孔介质中的流动。
2.3.15并行渗流指两种不混溶流体沿同一方向流动。
渗流力学

渗流力学一、词解释:1、多孔介质:由毛细管微毛细管构成的介质叫多孔介质。
2、双重介质:由两种孔隙空间构成的多孔介质叫重介质。
3、油水分界面:油藏中油和水接触面叫油水分界面。
4、油水边界:油水分界面在平面上的投影。
5、供给边界:若油藏有露头,露头处有水源供应,则露头在平面上的投影叫做供给边界。
6、储容容性:油藏储存和容纳流体的能力。
7、渗流速度:流体通过单位渗流面积的体积流量。
8、真实渗流面积:流体所流过孔道的横载面的面积。
9、原始地层压力:油藏在投入开发以前测得的地层压力叫原始地压力。
10、流动压力:在正常生产状态下,在生产井井底所测得的压力叫流动压力。
11、压力梯度曲线:第一批控井测得的原始地层压力与对应的地层深度作出的曲线叫压力梯度曲线。
12、折算压力:经折算后的压力叫折算压力,代表流体盾点总能量。
13、重力水压驱动方式:以与外界连通的水头压力或人工注水压力作用作为主要驱油动力的驱油方式。
14、弹性驱动:以岩石及流体本身的弹性力作为主要驱汪动力的驱动方式。
15、溶解气驱动:以从石油中不断分离出来的溶解气的弹性能作为主要驱油动力的驱油方式。
16、线性渗流:流体流动规律符合达西定律的流动叫线性渗流。
17、非线性渗流:凡是偏离达西定律的流动叫非线性渗流。
18、稳定渗流:运动要素在渗流过程不发生变化的渗流。
19、渗流数学模型:用数学语文综合表达油气渗流过程中全部力学现象与物理化学现象的内在联系和一般运动规律的方程。
20、平面单向流:流体沿着一个方向流动,流线互相平行的渗流叫平面单向流。
21、平面径向流:流体沿着半径向中心一点洪或向外扩散的流动叫平面径向流,井底附近流动即为平面径向流。
22、压力梯度:地层中流体流经单位长度距离所消耗的能量。
23、质量渗流速度:地层中单位时间单位截面所流过的质量流量。
24、流场图:由一组等压线和一组流线按一定规则构成的图形。
25、等压线:流场图中压力相等点的连线。
26、完善井:指油层部位全部钻穿,且裸眼完成的,井底不受污染的井。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗流力学
1、渗流的特点是什么?答:阻力大,流速慢。
2、什么是多孔介质,有哪些特点?答:由毛细管和微毛细管组成。
特点为:储容性、渗透性、比表面性、结构
复杂。
3、写出渗流速度及真实渗流速度的定义,并说明它们之间的关系?
答:渗流速度:流体通过单位渗流面积的体积流量;真实渗流速度:流体通过单位真实渗流面积的体积流量,
关系为V=Ø·V Ø
4、一般的渗流形式有哪些?答:平面单向流、平面径向流、球形径向流。
5、什么是原始地层压力?获得原始地层压力的方法有哪些?
答:油藏在投入开发以前测得的地层压力称为原始地层压力,获得方法有:打第一批探井时测得的;通过压
力梯度曲线得到。
6、什么是折算压力?其物理意义是?答:油藏中任一点的实测压力均与其埋藏深度有关,为了确切地表示地下
的能量分布情况,必须把地层内各点的压力折算到同一水平面上,这个水平面称为折算平面,经折算后的压力称为折算压力。
其物理意义为折算压力在实质上代表了该点流体所具有的总的机械能。
7、在渗流过程中一般受到哪些力的作用?主要作用力是什么?
答:流体的重力、惯性力、粘滞力、岩石及流体的弹性力、毛细管压力。
后三个为主要作用力。
8、油藏驱动类型一般有哪几种?答:弹性驱动、溶解气驱动、气压驱动、重力驱动、重力水驱动。
9、什么是达西定律?为什么说它是线性渗流定律?答:达西定律为q=KA∆p/μL 因为流量q 与压差∆p 呈线
性关系,故达西定律也是线性渗流定律。
10、达西定律中各物理量的单位是什么?答:K —渗透率—m 2;A —横截面积—m 2;∆p —两个渗流截面间的压
差—Pa ;μ—粘度—Pa ·s ;L —两个渗流截面间的距离,m 。
11、在什么情况下会产生非线性渗流?答:高速非线性渗流:一般会出现在气井或裂缝性油井中;低速非线性
渗流:低渗,特低渗油藏或是稠油油藏中。
12解决渗流问题的一般思路是什么?答:第一步,建立比较理想的物理模型;第二步,对物理模型建立相应的
数学模型;第三步,对数学模型求解;第四步,将求得的理论结果应用到实际问题中。
13、渗流基本微分方程由哪几个方程组成?答:连续性方程;运动方程;状态方程;特征方程。
14、什么是稳定渗流?答:是指运动要素(如速度、压力等)都是常数的渗流。
15
答 属于拉普拉斯方程。
16
平面单向流:沿程渗流过程中压力是均匀下降的。
平面径向流:压力主要消耗在井底附近,这是因为越靠近井底渗流面积越小而渗流阻力越大的缘故。
17 答18
答 途径:1酸化压裂,增加渗透率;2增大生产压差;3加入降粘剂,火烧油层;419、什么是油井的完善性?表示不完善性有几个物理量?
