水溶性高分子增稠剂综述

合集下载

聚丙烯酸钠增稠剂的特性及用途

聚丙烯酸钠增稠剂的特性及用途

聚丙烯酸钠增稠剂的特性及用途聚丙烯酸钠增稠剂是一种高分子聚合物,具有优异的增稠和流变性能,在许多领域中都有广泛的应用。

本文将详细介绍聚丙烯酸钠增稠剂的特性、用途、优势以及应用实例,帮助读者更好地了解其特点和价值。

黏度随浓度变化聚丙烯酸钠增稠剂的黏度随着浓度的增加而增加。

在低浓度下,它呈现牛顿流体性质,黏度与剪切速率成正比。

当浓度增加时,聚丙烯酸钠分子链相互交织,形成网状结构,导致黏度迅速增加。

热稳定性好聚丙烯酸钠增稠剂在高温下具有良好的稳定性,可以在广泛的温度范围内使用。

其热分解温度高于300℃,因此在大多数应用场景中可以保持良好的增稠效果。

抗剪切能力强聚丙烯酸钠增稠剂具有出色的抗剪切能力,可以在高剪切速率下保持稳定的黏度。

这意味着在诸如高速搅拌、泵送和涂布等过程中,其增稠效果仍能保持良好的一致性。

溶解性好聚丙烯酸钠增稠剂可以很好地溶解在水中,形成透明、均一的高黏度溶液。

其溶解速度取决于搅拌时间和温度。

在大多数情况下,搅拌30分钟至1小时即可完全溶解。

聚丙烯酸钠增稠剂在以下领域中具有广泛的应用:涂料工业在涂料工业中,聚丙烯酸钠增稠剂可以提高涂料的流动性和稳定性,防止涂料在贮存过程中的沉淀和分层。

它还可以增强涂料在施工过程中的涂布效果,提高涂层的平滑度和均匀性。

油墨工业在油墨工业中,聚丙烯酸钠增稠剂可以改善油墨的印刷适性和流动性。

它有助于提高油墨的传递性和附着力,从而改善印刷品质和干燥性能。

聚丙烯酸钠增稠剂还可以提高油墨的耐磨性和耐候性,延长油墨的使用寿命。

洗衣粉工业在洗衣粉工业中,聚丙烯酸钠增稠剂可以增加洗衣粉的粘着性和抗流动性,提高洗衣粉的洗涤效果和易用性。

它有助于使洗衣粉在水中更容易分散,并形成均匀的溶液,使洗涤剂发挥最佳的清洁作用。

化妆品工业在化妆品工业中,聚丙烯酸钠增稠剂主要用于洗发水、沐浴露和护肤品等产品中。

它有助于提高产品的粘稠度和稳定性,防止产品在贮存过程中出现沉淀和分层。

聚丙烯酸钠增稠剂还可以提高产品的滋润性和保湿性能,为消费者提供更舒适的使用体验。

水性增稠剂分类

水性增稠剂分类

水性增稠剂分类水性增稠剂是一种水型高分子材料,具有良好的悬浮性、增稠性和降流性,可有效稳定增稠液体的流动特性,主要用于制剂、颜料、涂料、染料、护肤品、日用品、工业胶粘剂以及医药行业。

在丰富多样的化学工业中,水性增稠剂也是重要的化学原料。

由于数量众多,水性增稠剂可以根据其物理性质、化学性质、功能和性质的不同,按其形式分为:一、根据其拉伸性质分类:1、弹性增稠剂:分为吸水类和不吸水类,吸水类是一种既具有拉伸性,又具有膨胀性的高分子增稠剂,通常可以含有大分子有机水凝胶或热塑性弹性体,用于制作用于向水性涂料中添加弹性粒子的聚碳酸酯类聚合物,其中有机水凝胶可以吸收水分,提高聚合物的断裂伸长率。

