按比例分配应用题专项训练
比例分配应用题专项训练

比例分配应用题专项训练比例分配应用题是数学中常见的题型,它涉及到将总量按照一定的比例进行分配。
这种题型在日常生活中也有很广泛的应用,例如在分摊费用、分配资源等方面。
下面我们通过几个专项训练题目来加强对比例分配问题的理解。
专项训练一:基础比例分配题目:一个班级有40名学生,老师要将60本图书按照学生人数的比例分配给学生。
每名学生应分到多少本图书?解题思路:1. 确定总量:60本图书。
2. 确定分配对象:40名学生。
3. 计算比例:60本图书 / 40名学生 = 1.5本/人。
答案:每名学生应分到1.5本图书。
专项训练二:按比例分配资源题目:一个工厂有三种原料,A、B和C,它们的比例是2:3:5。
工厂有120千克的原料总量,需要按照比例分配给这三种原料。
解题思路:1. 确定比例:A:B:C = 2:3:5。
2. 确定总量:120千克。
3. 计算总比例:2 + 3 + 5 = 10。
4. 计算每一份的量:120千克 / 10 = 12千克/份。
5. 分配给每种原料:A = 2 * 12千克,B = 3 * 12千克,C = 5 * 12千克。
答案:A原料分配24千克,B原料分配36千克,C原料分配60千克。
专项训练三:按比例分配奖金题目:一个团队在比赛中获得了5000元奖金,团队决定按照个人贡献的比例分配奖金。
如果A、B、C三名成员的贡献比例是1:2:3,那么他们各自应得多少奖金?解题思路:1. 确定比例:A:B:C = 1:2:3。
2. 确定总量:5000元。
3. 计算总比例:1 + 2 + 3 = 6。
4. 计算每一份的量:5000元 / 6 = 833.33元/份。
5. 分配给每个人:A = 1 * 833.33元,B = 2 * 833.33元,C = 3 * 833.33元。
答案:A成员应得奖金约833.33元,B成员应得奖金约1666.66元,C 成员应得奖金约2499.99元。
专项训练四:按比例分配成本题目:一家公司生产了三种产品,X、Y和Z,它们在总成本中所占的比例是1:3:6。
六年级按比例分配应用题练习

六年级按比例分配应用题练习六年级按比例分配应用题(一)一、填空题1、故事书和科技书的本数比是5:8,故事书本数是科技书的3/13;科技书本数比故事书多3,故事书本数是两种书总本数的8/13.2、甲组人数是乙组人数的3/5,甲组人数和乙组人数的比是3:5,甲组人数和两组总人数比是3/8.二、解答下面应用题。
1、XXX分到320本书,为民小学分到240本书。
2、甲筐重40千克。
3、应配20千克水。
4、XXX四、五、六年级分别捐款900元、1350元、1800元。
5、长方形长为60厘米,宽为48厘米。
6、人数最多的一组有24人。
7、甲植树40棵,乙植树30棵,丙植树30棵。
8、长为64厘米,宽为48厘米,高为32厘米。
六年级按比例分配应用题(二)1、含氢22.5千克,含氧180千克。
2、男生有32人,女生有24人。
3、白昼时间是9小时,黑夜时间是5小时。
4、三条边长分别为40厘米、60厘米、80厘米。
5、可配制5千克的药粉。
6、长为180厘米,宽为60厘米,高为120厘米。
7、西红柿为162千克,茄子为81千克。
8、面积为525平方厘米。
9、农药“乐果”乳剂可以用来治棉花的虫害。
已知药液和水的重量比为1:1000.1) 如果要使用5克药液,需要加多少千克的水?2) 如果要使用1500千克的水,需要多少千克的药液?3) 如果要配制2002千克的药水,需要多少千克的药液和水?12、一批图书按2:3的比例分配给五年级和六年级。
五年级获得了400本图书。
如果按照3:5的比例分配,六年级可以获得多少本图书?13、甲队和乙队一起修路,两队修路的长度比是6:7.甲队比乙队少修了50米。
甲队和乙队各修了多少米?14、某车间需要加工一批零件任务的85%。
这批零件按照2:3:5的比例分配给甲、乙、丙三个组。
已知甲组应该加工零件170个,那么这批零件一共有多少个?15、某工厂有三个车间,共有250名工人。
第一车间的工人占全厂人数的48%。
按比例分配考试题目及答案

