分享最适合新手入门的10种机器学习算法

合集下载

机器学习初学者必须知道的十大算法_光环大数据培训

机器学习初学者必须知道的十大算法_光环大数据培训

机器学习初学者必须知道的十大算法_光环大数据培训ML算法是可以从数据中学习并从中改进的算法,无需人工干预。

学习任务可能包括将输入映射到输出,在未标记的数据中学习隐藏的结构,或者“基于实例的学习”,其中通过将新实例与来自存储在存储器中的训练数据的实例进行比较来为新实例生成类标签。

1.ML算法的类型有三种ML算法:1.监督学习:监督学习可以理解为:使用标记的训练数据来学习从输入变量(X)到输出变量(Y)的映射函数。

Y=f(X)监督学习问题可以有两种类型:分类:预测输出变量处于类别形式的给定样本的结果。

例如男性和女性,病态和健康等标签。

回归:预测给定样本的输出变量的实值结果。

例子包括表示降雨量和人的身高的实值标签。

在这篇博客中介绍的前5个算法——线性回归,Logistic回归,CART,朴素贝叶斯,KNN都是监督学习。

人工智能领域的大牛吴恩达曾在他的公开课中提到,目前机器学习带来的经济价值全部来自监督学习。

2.无监督学习:无监督学习问题只有输入变量(X),但没有相应的输出变量。

它使用无标签的训练数据来模拟数据的基本结构。

无监督学习问题可以有两种类型:1.关联:发现数据集合中的相关数据共现的概率。

它广泛用于市场篮子分析。

例如:如果顾客购买面包,他有80%的可能购买鸡蛋。

2.群集:对样本进行分组,使得同一个群集内的对象彼此之间的关系比另一个群集中的对象更为相似。

3.维度降低:维度降低意味着减少数据集的变量数量,同时确保重要的信息仍然传达。

可以使用特征提取方法和特征选择方法来完成维度降低。

特征选择选择原始变量的一个子集。

特征提取执行从高维空间到低维空间的数据转换。

例如:PCA算法是一种特征提取方法。

Apriori,K-means,PCA是无监督学习的例子。

3.强化学习:强化学习是一种机器学习算法,它允许代理根据当前状态决定最佳的下一个动作。

强化算法通常通过反复试验来学习最佳行为。

它们通常用于机器人的训练,机器人可以通过在碰到障碍物后接收负面反馈来学习避免碰撞。

机器学习必知的10大算法

机器学习必知的10大算法

机器学习必知的10大算法机器学习算法可以分为三大类:监督学习、无监督学习和强化学习。

以下介绍 10 个关于监督学习和无监督学习的算法。

•监督学习可用于一个特定的数据集(训练集)具有某一属性(标签),但是其他数据没有标签或者需要预测标签的情况。

•无监督学习可用于给定的没有标签的数据集(数据不是预分配好的),目的就是要找出数据间的潜在关系。

•强化学习位于这两者之间,每次预测都有一定形式的反馈,但是没有精确的标签或者错误信息。

监督学习1. 决策树(Decision Trees)决策树是一个决策支持工具,它使用树形图或者决策模型以及可能性序列,包括偶然事件的结果、资源成本和效用。

下图是其基本原理:从业务决策的角度来看,决策树是人们必须了解的最少的是/否问题,这样才能评估大多数时候做出正确决策的概率。

作为一种方法,它允许你以结构化和系统化的方式来解决问题,从而得出合乎逻辑的结论。

2. 朴素贝叶斯分类 (Naive Bayesian classification)朴素贝叶斯分类器是一类简单的概率分类器,它基于贝叶斯定理和特征间的强大的(朴素的)独立假设。

图中是贝叶斯公式,其中P(A|B)是后验概率,P(B|A)是似然,P(A)是类先验概率,P(B)是预测先验概率。

一些应用例子:判断垃圾邮件对新闻的类别进行分类,比如科技、政治、运动判断文本表达的感情是积极的还是消极的人脸识别3. 最小二乘法(Ordinary Least Squares Regression)如果你懂统计学的话,你可能以前听说过线性回归。