2、电解质类增稠剂:即电解质增稠剂,可溶于水,有一定的热稳定性,具有一定的流变性能。

经过不同的控制,可实现改变不同的粘度,是涂料增稠剂中应用较多的类型。

常见的有硫酸钠、氯化钠、硝酸钡、硫酸铵等。

3、油脂类增稠剂:具有耐热、耐老化和耐化学性,具有良好的流变性和润滑性,dilution时较稳定,温度变化对其物性影响较小,且价格实惠,是廉价且能有效稳定悬浮物的十分理想的增稠剂。

其中常见的有油酸酯,硅油和石蜡增稠剂等1、含水释放型增稠剂:是一种特殊的聚合物,是由聚乙二醇、乙烯基乙二醇共聚物等不饱和聚合物或添加剂与细粒水结合后,形成一种具有特殊性能的增稠剂,具有较高的粘度、良好的流变性、良好的分散稳定性,同时具有低的黏度、回转率及温度递减率。

2、嵌段共聚型增稠剂:具有优异的水溶性,耐UV和紫外线照射,优异的防氧化性能,并且可以有效地抑制结块现象。

一般由三元共聚物与三聚氰胺、醋酐、乙烯醇等经两步电接枝后,形成乳液或胶和一种增稠剂。

3、改性类增稠剂:由多种聚合物经过复合或改性而形成,例如,树脂增稠剂,是将乳液态的乳液与热塑性树脂混合,经过热熔处理,使乳液变成热塑性胶体,然后装入容器中,冷却固化,以获得一种特殊的热塑性增稠剂。

4、复合型增稠剂:是指将不同的聚合物或添加剂进行共混,在高分子分子之间形成一种化学键合,来提高其流变特性,并优化其粘度,例如羟基纤维素增稠剂,由多种聚合物和填充物混合而成,其优点在于可以调节液体的粘度,以及可以抑制悬浮性颗粒的分散和沉降。

水性增稠剂分类

水性增稠剂分类

水性增稠剂分类水性增稠剂是一种可以调节水的流动特性的化学物质,用于制备水性涂料,润滑油,润湿剂和镀层等。

水性增稠剂具有优质流变性能和低温稳定性,能够有效改善和调整各种液体或固体的流变性能,以实现在实际应用中所需的稠度和结构。

水性增稠剂可以根据其物理状态和主要成分等特征进行分类,大致可分为水性凝胶增稠剂、水性乳液增稠剂、水性油树脂增稠剂、水性交联水凝胶增稠剂、水性烷基硅树脂增稠剂等几大类。

水性凝胶增稠剂是一种水溶性高分子物质,它通过形成水溶性凝胶而降低水的流动度,可以显著提高水体的粘度,抗冻能力也能达到很好的效果,适用于制备水性增稠涂料,润湿剂,塑料溶剂和农药等。

水性乳液增稠剂,又称为乳化剂,是由非极性溶剂、合成增稠剂、有机酸、水等组成的聚合物混合物,它可以形成分散体系,从而增加粘度,增强产品的稳定性。

它通常用于制备水性涂料,粉末涂料,着色剂,橡胶,油墨,油基润滑油等。

水性油树脂增稠剂,是用一种特殊的烷基树脂,经过酸解、酯化和其它特殊处理,将油树脂转化为水性增稠剂。

它能有效地适应高温环境,改善各种基体的流变性,抗冻性能优良,能提高涂料的耐腐蚀性和耐磨性,适用于制备多种水性涂料,润湿剂,润滑油,石油蜡,塑料溶剂,肥料等。

水性交联水凝胶增稠剂,它具有较高的高温稳定性和耐酸碱性,可以有效增加材料的稠度和强度,使之具有良好的抗冻性能,同时也可以提高产品的耐腐蚀性和耐磨性。

因此,水性交联水凝胶增稠剂可用于制备涂料,润湿剂,润滑油,石油蜡,塑料溶剂,防护剂等。

最后,水性烷基硅树脂增稠剂,其特点是具有良好的抗冻性能,耐温性和耐热性,可以有效改善各种系统的流变性,提高系统的稠度,稳定性和耐腐蚀性,适用于制备柔性涂料、优质润湿剂、防护剂、润滑油等。