按比例分配考试题目及答案一、选择题1. 在比例分配中,如果A和B的比例是3:4,那么A占总和的百分比是多少?A. 33.33%B. 40%C. 50%D. 60%2. 已知某班级有男生30人,女生20人,女生占班级总人数的比例是多少?A. 40%B. 50%C. 66.67%D. 75%二、填空题1. 如果一个班级有50名学生,其中男生占60%,那么男生有________人。
2. 某公司员工总数为100人,其中管理层占20%,那么管理层的人数是________人。
三、计算题1. 一个长方形的长是宽的2倍,如果长是10厘米,求宽是多少厘米?解:设宽为x厘米,根据题意,有 2x = 10,解得 x =__________。
2. 一个班级有学生120人,其中男生占60%,女生占40%,求男生和女生各有多少人?解:男生人数= 120 × 60% = __________ 人,女生人数 = 120 × 40% = __________ 人。
四、简答题1. 什么是比例分配?请给出一个生活中的比例分配的例子。
五、论述题1. 论述比例分配在解决实际问题中的重要性,并给出一个具体应用的例子。
答案:一、选择题1. A2. A二、填空题1. 302. 20三、计算题1. 5厘米2. 72人,48人四、简答题比例分配是一种数学方法,用于将一个总量按照一定的比例分配给不同的部分。
例如,在一个家庭中,如果家庭成员决定按照年龄比例分配家庭预算,那么每个成员将根据其年龄占家庭总年龄的比例来获得相应的预算份额。
五、论述题比例分配在解决实际问题中非常重要,因为它提供了一种公平和合理的分配资源的方法。
例如,在教育领域,学校可能会根据学生人数的比例分配教育资源,确保每个班级都能获得适当的支持。
具体应用的例子包括学校根据各班级的学生人数比例分配图书资源,以确保每个学生都能接触到足够的阅读材料。
北师大版六年级数学上册第六单元:按比例分配问题“基础版”专项练习(原卷版+解析)

2023-2024学年六年级数学上册典型例题系列第六单元:按比例分配问题“基础版”专项练习1.学校买来300本课外书,按照人数的比分配给五、六年级,五年级有72人,六年级有78人,五、六年级分别分得多少本?2.某厂家接了一个紧急订单,三天赶制960箱口罩,将这批任务按人数分配给三个车间,第一车间有55人,第二车间有51人,第三车间有54人,三个车间各分到多少箱的任务?3.农业科学研究所有一块680平方米的试验地(如图示),其中黄瓜地面积与青菜地面积的比是5∶3,黄瓜地面积比青菜地面积多多少平方米?4.石家庄果研所为了防止冬季病虫害,为所有果树买了若干瓶杀虫液。
已知使用这种杀虫液杀虫时,必须先按原液和水的比为1∶14进行稀释配成杀虫剂,若一瓶杀虫液20千克,可以配制杀虫剂多少千克?5.水果店运来苹果、梨和桃子共252千克,已知梨、桃子和苹果的质量比是2∶3∶4,三种水果各多少千克?6.一种什锦糖按芝麻、花生、蜜枣三种配料的比为2∶3∶5配制。
这三种配料都有30千克,当花生全部用完时,蜜枣要增加多少千克?7.阳光小学六年级有学生540人,其中女生和男生的比是4∶5。
男、女生各有多少人?8.可以用1份蜂蜜和9份水来冲兑蜂蜜水。
一个杯子的容积是200毫升,冲兑一满杯这样的蜂蜜水,需要蜂蜜和水各多少毫升?9.用48厘米的铁丝围成一个三角形,这个三角形的三条边的长度比是3∶4∶5,这个三角形的面积是多少平方厘米,最长边上的高是多少厘米?10.学校开展植树活动,将120棵树苗按2∶3分给五六年级,两个年级各应植树多少棵?11.六(一)班男女生人数的比是5∶3,已知男生比女生多14人。
(1)画图表示数量关系。
(2)男、女生各有多少人?12.水是由氢和氧按1∶8的质量比化合而成的。
81千克水中,氢和氧各有多少千克?13.配制一种混凝土,所用水泥、黄沙、石子的比是2∶3∶5。
现有水泥、黄沙、石子各36吨,当黄沙正好用完时,水泥还剩多少吨,石子还需要增加多少吨?14.用来消毒的碘酒是把碘和酒按1∶50的比混合配制而成。
按比例分配应用题

