高三数学二模试题文

合集下载

2024年上海静安区高三二模数学试卷和答案

2024年上海静安区高三二模数学试卷和答案

上海静安区2023-2024学年第二学期教学质量调研高三数学试卷本试卷满分150分,考试时间120分钟.2024.4一、填空题(本大题共12小题,满分54分)第1小题至第6小题每个空格填对得4分,第7小题至第12小题每个空格填对得5分,考生应在答题纸的相应编号后填写答案,否则一律得零分.1.中国国旗上所有颜色组成的集合为________.2.已知i 是虚数单位,复数i2i++=m z 是纯虚数,则实数m 的值为________.3.函数xxy +-=21ln的定义域为________.4.若单位向量a 、b 满足⊥a b,则=-||a ________.5.某地区高三年级2000名学生参加了地区教学质量调研测试,已知数学测试成绩X 服从正态分布),100(2σN (试卷满分150分),统计结果显示,有320名学生的数学成绩低于80分,则数学分数属于闭区间]120,80[的学生人数约为_______.6.已知物体的位移d (单位:m)与时间t (单位:s)满足函数关系t d sin 2=,则在时间段)6,2(∈t 内,物体的瞬时速度为s /m 1的时刻=t _______(单位:s).7.已知等比数列的前n 项和为a S nn +⎪⎭⎫⎝⎛=21,则a 的值为________.8.在下列关于实数b a 、的四个不等式中,恒成立的是_______.(请填入全部正确的序号)①ab b a 2≥+;②ab b a ≥⎪⎭⎫ ⎝⎛+22;③||||||b a b a -≤-;④1222-≥+b b a .9.正四棱锥ABCD P -底面边长为2,高为3,则点A 到不经过点A 的侧面的距离为_______.10.某工厂生产的产品以100个为一批.在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的.假定每一批产品中的次品最多不超过2个,并且其中恰有i (=i 0,1,2)个次品的概率如下:一批产品中有次品的个数i012概率0.30.50.2则各批产品通过检查的概率为________.(精确到0.01)11.已知实数)6,0(∈a ,记))(a x x x f -=.若函数)(x f y =在区间[]2,0上的最小值为2-,则a 的值为________.12.我们称右图的曲线为“爱心线”,其上的任意一点),(y x P 都满足方程022||2||222=+-+-y x y y x x .现将一边在x 轴上,另外两个顶点在爱心线上的矩形称为心吧.若已知点⎪⎪⎭⎫ ⎝⎛-2,22M 到“爱心线”上任意一点的最小距离为d ,则用d 表示心吧面积的最大值为_______.xy O二、选择题(本大题共4小题,满分18分)第13题、14题各4分,第15题、16题各5分.每题有且仅有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑.13.函数)(cos sin 2R ∈-=x x x y 的最小正周期为…………………………………………()A .2π;B .π;C .23π;D .2π.14.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是………()A .若m ∥α,n ∥α,则m ∥n ;B .若m ⊂α,n ⊂β,m ∥n ,则α∥β;C .若m ⊥α,n ∥α,则m ⊥n ;D .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.15.设1>a ,则双曲线1)1(2222=+-a y a x 的离心率e 的取值范围是…………………………()A .)2,2(;B .)5,2(;C .)5,2(;D .)5,2(.16.如果一个非空集合G 上定义了一个运算*,满足如下性质,则称G 关于运算*构成一个群.(1)封闭性,即对于任意的G b a ∈,,有G b a ∈*;(2)结合律,即对于任意的G c b a ∈,,,有))(c b a c b a **=**(;(3)对于任意的G b a ∈,,方程b a x =*与b y a =*在G 中都有解.例如,整数集Z 关于整数的加法(+)构成群,因为任意两个整数的和还是整数,且满足加法结合律,对于任意的∈b a ,Z ,方程b a x =+与b y a =+都有整数解;而实数集R 关于实数的乘法(⨯)不构成群,因为方程10=⨯y 没有实数解.以下关于“群”的真命题有………………………………………………………………()1自然数集N 关于自然数的加法(+)构成群;2有理数集Q 关于有理数的乘法(⨯)构成群;3平面向量集关于向量的数量积(⋅)构成群;4复数集C 关于复数的加法(+)构成群.A .0个;B .1个;C .2个;D .3个.