综上所述,水性增稠剂可以根据其物理状态和主要成分,以及其改善水体流变性的效果而进行分类,其中有水性凝胶增稠剂、水性乳液增稠剂、水性油树脂增稠剂、水性交联水凝胶增稠剂和水性烷基硅树脂增稠剂等五类型,它们各自具有独特的稠度调节效果,可以满足各种应用需求。

化妆品用增稠剂

化妆品用增稠剂

化妆品用增稠剂刘??义,广州市浪奇实业股份有限公司,广东??广州510660 高??俊,汽巴精化(中国)有阳公司广州公司,广东??广州510095? ?? ?摘要:综述了使用于化妆品的增稠剂:无机盐类、表面活性剂类、水溶性高分子类和脂肪醇脂肪酸类等共200多种。

增稠剂通过与表面活性剂形成棒状胶束、与水作用形成三维水化网络结构、或利用自身的大分子长链结构等使体系达到增稠的目的。

详细介绍了增稠剂的配伍性能、使用范围、影响因素和增稠机理分类。

在产品配方开发过程中根据配方的pH值、稳定性、刺激性、泡沫、? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?牛顿流假塑性要比如但品的最终流变形态有更好的效果。

1 增稠剂分述? ?? ?能够作为增稠剂的物质很多,从相对分子质量看有低分子增稠剂,也有高分子增稠剂;从功能团来看有电解质类、醇类、酰胺类、羧酸类和酯类等等。

下面按化妆品原料的分类方法对增稠剂进行分类,表l列出了目前使用的增稠剂。

1.1 低分子增稠剂1.1.1 无机盐类? ?? ?用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。

表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。

但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。

因此电解质加入量一般质量分数为1%-2%,而且和其他类型的增稠剂共同作用,使体系更加稳定。

1.1.2 脂肪醇、脂肪酸类? ?? ?脂肪醇、脂肪酸是带极性的有机物,有文章把它们看成为非离子表面活性剂,因为它们既有亲油基团,又有亲水基团。

少量的该类有机物的存在对表面活性剂的表面张力、omc及其他性质有显着影响,其作用大小是随碳链加长而增大,一般来说呈线,陛变化关系。

其作用原理是脂肪醇、脂肪酸能插入(参加)表面活性剂胶团,促进胶团的形成,同时由于该极性有机物与表面活性剂的分子间有强烈的相互作用(碳氢链间的疏水作用加极性头间的氢键结合),使两分子在表面上定向排列得很紧密,大大改变了表面活表1??? ?1? ?? ?2? ?? ?3? ?? ?4? ?? ?(10)醚、Poloxamer-n(乙氧基化聚氧丙烯醚)(n=105、124、185、237、238、338、407)等5、酯类? ?? ?PEG-80甘油基牛油酯、PEC-8PPG(聚丙二醇)-3二异硬脂酸酯、PEG-200氢化甘油基棕榈酸酯、PEG-n(n=6、8、12)蜂蜡、PEG-4异硬脂酸酯、PEG-n(n=3、4、8、150)二硬脂酸酯、PEG-18甘油基油酸酯/椰油酸酯、PEG-8二油酸酯、PEG-200甘油基硬脂酸酯、PEG-n(n=28、200)甘油基牛油酯、PEG-7氢化蓖麻油、PEG-40霍霍巴油、PEG-2月桂酸酯、PEG-120甲基葡萄糖二油酸酯、PEG-150季戊四硬脂酸酯、PEG-55丙二醇油酸酯、PEG-160山梨聚糖三异硬脂酸酯、PEG-n(n=8、75、100)硬脂酸酯、PEG-150/癸基/SMDI共聚物(聚乙二醇-150/癸基/甲基丙烯酸酯共聚物)、PEG-150/硬脂基/SMDI共聚物、PEG-90。