按比例分配应用题一、综合题。
1、一个长方形的周长是360为米,长与宽的比是4:2,这个长方形的面积是多少?2、用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3:4:5。
这个三角形的三条边各是多少厘米?3、一个直角三角形,两个锐角度数的比是2:3,这两个锐角各多少度?4、一个等腰三角形顶角与一个底角度数的比是4:3,求这个三角形的顶角是多少度?5、①、一个长方形长比宽多10分米,长与宽的比为7:2,则这个长方形的面积是多少?②、一件上衣比一件裤子贵80元,裤子与上衣的比是3:5,上衣和裤子各多少钱?6、一个梯形四个角的度数的比是1:2:4:5,那么这个梯形最大的内角度数是多少?7、有两块长方形草地,一块长20米,宽15米,另一块长25米,宽16米,现在有42棵花苗,按两块地的面积分栽在这两块地里,每块应栽多少棵花?8、有840吨粮食,分给两个运输队运出去。
甲运输队有载重5吨的汽车12辆,乙运输队有载重3吨的汽车15辆,按两个队的运输能力分配,甲乙两运输队各应运粮食多少吨?9、甲乙丙三个班的人数平均是25人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?10、长方体的长、宽、高的比是5:3:1,棱长之和是144米,这个长方体的体积是多少立方米?11、三个煤炭厂内共有煤炭1400万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?12、甲和乙的身高比是2:3,乙和丙的身高比是4:5,甲和丙的身高比是多少?13、建筑工人用2份水泥、3份沙子和5份石子配制一种混凝土。
配制6000千克这种混凝土,需要水泥、沙子和石子各多少千克?14、要配制一种药水,药粉和水的质量比是1:500。
(1)现有水1500千克,要配制这种药水,要药粉多少千克?(2)现有药粉8千克,要配制这种药水需水多少千克(3)现在有8克这样的药粉,可配制出多少克这样的药水?15、某蔬菜基地把一批蔬菜按4:5:3的比例批发给甲、乙、丙三个餐厅,丙餐厅比乙餐厅少批发40千克。
按比例分配解决问题多种题型练习

按比例分配应用题一1.六(1)班共有学生50人,其中男生人数与女生人数的比是3:2,这个班男、女生各有多少人?2.一个三角形的三个内角度数的比是3:2:1,这个三角形的三个内角各是多少?3.一个等腰三角形的周长是28厘米,腰与底的比是3:1,这个三角形的三条边各是多少?4.一个长方形的周长是64厘米,长与宽的比是7:9.长方形的长方形的面积是多少平方厘米?5.一个长方体的棱长总和是72厘米,长、宽、高的比是3:2:1.长方体的体积是多少立方厘米?6.甲、乙两个车间的平均人数是36人,如果两个车间人数的比是5:7,这两个车间各有多少人?7.第二小学有140个男生,男生与女生的比7:8,第二小学有女生多少人?8.甲乙丙三个班人数的和是420人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?9.两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。
货车和客车的速度比是12:7。
货车和客车各行多少千米?11. 某单位要捐赠一批300千克的水果给福利院,13是橘子,其余按2∶3安排香蕉和苹果,苹果有多少千克?12. 甲乙两箱粉笔的盒数比是5∶1,如果从甲箱里取出12盒放到乙箱后,甲乙两箱粉笔数量比是7∶5,那么两箱粉笔原来各有多少盒?13.有大小两桶油,重量比是7:3,如果从大桶取出12升油倒入小桶,则两个桶中的油正好相等。
两桶中原来各有油多少升14.甲仓库存粮50吨,乙仓库存粮70吨,从甲仓库运给乙仓库多少吨粮食,才能使甲、乙两仓库的存粮比是1:2?按比例分配应用题二1.甲、乙、丙三个数的平均数是80,三个数的比是1:2:3,这三个数分别是多少?2.一个等腰三角形的铁片,顶角和一个底角的度数的比是4:3,求这个等腰三角形的顶角和底角各是多少度?3.用180厘米的铁丝做一个长方体的框架。
长、宽、高的比是3:2:4.这个长方体的长、宽、高分别是多少?4.某校语文教师占教师总人数的72,数学教师占教师总人数的103,艺术教师占教师总人数的51。
比例的应用题六年级