最小二乘法是一种计算线性回归的方法。

你可以将线性回归看做通过一组点来拟合一条直线。

实现这个有很多种方法,“最小二乘法”就像这样:你可以画一条直线,然后对于每一个数据点,计算每个点到直线的垂直距离,然后把它们加起来,那么最后得到的拟合直线就是距离和尽可能小的直线。

线性指的是你用来拟合数据的模型,而最小二乘法指的是你最小化的误差度量。

机器学习10大经典算法

机器学习10大经典算法

机器学习10大经典算法1、C4.5C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2)在树构造过程中进行剪枝;3)能够完成对连续属性的离散化处理;4)能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。

其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2、The k-means algorithm即K-Means算法k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。

它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。

它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

3、Support vector machines支持向量机支持向量机(Support Vector Machine),简称SV机(论文中一般简称SVM)。

它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。

支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。

在分开数据的超平面的两边建有两个互相平行的超平面。

分隔超平面使两个平行超平面的距离最大化。

假定平行超平面间的距离或差距越大,分类器的总误差越小。

一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。

van der Walt和Barnard 将支持向量机和其他分类器进行了比较。

4、The Apriori algorithmApriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。

其核心是基于两阶段频集思想的递推算法。

该关联规则在分类上属于单维、单层、布尔关联规则。

机器学习经典算法

机器学习经典算法

机器学习经典算法机器学习是一门研究如何让计算机从经验(数据)中学习,并且提高其自身性能的学科。

在机器学习中,算法是非常重要的工具,它们用于从训练数据中推导出模式、规则和模型,从而使计算机能够对未知数据进行预测和判断。

下面是一些经典的机器学习算法。

1.线性回归:线性回归是一种广泛应用于回归问题的算法。

它基于找到最佳的直线来拟合训练数据,使得预测值与真实值之间的差异最小化。

2. 逻辑回归:逻辑回归是一种分类算法,用于预测二进制或多类别变量。

它基于将线性回归应用于逻辑函数(如sigmoid函数),将输出映射到0和1之间。

3.决策树:决策树是一种基于树形结构的分类和回归算法。

它通过选择最佳特征和最佳分割点来构建树,从而对数据进行分类和预测。

4.随机森林:随机森林是一种集成学习算法,它基于多个决策树的投票结果进行分类或回归预测。

它通过随机选择训练数据和特征子集,降低了过拟合的风险,并且通常具有更好的泛化能力。

5.支持向量机(SVM):支持向量机是一种分类和回归算法。

它基于找到一个最佳超平面来将不同类别的数据分开,同时最大化样本到超平面的间隔。

6.K最近邻算法(KNN):K最近邻算法是一种基于实例的学习算法。

它通过在训练集中找到与测试样本最接近的K个样本,并根据它们的投票结果来进行分类。

7.主成分分析(PCA):主成分分析是一种降维算法,用于减少数据集的维度并保留大部分的信息。

它通过找到最佳的投影方向,使得投影后的数据方差最大化。

8. 集成学习:集成学习是一种将多个学习器组合起来以获得更好性能的方法。

常见的集成学习算法包括袋装法(bagging)、提升法(boosting)和随机森林。

9.高斯混合模型(GMM):高斯混合模型是一种对多个高斯分布进行加权组合的概率模型。

它通常用于聚类问题和密度估计。

10.神经网络:神经网络是一种模拟人脑神经元网络结构的机器学习算法。

它由多个连接的神经元层组成,并通过权重调整来学习输入和输出之间的非线性关系。

17个机器学习的常用算法!

17个机器学习的常用算法!

17个机器学习的常用算法!1. 监督式学习:在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。

在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。

监督式学习的常见应用场景如分类问题和回归问题。

常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network)2. 非监督式学习:在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。

常见的应用场景包括关联规则的学习以及聚类等。

常见算法包括Apriori算法以及k-Means算法。

3. 半监督式学习:在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。

应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。

如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。

4. 强化学习:在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。

常见的应用场景包括动态系统以及机器人控制等。

常见算法包括Q-Learning以及时间差学习(Temporal difference learning)在企业数据应用的场景下,人们最常用的可能就是监督式学习和非监督式学习的模型。