不同分子量的羟乙基纤维素

不同分子量的羟乙基纤维素

不同分子量的羟乙基纤维素羟乙基纤维素,又称为HEC,是一种水溶性高分子化合物。

它由纤维素经过一系列化学反应得到,具有良好的水溶性和增稠性,是一种常用的增稠剂和稳定剂。

羟乙基纤维素的分子量对其性质和应用有着重要影响。

我们来看一下低分子量的羟乙基纤维素。

低分子量的羟乙基纤维素具有较低的粘度,溶解性好,易于与其他物质混合。

它可以作为溶剂和增稠剂广泛应用在化妆品、个人护理产品、洗涤剂等领域。

在化妆品中,低分子量的羟乙基纤维素可以增加产品的稠度,提升产品的质感;在洗涤剂中,它可以增加洗涤液的粘稠度,增强洗涤效果。

接下来,我们来讨论一下中等分子量的羟乙基纤维素。

中等分子量的羟乙基纤维素具有较高的粘度和较好的增稠性能。

它可以用作涂料、油漆、胶水等的增稠剂和稳定剂。

在涂料中,中等分子量的羟乙基纤维素可以增加涂料的粘稠度,提高涂料的附着力和覆盖性;在胶水中,它可以增加胶水的粘度,提高胶水的粘合能力。

我们来探讨一下高分子量的羟乙基纤维素。

高分子量的羟乙基纤维素具有非常高的粘度和增稠能力。

它常用于制备凝胶体系,例如药物控释系统和人工眼泪等。

在药物控释系统中,高分子量的羟乙基纤维素可以作为载体,控制药物的释放速率,延长药物的作用时间;在人工眼泪中,它可以增加眼液的黏度,提供更好的润滑和保护眼睛的效果。

羟乙基纤维素的分子量对其性质和应用有着重要影响。

低分子量的羟乙基纤维素适用于化妆品、个人护理产品和洗涤剂等领域;中等分子量的羟乙基纤维素适用于涂料、油漆、胶水等领域;高分子量的羟乙基纤维素适用于药物控释系统和人工眼泪等领域。

通过选择不同分子量的羟乙基纤维素,我们可以调控其性质,满足不同领域的需求。

增稠剂水溶性高分子增稠剂综述

增稠剂水溶性高分子增稠剂综述

水溶性高分子增稠剂综述1 绪论增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。

特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。

1.1定义能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。

尤其是水相增稠剂应用更为普遍。

在水体系中,当增稠剂达到一定浓度后,亲油端基缔合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。

1.2分类及机理水溶性高分子增稠剂的分类有以下几种:1.2.1纤维素类[1]纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。

纤维素是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3 个羟基, 通过这些羟基可以形成各种各样的衍生物。

纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。

使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。

也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。

这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。

1.2.2 聚丙烯酸类聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。

聚丙烯酸类增稠剂的增稠机理有2 种, 即中和增稠与氢键结合增稠。

透明质酸钠增稠原理

透明质酸钠增稠原理

透明质酸钠增稠原理
透明质酸钠是一种水溶性高分子化合物,常用于食品、化妆品、医疗器械等领域作为增稠剂使用。

其增稠原理如下:
1. 水合作用:透明质酸钠具有很强的吸水能力,在水中能迅速吸水成胶体。

它与水形成的胶体能够增加溶液的黏度和粘度,从而实现增稠的效果。

2. 高分子链的空间排列:透明质酸钠的高分子链以一种细长的丝状结构存在,当它们在溶液中受到外力拉伸时,会形成交联作用,从而形成三维空间结构。

这种结构能够储存更多的溶剂,增加溶液的黏度和粘度。

3. 阻碍流动:透明质酸钠的高分子链可以与溶剂中的其他分子发生分子间相互作用,如范德华力、静电相互作用等,从而阻碍溶剂的流动,增加溶液的黏度和粘度。

总的来说,透明质酸钠的增稠原理主要是通过水合作用、高分子链的空间排列和阻碍流动来增加溶液的粘度和黏度,达到增稠的效果。

20000分子量pegda

20000分子量pegda

20000分子量pegda
摘要:
1.PEGDA 的概述
2.PEGDA 的分子量
3.20000 分子量的PEGDA 的特点和应用
正文:
PEGDA,即聚乙二醇二甲基丙烯酸酯,是一种聚合物,具有高分子量和水溶性特点。