三、解答题(本大题共5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(满分12分)共2个小题,第1小题满分6分,第2小题满分6分.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3=a ,5=b ,7=c .(1)求角C 的大小;(2)求)sin(C A +的值.18.(满分15分)共3个小题,第1小题满分5分,第2小题满分10分.某高中随机抽取100名学生,测得他们的身高(单位:cm),按照区间[)165,160,[)170,165,[)175,170,[)180,175,[]185,180分组,得到样本身高的频率分布直方图(如下图所示).(1)求身高不低于170cm 的学生人数;(2)将身高在[170,175),[175,180),[180,185]区间内的学生依次记为A ,B ,C 三个组,用分层抽样的方法从三个组中抽取6人.①求从这三个组分别抽取的学生人数;②若要从6名学生中抽取2人,求B 组中至少有1人被抽中的概率.19.(满分15分)共2个小题,第1小题满分6分,第2小题满分9分.如图1所示,ABCD 是水平放置的矩形,32=AB ,2=BC .如图2所示,将ABD 沿矩形的对角线BD 向上翻折,使得平面⊥ABD 平面BCD .(1)求四面体ABCD 的体积V ;(2)试判断与证明以下两个问题:①在平面BCD 上是否存在经过点C 的直线l ,使得AD l ⊥?②在平面BCD 上是否存在经过点C 的直线l ,使得AD l //?ABCD ABCD图1图220.(满分18分)共3个小题,每个小题均是满分6分.江南某公园内正在建造一座跨水拱桥.如平面图所示,现已经在地平面以上造好了一个外沿直径为20米的半圆形拱桥洞,地平面与拱桥洞外沿交于点A 与点B .现在准备以地平面上的点C 与点D 为起点建造上、下桥坡道,要求:①AC BD =;②在拱桥洞左侧建造平面图为直线的坡道,坡度为22:1(坡度为坡面的垂直高度和水平方向的距离的比);③在拱桥洞右侧建造平面图为圆弧的坡道;④在过桥的路面上骑车不颠簸.(1)请你设计一条过桥道路,画出大致的平面图,并用数学符号语言刻画与表达出来;(2)并按你的方案计算过桥道路的总长度;(精确到0.1米)(3)若整个过桥坡道的路面宽为10米,且铺设坡道全部使用混凝土.请设计出所铺设路面的相关几何体,提出一个实际问题,写出解决该问题的方案,并说明理由(如果需要,可通过假设的运算结果列式说明,不必计算).21.(满分18分)共3个小题,第一小题满分5分,第2小题满分6分,第3小题满分7分.已知R ∈k ,记x x a k a x f -⋅+=)((0>a 且1≠a ).(1)当e =a (e 是自然对数的底)时,试讨论函数)(x f y =的单调性和最值;(2)试讨论函数)(x f y =的奇偶性;(3)拓展与探究:①当k 在什么范围取值时,函数)(x f y =的图像在x 轴上存在对称中心?请说明理由;②请提出函数)(x f y =的一个新性质,并用数学符号语言表达出来.(不必证明)C DAB20米参考答案与评分标准一、1.{红,黄};2.21-;3.)1,2(-;4.2;5.1360;6.5π3;7.1-;8.②③④;9.5;10.0.91;11.3;12.225d -.二、13.A ;14.C ;15.D .16.B .三、17.解:(1)由余弦定理,有212cos 222-=-+=ab c b a C ,所以3π2=C …………………6分(2)解1:由正弦定理,有CcB b sin sin =,即.1435sin sin ==c C b B 所以B B C A sin )πsin()sin(=-=+.1435=………………………6分解2:由正弦定理,有C cA a sin sin =,即.1433sin sin ==c C a A 所以.1413sin 1cos 2=-=A A 故,.1435sin cos cos sin )sin(=+=+C A C A C A ………………………6分解3:由余弦定理,有14132cos 222=-+=bc a c b A ,所以.1433sin =A 故,.1435sin cos cos sin )sin(=+=+C A C A C A ………………………6分18.解:(1)由频率分布直方图可知515(0.070.040.020.01)x =-⨯+++,所以1[150.14]0.065x =-⨯=.身高在170cm 以上的学生人数为100(0.0650.0450.025)60⨯⨯+⨯+⨯=(人).(2)A ,B ,C 三组的人数分别为30人,20人,10人.因此应该从A ,B ,C 三组中每组各抽取630360⨯=(人),620260⨯=(人),610160⨯=(人).