在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据,目前半监督式学习是一个很热的话题。

机器学习10大经典算法

机器学习10大经典算法

机器学习10大经典算法机器学习是指通过计算机算法从大量数据中获取知识或经验,用于模拟人类的学习能力和决策过程。

在机器学习领域中,有许多经典的算法被广泛应用于各种任务,包括分类、聚类、回归等。

下面将介绍机器学习领域中的十大经典算法。

1. 线性回归(Linear Regression):线性回归是最基础的机器学习算法之一,用于建立输入变量和输出变量之间的线性关系。

通过拟合一条最佳拟合直线,来预测新的输入数据的输出值。

2. 逻辑回归(Logistic Regression):逻辑回归用于处理二分类问题,通过拟合一个Sigmoid函数来预测新的输入数据的输出概率。

逻辑回归比较简单且计算速度快,是许多实际问题中的常用算法。

3. 决策树(Decision Tree):决策树是一种基于树状结构的分类算法,通过一系列的选择和分割策略将输入数据进行分类或者回归。

决策树易于理解和解释,并且在处理非线性关系的问题时表现良好。

4. 随机森林(Random Forest):随机森林是一种集成学习方法,通过组合多个决策树进行分类和回归。

随机森林能够解决决策树容易过拟合的问题,并且在处理大规模数据时具有较高的效率和准确度。

5. 支持向量机(Support Vector Machine):支持向量机是一种常用的二分类算法,通过将样本数据映射到高维特征空间,并在该空间中寻找一个最优超平面来进行分类。

支持向量机在处理线性和非线性问题时表现出色。

7. 朴素贝叶斯(Naive Bayes):朴素贝叶斯是一种基于概率统计的分类算法,它假设特征之间是相互独立的。

该算法通过计算给定特征的条件概率,来对新的输入数据进行分类。

8. K均值聚类(K-Means Clustering):K均值聚类是一种无监督学习算法,通过将数据点分为K个簇,使得簇内的数据点相似度较高,而簇间的相似度较低。

K均值聚类适用于处理大规模数据和寻找数据内在结构的问题。

9. 神经网络(Neural Networks):神经网络是一种模拟生物神经系统的机器学习模型,由多层神经元相互连接而成。

快速入门机器学习:10个常用算法简介

快速入门机器学习:10个常用算法简介

快速入门机器学习:10个常用算法简介1. 引言1.1 概述:机器学习是一门涉及分析数据和构建预测模型的领域,它能够让计算机通过从数据中学习规律、模式和知识,作出智能决策或预测。

随着人工智能和大数据的快速发展,机器学习在各个领域都获得了广泛应用。

本篇文章将给读者带来关于机器学习中最常用的10种算法的简介。

无论你是刚刚开始接触机器学习还是想要巩固自己对这些算法的理解,这篇文章都会为你提供一个快速入门的指南。

1.2 文章结构:本文将按照以下结构展开内容:- 引言:简要介绍文章背景和目标。

- 机器学习简介:第二节将讨论机器学习的定义、应用领域以及发展历程。

- 常用算法类型:第三节将解释三种常见的机器学习算法类型:监督学习、无监督学习、半监督学习。

- 常用机器学习算法简介:第四节将深入探讨三种常见的监督学习算法:线性回归模型、逻辑回归模型和决策树算法。

- 其他常用算法简介:第五节将介绍三种其他常用的机器学习算法:支持向量机(SVM)、K均值聚类算法(K-means)和随机森林(Random Forest)。

通过这样的文章结构,读者们将能够对不同类型的算法有一个清晰的概念,并且了解每个算法的基本原理和应用场景。

1.3 目的:本文的目标是帮助读者快速了解机器学习中最常用的十种算法。

通过这篇文章,读者可以获得对于这些算法的基本认知,并且能够判断何时使用某个特定的算法以及如何开始在实际问题中应用它们。

我们相信,通过阅读本文,您将收获关于机器学习算法的全面理解,并且为进一步学习和探索领域打下坚实基础。

让我们一起开始这个令人兴奋而又有趣的旅程吧!2. 机器学习简介2.1 定义机器学习是一种人工智能领域的研究分支,旨在通过计算机系统从数据中学习模式和规律,以便能够做出准确预测或自动决策,而无需明确编程。