答:完善井,即油层全部钻穿,且裸眼完井。
物理量:油层厚度h 、油层打开部分的厚度b 、射孔数、射孔
子弹的直径、射入深度、折算半径、表皮因子。
20、什么是稳定试井?用途是什么?
答:稳定试井是通过人为的改变井的工作制度,并在各个工作制度稳定的条件下测量其压力及对应的产量
有关资料,以确定井的产生能力和合理的工作制度,以及推算地层的有关参数等。
用途:确定油井合理的工作制度;确定油井的生产能力;判断增产措施的效果;推算地层的有关参数。
21、什么是采油指数?物理意义?
答:采油指数等于消耗单位压差采出的流量,物理意义是表示油井生产能力的一个重要参数。
22、什么叫多井干扰?
答:在油层中当许多油井同时工作时,其中任一口井工作制度的改变,如新井投产、事故停产或更换油嘴等,必然会引起其他井的产量或井底压力发生变化,这种现象称为井干扰现象。
23、在多井干扰情况下确定地层中压力重新分布的原则是什么?
答:实质是地层中能量重新平衡,能量大小由压力表示,最终表现为地层中压力重新分布,按压降叠加的
原则。
24、写出势的叠加原则的数学表达式。
答
25 答:一源一汇的特殊现象是舌进现象,是因为注采井间流体流动的最快。
两汇的特殊现象是死油区,由于流
场的对称性,可知在坐标原点的流速为零,此点称为平衡点,在平衡点附近将形成死油区。
26、什么是镜像反映法?遵循的原则是什么?
答:镜像反映法分为汇源反映法和汇点反映法。
汇源反映法是在研究直线供给边界附近一口井的问题时,
可以想象它是一源一汇中的点汇部分,这样就可把直线供给边界附近一口生产井的问题归结为无限大地层中存在等产量的一源一汇的情况,这种方法称为汇源反映法;汇点反映法是在讨论半无限大地层内距直线断层处有一口生产井,断层相当于一条分流线,断层左侧的流体被阻挡而不能流入井中,可见直线断层附近一口井的流场相当于无限大地层中等产量的两汇的流场的一半,于是把断层附近的一口井看作为无限大地层中存在两汇的问题来解决。
遵循的原则:反映法原则,不渗透边界是“同号”等产量反映两汇(两源),反映后不渗透边界保持为分流线;供给边界是“异号”等产量反映(汇源)。
27、什么是水电相似原理?答:液流与电流的相似性即所谓的水电相似原则。
28、什么是等值渗流阻力法?答:根据水电相似原则,用电路图描述渗流过程,然后按照电路有关的定律来求
解。
29、分别写出等值渗流阻力法中内阻和外阻的物理含义及表达式。
答:直线井排流体渗流中:外阻是平面单向流阻力;内阻是平面径向流的阻力。
在圆形井排中:外阻是从
圆形供给边界到生产井排附近的平面径向流;内阻是由生产井排附近到生产井井底克服的径向流阻力。
30、什么是不稳定渗流?在什么情况下发生?答:运动要素与运动时间有关的为不稳定渗流,发生条件:(1)封闭边界(2)多井干扰。
31、在不稳定渗流条件下,压力波是如何传播的?答:压力在传播到边界之前,地层压力随开发时间的增长逐
渐下降,这一阶段为不稳定渗流;压力传播到边界之后,流体主要为拟稳定渗流或稳定渗流,稳定渗流发生在定压边界油藏,拟稳定渗流发生在封闭边界油藏,对于封闭边界油藏驱动方式由初期的弹性驱动转化为后期的溶解气驱动。
32
答
33、什么是导压系数?其物理意义是?答 34、什么是压缩系数和综合压缩系数?物理意义?答物理意义是衡量液体的可压缩性;岩石的压缩系数:单位压差下,单位岩石体积的变化率,物理意义是衡量岩石的可压缩性;综合的压缩系数:单位压差下,单位液体和岩石体积的变化率,C t =C l +C f 。
物理意义是衡量综合的可压缩性。
35
答36答:不稳定试井是利用油井以某一产量进行生产时(或在以某一产量生产一段时间后关井时)所实测的井底压
力随时间变化的资料,用以反求各种底层参数。
37、常规不稳定试井分析包括哪几种方法?
答:(1)压力恢复试井法(2)压力降落试井法。
38、实测压力恢复曲线与理论曲线产生偏差的原因是什么?
答:原因:(1)续流和表皮系数的影响(2)外边界影响
39、常规不稳定试井可进行哪些探边测试?
答:(1)确定断层(2)确定油气和油水边界
40、什么是活塞式驱动和非活塞式驱动?答:活塞式驱动:油水接触面将垂直于流线均匀地向并排移动,含水
区和含油区是截然分开的;非活塞式驱动:由于油水粘度差、毛细管现象、油水重率差以及底层本身非均质性等因素的影响,水渗入到油区后,不可能把全部的石油都置换出去,而会出现一个油水同时混合流动的两相渗透区,这种驱动方式称为非活塞式的水驱油。
41、影响水驱油非活塞性因素:(1)毛细管压力的影响(2)重率差的影响(3)粘度差的影响
42、常用哪些定量表达式来描述高速非线性渗流?
答:(1)指数式:q=C(△p)n C—取决于岩石和流体性质的常数n—渗流指数,一般1/2<n<1
(2)二项式:△p=Aq+Bq2 A、B—取决于岩石及流体性质的常数。