其分子量可以从几千到几十万不等,而不同分子量的PEGDA 具有不同的物理化学性质和应用领域。

20000 分子量的PEGDA,是一种具有中等分子量的PEGDA。

其分子量较大,因此具有较好的稳定性和溶解性。

在制药、化妆品、涂料等行业中,20000 分子量的PEGDA 可以作为溶剂、增稠剂、稳定剂等使用。

在制药领域,20000 分子量的PEGDA 可以用于制备药物递送系统,如缓释片剂、控释胶囊等。

由于其分子量大,可以容纳更多的药物,因此可以实现长效缓释,提高药物的疗效和安全性。

在化妆品领域,20000 分子量的PEGDA 可以用作保湿剂和增稠剂。

其良好的水溶性可以使得化妆品更容易被皮肤吸收,从而提高保湿效果。

同时,其高分子量可以使得化妆品具有较好的粘稠度,提高使用体验。

在涂料领域,20000 分子量的PEGDA 可以用作涂料的增稠剂和稳定剂。

其高分子量可以使得涂料具有较好的粘稠度,提高涂层的厚度和均匀性。

同时,其良好的稳定性可以延长涂料的储存时间,提高涂料的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 绪论增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。

特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。

1.1定义能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。

尤其是水相增稠剂应用更为普遍。

在水体系中,当增稠剂达到一定浓度后,亲油端基缔合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。

1.2分类及机理水溶性高分子增稠剂的分类有以下几种:1.2.1纤维素类[1]纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。

纤维素是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3 个羟基, 通过这些羟基可以形成各种各样的衍生物。

纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。

使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。

也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。

这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。

1.2.2 聚丙烯酸类聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。

聚丙烯酸类增稠剂的增稠机理有2 种, 即中和增稠与氢键结合增稠。

中和增稠是将酸性的聚丙烯酸类增稠剂中和, 使其分子离子化并沿着聚合物的主链产生负电荷, 同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果; 氢键结合增稠是聚丙烯酸类增稠剂先与水结合形成水合分子, 再与质量分数为10 %~ 20 %的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合, 使其卷曲的分子在含水系统中解开形成网状结构达到增稠效果。

1.2.3 天然胶及其改性物天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类( 见表1) 。

增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。

它们的水溶液的流变形态大部分是非牛顿流体, 但也有些稀溶液的流变特性接近牛顿流体。

1.2.4无机高分子及其改性物无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两类是蒙脱土和水辉石。

其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的透明胶体悬浮液。

在这种情况下,片晶带有表面负电荷,它的边角由于出现晶格断裂面而带有少量的正电荷。

在稀溶液中,其表面的负电荷比边角的正电荷大,粒子之间发生相互排斥,故不会产生增稠作用。

随着电解质的加入和浓度增加,溶液中离子浓度的增加,片晶表面电荷减少。

这时,主要的相互作用由片晶间的排斥力转变为片晶表面的负电荷与边角正电荷之间的吸引力, 平行的片晶相互垂直地交联在一起形成所谓“纸盒式间格”的结构[3] ,引起溶胀产生胶凝从而达到增稠的效果。

离子浓度进一步加大又会破坏结构发生絮凝导致降低稠度。

这类增稠剂主要用于牙膏、香波、护发素、膏霜、乳液和止汗剂等的增稠。

稠度一般随着浓度的增加而迅速增大随后趋于平缓,流变形态为触变性。

除具增稠性能外,在体系中还有稳定乳液、悬浮作用。

其改性物主要是季铵盐化(见表1),改性后具有亲油性,可用于含油量多的体系。

1.2.5 聚氧乙烯类一般把相对分子质量大于25000的产品称作聚氧乙烯,而小于25000的称作聚乙二醇。

聚氧乙烯的水溶液在质量分数为百分之几时为假塑性流体,其水溶液倾向呈黏稠状。

如将浸入其中的物体从溶液中拉出,形成长拉丝和成膜。

相对分子质量越大和相对分子质量分布越宽的黏稠性就越大,低相对分子质量和窄相对分子质量分布的聚氧乙烯黏稠性较低,其水溶液的黏度取决于相对分子质量大小、浓度、温度和测量黏度时的切变速度。