………………………4分设A 组的3位同学为1A ,2A ,3A ,B 组的2位同学为1B ,2B ,C 组的1位同学为1C ,则从6名学生中抽取2人有15种可能:12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,11(,)A C ,23(,)A A ,21(,)A B ,22(,)A B ,21(,)A C ,31(,)A B ,32(,)A B ,31(,)A C ,12(,)B B ,11(,)B C ,21(,)B C .其中B 组的2位学生至少有1人被抽中有9种可能:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,11(,)B C ,21(,)B C .所以B 组中至少有1人被抽中的概率为93155P ==.……………6分19.解:(1)过点A 作AE BD ⊥,垂足为E .因为平面⊥ABD 平面BCD ,ABDEF有AE ⊥平面BCD,则AE =……………………4分所以11122332BCD V S AE ==⨯⨯⨯ △.………2分(2)①在平面BCD 上存在经过点C 的直线l ,使得AD l ⊥.……………………1分证明:过点C 作CF BD ⊥,垂足为F .因为AE ⊥平面BCD ,则DE 为AD 在平面BCD 内的投影.由三垂线定理,CF AD ⊥,则存在l AD ⊥.……………………4分②在平面BCD 上不存在经过点C 的直线l ,使得AD l //……………………1分证明:假设存在//l AD ,因为AD 不在平面BCD 内,则//AD 平面BCD ,与AD 平面BCD D =矛盾.…3分所以不存在//l AD .注:用异面直线判断定理证明给满分.20.解1:如图,以线段AB 的中点O 为坐标原点建立平面直角坐标系.…………………1分……………………2分则,圆O 的方程为10022=+y x ;由221tan =C ,10=OE 得220=CE ,30=CO .过点C 作圆O 的切线DE ,切点为E ,直线CE 的斜率为221,其方程为)30(221+=x y .所以直线OE 的斜率为22-,其方程为x y 22-=,将其代入10022=+y x ,得点E 的坐标为⎪⎪⎭⎫⎝⎛-3220,310.经过点D 作圆M 与圆O 切于点F (圆O 与y 轴的交点),设圆M 的半径为r ,则,222DM OM OD =+,即222)10(30r r =-+,解得50=r .所以,圆M 的方程为22250)40(=++y x ,故,用函数表示过桥道路为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤--<≤---<≤-+=.300,402500,0310,100,31030),30(22122x x x x x x y ……………………3分(2)解1:由点E 的坐标为⎪⎪⎭⎫ ⎝⎛-3220,310,得22arctan 2π-=∠EOF ,CDAB20米E OFxy所以圆弧EF 的长为⎪⎭⎫⎝⎛-22arctan 2π10≈3.398,……………………2分由点D 的坐标为()0,30,点M 的坐标为()40,0-,得43arctan =∠DMF ,所以圆弧FD 的长为43arctan50≈32.175,……………………2分故,过桥道路的总长度为+220⎪⎭⎫⎝⎛-22arctan 2π1043arctan 50+9.63≈m .……2分解2:(1)如图建系…………………………………………………………1分……………………2分作圆N 与x 轴相切于点D ,并和圆O 切于点G ,设圆M 的半径为r ,则,222ON DN OD =+,即222)10(30+=+r r ,解得40=r .所以,圆N 的方程为22240)40()30(=-+-y x ,将直线OG 的方程代入10022=+y x 得,点G 的坐标为()6,8故,用函数表示过桥道路为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤---<≤---<≤-+=.306,)30(160040,6310,100,31030),30(22122x x x x x x y …………………3分(2)因为⎪⎪⎭⎫⎝⎛-=3220,310OE ,)8,6(=OG ,则15283,cos +-==〉〈OG OE OG OE ,即,15283arccos ,+-=〉〈OG OE .所以圆弧EG 的长为15283arccos 10+-≈9.833.……………………2分又由点G 的坐标为)8,6(,得34arctan 2π-=∠OND ,所以圆弧GD 的长为⎪⎭⎫ ⎝⎛-34arctan 2π40≈25.740.………………………2分故,过桥道路的总长度为+22015283arccos10+-⎪⎭⎫ ⎝⎛-+34arctan 2π40≈63.9m .