机器学习的目标是建立能够自动进行学习和推断的算法和模型。

2.2 应用领域机器学习在许多领域都得到了广泛的应用。

例如,在医疗保健领域,机器学习可用于诊断疾病、制定治疗方案和预测患者病情。

机器学习经典算法(PPT45页)

机器学习经典算法(PPT45页)
1)用于二分类或多分类的应用场景 2)用于做分类任务的baseline 3)用于特征选择(feature selection) 4)Boosting框架用于对badcase的修正
培训专用
七、K-means
• K-means算法是很典型的基于距离的聚类算法,采 用距离作为相似性的评价指标,即认为两个对象的 距离越近,其相似度就越大。该算法认为簇是由距 离靠近的对象组成的,因此把得到紧凑且独立的簇 作为最终目标。
1)adaboost是一种有很高精度的分类器 2)可以使用各种方法构建子分类器,adaboost算法提
供的是框架 3)当使用简单分类器时,计算出的结果是可以理解的。
而且弱分类器构造极其简单 4)简单,不用做特征筛选 5)不用担心overfitting
培训专用
adaboost算法的一些实际可以使用的场景:
培训专用
步骤1:发现频繁项集
❖ 频繁项集发现过程: ❖ (1)扫描 ❖ (2)计数 ❖ (3)比较 ❖ (4)产生频繁项集 ❖ (5)连接、剪枝,产生候选项集 ❖ 重复步骤(1)~(5)直到不能发现更大频集
培训专用
步骤2:产生关联规则
• 根据前面提到的置信度的定义,关联规则的产生如 下:
• (1)对于每个频繁项集L,产生L的所有非空子集; • (2)对于L的每个非空子集S,如果
• 主要应用在电子邮件过滤和文本分类的研究
培训专用
朴素贝叶斯算法原理:
培训专用
培训专用
培训专用
培训专用
培训专用
四、KNN
• K-近邻分类算法(K Nearest Neighbors,简称KNN) 通过计算每个训练数据到待分类元组的距离,取和 待分类元组距离最近的K个训练数据,K个数据中哪 个类别的训练数据占多数,则待分类元组就属于哪 个类别。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分享最适合新手入门的10种机器学习算法
编者按:Medium博主James Le近日在网络上分享了他认为的最适合新手的机器学习算法,并授权论智进行编译。

以下是我们对原文的编译,如有错误还请指出。

在机器学习界,有这样一个“没有免费午餐”的定理。

简单地说,该理论认为,没有一种算法能解决所有问题,尤其对监督学习而言。

例如,你不能认为神经网络总比决策树要好,或决策树永远优于神经网络。

这其中还有许多因素需要考虑,比如你的数据量大小和数据结构。

这样就导致我们在面对一个问题时需要尝试不同的算法,同时还要用测试的数据集来评估算法的性能,选出最合适的那一种。

当然,你所选的算法必须适合你的问题,就像当我们需要清理房子的时候,可以使用吸尘器、扫把或拖把,但不会用铲子来挖地。

首要原则
然而,在为监督式机器学习创建预测模型之前,要记得一条最重要的原则:
机器学习算法可以看做学习一种目标函数(f),该函数是输入变量(X)到输出变量(Y)的完美映射:Y=f(X)
这是一个通用的学习任务,我们希望用新输入的变量(X)能输出预测变量(Y)。

我们不知道函数(f)是什么样子的,或者什么形式的。

如果我们知道的话就直接使用了,不需要再用机器学习算法从大量的数据中学习它。

最常见的机器学习类型是学习映射Y=f(X),用它来预测Y的值。

这被称为预测建模或预测分析,我们的目标是做出最准确的预测。

对于想了解机器学习基础知识的新手,以下是数据科学家最常用的10种机器学习算法。

1.线性回归
线性回归也许是数据科学和机器学习中最知名、最好理解的算法了吧。

预测建模主要关注的是,以可解释性为基础,将模型的误差降到最小并尽量作出最准确的预测。

我们将借鉴、多次使用甚至“窃取”包括数据统计在内的多个不同领域的算法,从。

相关文档
最新文档