其溶液的黏度随着相对分子质量的增大和浓度的增加而上升,随着温度上升( 10℃~90℃)而较急剧下降。

聚氧乙烯水溶液的假塑性随相对分子质量的减小而降低,相对分子质量1×10^5的水溶液流变性接近牛顿流体。

增稠效果来源于高分子聚合物链溶解进表面活性剂体系中, 增稠机理主要与高分子聚合物链有关,并不依赖于表面活性剂体系。

聚氧乙烯的水溶液在紫外线、强酸和过渡金属离子( 特别是Fe3+、Cr3+和Ni2+) 作用下会自动氧化降解,失去其黏度。

1.2.6其他PVM/MA癸二烯交联聚合物[4](聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)是新的一族增稠剂,在过去3年的个人护理品工业应用中它很快得到认可。

它们能使乳液稳定、增稠,赋予极好的肤感,几乎感觉不到黏性。

能配制成透明定型凝胶、喷发胶和乳胶,可用于增稠醇类溶液、甘油和其他非水体系,可在无需乳化剂的情况下悬浮活性组分,在牙膏中它还能起到玉洁纯的增效作用[5]。

PVP(聚乙烯吡咯烷酮)[6]是一种既溶于水,又溶于多数有机溶剂的聚酰胺,外观为白色或淡黄色粉末,或为透明液体,水溶性好,安全无毒,为绿色化学品。

PVP广泛应用于医药、化妆品、洗涤用品、饮料、纺织品、造纸、农药和印刷等行业。

PVP的增稠性能与其相对分子质量密切相关,在给定浓度的条件下,相对分子质量越大,其黏度也越大。

pH值和温度对PVP水溶液的黏度影响都不明显,未交联的PVP 溶液没有特殊的触变性,除非浓度非常高时才会有触变性,并显示很短的松驰时间。

表1:水溶性高分子增稠剂的分类纤维素类纤维素、纤维素胶、羧甲基羟乙基纤维素、鲸蜡羟乙基纤维素、乙基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、羧甲基纤维素等聚氧乙烯类PEG- n( n= 5M、9M、23M、45M、90M、160M)等聚丙烯酸类丙烯酸酯/ C10~ 30烷基丙烯酸酯交联聚合物、丙烯酸酯/ 十六烷基乙氧基( 20) 衣康酸物丙烯酸酯/十六烷基乙氧基( 20) 甲基丙烯酸酯共聚物、丙烯酸酯/十四烷基乙氧基( 25) 丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基( 20) 衣康酸酯共聚物、丙烯酯酯/十八烷基乙氧基( 20) 甲基丙烯酸酯共聚物、丙烯酸酯/十八烷基乙氧基( 50) 丙烯酸酯共聚物、丙烯酸酯/ VA 交联聚合物、PAA( 聚丙烯酸)、丙烯酸钠/乙烯异癸酸酯交联聚合物、Carbomer( 聚丙烯酸)及其钠盐等天然胶及其改性物海藻酸及其(铵、钙、钾) 盐、果胶、透明质酸钠、瓜尔胶、阳离子瓜尔胶、羟丙基瓜尔胶、黄蓍胶、鹿角菜胶及其(钙、钠)盐、汉生胶、菌核胶等无机高分子及其改性物硅酸铝镁、二氧化硅、硅酸镁钠、水合二氧化硅、蒙脱土、硅酸锂镁钠、水辉石、硬脂铵蒙脱土、硬脂铵水辉石、季铵盐- 90 蒙脱土、季铵盐- 18 蒙脱土、季铵盐- 18水辉石等其他PVM/MA 癸二烯交联聚合物( 聚乙烯甲基醚/ 丙烯酸甲酯与癸二烯的交联聚合物) 、PVP( 聚乙烯吡咯烷酮)等2.国内外研究现状自从Vanderhoff 等在1962 年开始的反相乳液聚合方式以来,高分子量的聚丙烯酸类和聚丙烯酰胺的聚合就以反相乳液聚合为主。