………2分CDAB20米EGOxy(3)设计让桥的侧面所在平面垂直于地平面,则桥拱左侧铺设的是以曲边形ACE 为底面,高为10米的柱体;桥拱右侧铺设的是以曲边形BDF (BDG )为底面,高为10米的柱体;……………………2分提问:铺设坡道共需要混凝土多少立方米?……………………2分方案1:=-=∆AOE COE ACE S S S 扇形曲边形BOFDOM DMF BDF S S S S 扇形扇形曲边形--=∆所以,铺设过桥路需要混凝土10(BOF DOM DMF AOC COD S S S S S 扇形扇形扇形--+-∆∆)3m .………2分方案2:=-=∆AOE COE ACE S S S 扇形曲边形BOGDNG ODN BDG S S S S 扇形扇形曲边形--=∆所以,铺设过桥路需要混凝土10(BOF DNG ODN AOC COD S S S S S 扇形扇形扇形--+-∆∆)3m .………2分注:1、用直线和圆的方程表示坡道给满分;2、在拱桥右边设计与圆拱相切,切点不在圆拱最高点的上凸圆弧坡道,若计算正确,可酌情给满分;3、在拱桥右边设计与圆拱相切,与水平线相交的下凸圆弧作为坡道,若计算正确,可酌情给满分.4、若学生在拱桥左边设计圆的割线段,建议各扣1分;5、在拱桥右边设计相交圆弧作为坡道,但计算正确,建议各扣1分.21.解:(1)xx k x f -⋅-=e e )(',当0≤k 时,0)('>x f ,故函数)(x f y =在R 上为严格增函数;……………………1分函数)(x f y =在R 上无最值.……………………1分当0>k 时,令0)('=x f ,得k x ln 21=,所以,当⎪⎭⎫ ⎝⎛∞-∈k x ln 21,时,0)('<x f ,函数)(x f y =在⎥⎦⎤ ⎝⎛∞-k ln 21,上为严格减函数;…1分当⎪⎭⎫ ⎝⎛+∞∈,ln 21k x 时,0)('>x f ,函数)(x f y =在⎪⎭⎫⎢⎣⎡+∞,ln 21k 上为严格增函数.…………1分函数)(x f y =在R 上有最小值0,无最大值.……………………1分(2)因为“)(x f y =为偶函数”⇔“对于任意的R ∈x ,都有)()(x f x f =-”⇔对于任意的R ∈x ,都有R ∈-x ,并且x x x x a k a a k a ⋅+=⋅+--;⇔对于任意的R ∈x ,0))(1(=---x x a a k ⇔1=k .故,1=k 是)(x f y =为偶函数的充要条件.……………………3分因为“)(x f y =为奇函数”⇔“对于任意的R ∈x ,都有)()(x f x f -=-”⇔对于任意的R ∈x ,都有R ∈-x ,并且x x x x a k a a k a ⋅+=⋅----;⇔对于任意的R ∈x ,0))(1(=++-x x a a k ⇔1-=k .故,1-=k 是)(x f y =为奇函数的充要条件.……………………3分当1±≠k 时,)(x f y =是非奇非偶函数.(3)①当0<k 时,函数)(x f y =有对称中心⎪⎭⎫ ⎝⎛-0),log(21k .即,当0<k 时,对于任意的R ∈x ,都有R ∈-x ,并且=--))((log x k f a )(x f -.………2分证明:当0<k 时,令0)(=x f ,解得)(log 21k x a -=为函数)(x f y =的零点由xx a k a x f -⋅+=)(得,=--))((log x k f a ))((log )(log x k x k a a a k a -----⋅+x x a a k -⋅-=-)(x f -=.……………………2分②答案1:当0>k 时,函数)(x f y =有对称轴k x a log 21=.即,当0>k 时,对于任意的R ∈x ,都有R ∈-x ,并且=-)(log x k f a )(x f .………………3分参考证明:当0>k 时,由xx a k a x f -⋅+=)(得,=-)(log x k f a )(log log x k xk a aa k a ---⋅+x x a a k +⋅=-)(x f =.答案2:当1=k 时,)(x f y =的图像关于y 轴对称,即,对于任意的R ∈x ,都有)()(x f x f =-.………………………………………………1分答案3:当0<k 时,函数)(x f y =的零点为)(log 21k x a -=,即.0)(log 21=⎪⎭⎫⎝⎛-k f a …………1分答案4:表述函数)(x f y =的单调性和最值,并写出定义形式各给1分.。

2024年上海宝山区高三二模数学试卷和答案

2024年上海宝山区高三二模数学试卷和答案