比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
小学数学典型应用题《按比例分配问题》专项练习

小学数学典型应用题《按比例分配问题》专项练习小学数学典型应用题专项练:按比例分配问题按比例分配是指把一个数按照一定的比例分成若干份。
这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。
从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。
总份数等于比的前后___。
解题思路和方法是先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。
经典例题讲解:1.学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?解:总份数为47 + 48 + 45 = 140.一班植树560 × 47/140 = 188(棵),二班植树560 × 48/140 = 192(棵),三班植树560 × 45/140 = 180(棵)。
答案为:一、二、三班分别植树188棵、192棵、180棵。
2.用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5.三条边的长各是多少厘米?解:3 + 4 + 5 = 12,60 × 3/12 = 15(厘米),60 × 4/12 = 20(厘米),60 × 5/12 = 25(厘米)。
答案为:三角形三条边的长分别是15厘米、20厘米、25厘米。
3.从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。
解:如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。
如果用按比例分配的方法解,则很容易得到1/2∶1/3∶1/9 = 9∶6∶2,9 + 6 + 2 = 17.大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按比例分配应用题专项训练
(一)
1、电视机厂男职工与女职工人数比是5:4,已知该厂共有职工198人,这个厂男、女职工各多少人?
2、空气中氧气和氮气的体积比是21:78。
990立方米的空气中有氧气和氮气各多少立方米?
3、甲、乙两数的和是50,甲、乙两数的比是3:2,甲数是()。
4、一本书有240页,小明已看的页数和未看的页数的比是5:3,已看多少页?
5、甲、乙两数的和是1.5,甲、乙两数的比是2:1,甲数是(),乙数是(),甲、乙两数的差是()。
6、甲、乙两数的和是75,甲乙两数的比是3:2,甲数比乙数多()。
7、甲、乙两数的比是3:4,它们的差是210,甲数是(),乙数是()。
3千克,小强喝了一些后,喝了的和剩下的比是3:5,剩下多8、一瓶矿泉水有
5
少千克?
9、甲数是45,与乙数的比是5:6,乙数是多少?
10一种药水是用药液和水按1:100配成的,现在要配制5050千克药水,需要药液和水各多少千克?
11、某校为残疾儿童捐款2400元,教师与学生捐款数之比为5:7。
教师和学生各捐款多少元?
12、鸡比鸭多10只,鸡和鸭的只数比是5:4,鸡有()只,鸭有()只。
13、甲、乙两数的比是5:6,甲比乙少10,甲是(),乙是()。
14、甲、乙、丙三个数的平均数是50,甲、乙、丙三个数的比是1:2:3,丙数是多少?
15、一个养鱼厂,计划购买一些鱼苗,若按7:4的比例来放养鲤鱼和鲫鱼,鲤鱼苗比鲫鱼苗多1200尾,应购买多少尾两种鱼苗?
16、某工厂男工与全厂职工总数的比是4:5。
已知全厂职工有540人,这个工厂有男职工多少人?
17、某工地上黄沙与水泥的比是5:3,黄沙60吨,黄沙比水泥多多少吨?
18、甲、乙两数的平均数是40,乙、甲两数的比是3:2,甲数是(),乙数是()。
(二)
1、一个三角形,三个内角的度数比是1:2:3,这是一个()三角形。
2、一个三角形,三个内角的度数比是2:3:6,这是一个()三角形。
3、一个三角形,三个内角度数的比是1:2:1,这个三角形是()三角形。
4、一个等腰三角形,底角与顶角的比是1:2,顶角是()度。
5、三角形的三边之比为1:2:2,已知它的周长是70厘米,则最短边的长是()厘米,这是一个()三角形。
6、一个等腰三角形,它的顶角与一个底角的比是1:4,这个等腰三角形中最大角的度数是(),最小角的度数是()。
(三)
1、一个长方形的周长是120厘米,长与宽的比是3:2。
这个长方形的长是()厘米,宽是()厘米。
2、一个长方形的周长是84厘米,长和宽的比是5:2,这个长方形的面积是多少平方厘米?
3、用54厘米长的铁丝焊接成一个长方形,已知长和宽的比是5:4,这个长方形的面积是多少平方厘米?
4、一个长方形的周长是72分米,长与宽的比是7:5,这个长方形的面积是多少平方分米?
5、长方体的长:宽:高=3:2:1,其中长为12厘米,宽为()厘米,高为(),棱长总和为()厘米。
6、一个长方体的棱长和是144厘米,长、宽、高的比是5:3:4。
这个长方体的体积是多少立方厘米?
(四)
3,第1、某工程队计划在3天内修一段公路,第一天修了48米,占公路总长的
5
二天修的与第三天修的比是5
3,第三天修了多少米? 2、搬运队计划三天内运完一批货物,第一天运了84吨,占这批货物的5
2,第二天与第三天运的重量比是4:3,第二天运货多少吨?
3、某工程队计划在3天内修一段公路,第一天修了48米,占公路总长的5
3,第二天修的与第三天修有比是3:5,第三天修了多少米?
4、学校购回一批新图书,分给六年级5
1后,剩下的按3:4:5分给三、四、五年级,五年级分得40本,这批图书共多少本?
5、甲乙丙三人共同生产1000个零件,甲生产的占总数的5
2,乙和丙生产零件个数的比为5:7。
丙生产了多少个零件?
6、一种什锦糖是由奶糖、朱古力糖和水果糖混合而成的,其中朱古力糖占51
,奶糖和水果糖的比3:2。
要包装这种混合糖每袋500克,需要三种糖各多少克?
7、一批化肥2400千克,甲队分到总数的4
1,余下的化肥按4:5分配给乙、丙两队,乙、丙各分到化肥多少千克?
8、一堆煤,第一天运走600吨,正好占这堆煤的6
1,第二天运走的煤与这堆煤的比是1:5,第二天运走多少吨煤?
9、工地有一批水泥,第一天运走80吨,第二天运走82吨,剩下的水泥与运走水泥重量的比是3:2,这批水泥共有多少吨?。