Ruffner 等发明了以含氮及聚氧乙烯或其与聚氧丙烯交替共聚的聚合型表面活性剂、交联剂和丙烯酸单体采用乳液共聚合的方法制备了聚丙烯酸乳液用作增稠剂, 取得了良好的增稠效果, 并且具有较好的抗电解质性能。

Arianna Benetti等[7]采用反相乳液聚合的方法, 以丙烯酸、含磺酸基的单体和阳离子单体共聚,发明了一种用于化妆品的增稠剂。

由于在增稠剂结构中引入了抗电解质能力极强的磺酸基和季铵盐,制备的聚合物具有极好的增稠和抗电解质性能。

Martial Pabon 等[8]采用反相乳液聚合,以丙烯酸钠、丙烯酰胺和甲基丙烯酸异辛基酚聚氧乙烯酯大单体共聚,制备了疏水缔合型水溶性增稠剂。

Charles A. 等[9]以丙烯酸和丙烯酰胺为共聚单体,通过反相乳液聚合制得了高分子量的增稠剂。

何平等[10]探讨了有关反相乳液聚合法制备聚丙烯酸增稠剂的几个问题。

文中以两性共聚物为稳定剂、亚甲基双丙烯酰胺为交联剂, 引发丙烯酸铵进行反相乳液聚合,以制备高性能的涂料印花增稠剂。

研究了不同的稳定剂、引发剂、共聚单体及链转移剂对聚合的影响。

指出甲基丙烯酸十二酯与丙烯酸的共聚物能作为稳定剂,过氧化苯甲酰-二甲基苯胺及叔丁基过氧化氢-焦亚硫酸钠两种氧化还原引发剂均能在35℃引发聚合,得到一定粘度的白浆。

并且认为丙烯酸铵与15%以下的丙烯酰胺共聚的产物的耐盐性增加。

2.1耐电介质增稠剂的研究[11]在大多数情况下,纺织品印花色浆中需要加入适量的电解质来保证所印花纹的质量,但是目前市场上大多数的合成增稠剂耐电解质性能较差,无法满足工业需求。

苏州大学张玉芳、周向东采用反相乳液聚合法制备了耐电解质性能良好的增稠剂,并将其用于纺织品印花。

以N-乙烯基吡咯烷酮为提高增稠剂耐电解质能力的功能单体,丙烯酸为主要原料,N,N’-亚甲基双丙烯酰胺为交联剂,煤油为溶剂,司盘-80为乳化剂,过硫酸钾、过硫酸铵和亚硫酸氢钠为引发体系,吐温-80为反相乳化剂,采用反相乳液聚合的方法,制备了一种耐电解质增稠剂N。

2.2缔合型水性聚氨酯增稠剂的研究,[12]缔合型水性聚氨酯增稠剂集合优异的增稠、流平、触变、耐酸碱等特性为一体,绿色环保无污染,是目前的高端流变助剂,对缔合型水性聚氨酯增稠剂的研究有着巨大的实际意义和商业价值。

西北大学刘志林、陈立宇对缔合型水性聚氨酯增稠剂的合成进行了研究,对于异氰酸基团、醇醚基团、封端剂、溶剂、催化剂等进行了筛选,并考察了合成的工艺条件,研究表明合成该缔合型水性聚氨酯增稠剂的最优条件为:以丙酮为溶剂,以二月桂酸二丁基锡为催化剂,配料比为HDI:PEG-6000:十六醇=2:1:2,聚合温度为60℃,封端温度为65℃,合成出的增稠剂效果良好。

对合成的缔合型水性聚氨酯增稠剂进行的系列表征表明,该反应为亲核反应,合成样品的热稳定性良好,增稠剂分子硬段在分子中起着骨架作用,软段在分子中起着亲水功能。

亲水链段和疏水链段的长度比值要在一个特定的值域内增稠效果才能达到最好。

相关文档
最新文档