上海宝山区2023-2024学年第二学期期中高三年级数学学科教学质量监测试卷考生注意:1.本试卷共21题,满分150分,考试时间120分钟;2.本试卷包括试题卷和答题纸两部分,答题纸另页,正反面;3.在本试题卷上答题无效,必须在答题纸上的规定位置按照要求答题;4.可使用符合规定的计算器答题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分),要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.抛物线y x 42=的焦点坐标为______.2.已知3tan =α,则=⎪⎭⎫ ⎝⎛-4tan πα_______.3.将()02>a a a 其中化为有理数指数幂的形式为_______.4.已知向量()2,2m a =,()1,1+=m b ,若10=⋅b a ,则实数=m .5.设实数y x 、满足()()()i 1i i 42i i +-=+-+y x y x ()为虚数单位i ,则=+y x .6.有一组数从小到大....排列为:3,5,x ,8,9,10.若其极差与平均数相等,则这组数据的中位数为_______.7.已知集合{}3,12++=a a A ,,且A ∈1,则实数a 的值为.8.在数列{}n a 中,()21lg,211≥-+==-n n na a a n n 且,则=100a _______.9.某公司为了了解某商品的月销售量y (单位:万件)与月销售单价x (单位:元/件)之间的关系,随机统计了5个月的销售量与销售单价,并制作了如下对照表:月销售单价x (元/件)1015202530月销售量y (万件)1110865由表中数据可得回归方程y ax b =+中0.32a ∧=-,试预测当月销售单价为40元/件时,月销售量为万件.10.已知双曲线()0,012222>>=-b a by a x ,以双曲线的右顶点A 为圆心,b 为半径作圆,圆A与双曲线的一条渐近线交于N M 、两点,若60=∠MAN ,则双曲线的离心率为_______.11.某区域的地形大致如下左图,某部门负责该区域的安全警戒,在哨位O 的正上方安装探照灯对警戒区域进行探查扫描.假设1:警戒区域为空旷的扇环形平地11n n A A B B ;假设2:视探照灯为点M ,且距离地面20米;假设3:探照灯M 照射在地面上的光斑是椭圆.当探照灯M 以某一俯角从1k k A A +侧扫描到1k k B B +侧时,记为一次扫描,此过程中照射在地面上的光斑形成一个扇环(),...3,2,1=k S k .由此,通过调整M 的俯角,逐次扫描形成扇环1S 、2S 、3S L .第一次扫描时,光斑的长轴为EF ,||30OE =米,此时在探照灯M 处测得点F 的俯角为30(如下右图).记1||k k k A A d +=,经测量知1||80n A A =米,且{}k d 是公差约为1.0米的等差数列,则至少需要经过次扫描,才能将整个警戒区域扫描完毕.12.空间直角坐标系中,从原点出发的两个向量a 、b 满足:2a b ⋅=,||1b = ,且存在实数t ,使得||2||0a a tb -+≥成立,则由a 构成的空间几何体的体积是.二、选择题(本大题共有4题,满分18分,第13~14题每题4分,第15~16题每题5分),每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得相应满分,否则一律得零分.13.已知0>>b a ,则().A .22ba >B .ba22<C .2121ba <D .ba 2121log log >14.已知随机变量X 服从正态分布()20σ,N .若()65=≤a X P ,则()=≤a X P ().A .32B .21C .31D .6115.已知直线n m l 、、与平面βα、,则下列命题中正确的是().A .若βα//,α⊂l ,β⊂n ,则n l //B .若βα⊥,α⊂l ,则β⊥l C .若α⊥l ,β//l ,则βα⊥D .若n l ⊥,n m ⊥,则ml //16.数列{}n a 中,n S 是其前n 项的和,若对任意正整数n ,总存在正整数m ,使得m n a S =,则称数列{}n a 为“某数列”.现有如下两个命题:①等比数列{}n2为“某数列”;②对任意的等差数列{}n a ,总存在两个“某数列”{}n b 和{}n c ,使得n n n c b a +=.则下列选项中正确的是().A .①为真命题,②为真命题B .①为真命题,②为假命题C .①为假命题,②为真命题D .①为假命题,②为假命题三、解答题(本大题共有5题,满分78分),解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)在ABC ∆中,角C B A 、、的对边分别为c b a 、、,已知C A B C A sin sin sin sin sin 222+=+.(1)求角B 的大小;(2)若ABC ∆的面积为3,求c a +的最小值,并判断此时ABC ∆的形状.18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,已知点P 在圆柱1OO 的底面圆O 的圆周上,AB 为圆O 的直径.(1)求证:P A BP 1⊥;(2)若,60,2=∠=BOP OA 圆柱的体积为π216,求异面直线AP 与B A 1所成角的大小.19.(本题满分16分,第1小题满分3分,第2小题满分6分,第3小题满分7分)在课外活动中,甲、乙两名同学进行投篮比赛,每人投3次,每投进一次得2分,否则得0分.已知甲每次投进的概率为21,且每次投篮相互独立;乙第一次投篮,投进的概率为21,从第二次投篮开始,若前一次投进,则该次投进的概率为53,若前一次没投进,则该次投进的概率为52.(1)求甲投篮3次得2分的概率;(2)若乙投篮3次得分为X ,求X 的分布和期望;(3)比较甲、乙的比赛结果.20.(本题满分16分,第1小题满分3分,第2小题满分6分,第3小题满分7分)已知双曲线1222=-y x 的左、右顶点分别为B A 、,设点P 在第一象限且在双曲线上,O 为坐标原点.(1)求双曲线的两条渐近线夹角的余弦值;(2)若,9≤⋅PB P A 的取值范围;(3)椭圆C 的长轴长为22,且短轴的端点恰好是B A 、两点,直线AP 与椭圆的另一个交点为Q .记POA ∆、QAB ∆的面积分别为1S 、2S .求2221S S -的最小值,并写出取最小值时点P 的坐标.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)函数()y g x =的表达式为()sin()g x x ω=()0ω>.(1)若1ω=,直线l 与曲线()y g x =相切于点(,1)2π,求直线l 的方程;(2)函数()y g x =的最小正周期是2π,令()()ln h x x g x x =⋅-,将函数()y h x =的零点由小到大依次记为12,,,,n x x x (1,)n n N ≥∈,证明:数列{sin }n x 是严格减数列;(3)已知定义在R 上的奇函数()y f x =满足()(2)()0f x a f x a +=->,对任意[0,2]x a ∈,当x a ≠时,都有()()f x f a <且()1f a =.记()()()F x f x g x =+,1()()()2G x f x g x =++.当ω=π时,是否存在12x x R ∈、,使得12()()4F x G x =+成立?若存在,求出符合题意的12x x 、;若不存在,请说明理由.参考答案1.()1,0 2.21 3.45a4.25.26.5.77.08.49.6.110.33211.1512.89π12.解:由已知得22||4||a a tb ≥+ ,所以2223||84||0a tab t b +⋅+≤ 所以存在实数t ,使得不等式224163||0t t a ++≤ 有解,则0∆≥,解得||a ≤又因为2a b ⋅= 且||1b =,所以a 在b 方向上的数量投影是2,所以,a围成的空间几何体是以原点为顶点,高为2,母的圆锥(如图)故由a 构成的空间几何体的体积218239ππ⋅⋅=13.A 14.A 15.C 16.C17.解:(1)由正弦定理得ac b c a +=+222..........................2分又由余弦定理得2122cos 222==-+=ac ac ac b c a B ...............................4分因为B 是三角形内角,所以3π=B ....................................6分(2)由三角形面积公式3433sin 21sin 21====∆ac ac B ac S ABC π..........................8分得4=ac .........................10分因为42=≥+ac c a ,当且仅当2==c a 时取等号,........................12分所以c a +的最小值为4,此时ABC ∆为等边三角形.............................14分18.解:(1)证明:圆柱1OO 中,易知O AB 圆⊥,从而AP 是P A 1在圆O 上的投影.....2分又AB 为圆O 的直径,可得AP BP ⊥.......................4分由三垂线定理,就得P A BP 1⊥.......................6分(2)延长PO 交圆O 于点Q ,连接BQ 、Q A 1、AQ ,易知AP BQ //,BQ A 1∠(或其补角)即为所求的角..........................8分由题知πππ2164112=⋅=⋅⋅=AA AA OA V 解得241=AA .................................10分BQ A 1∆中,34,6,3211===B A Q A QB 由余弦定理得2134322364812cos 1=⋅⋅-+=∠BQ A .......................13分从而601=∠BQ A 所以异面直线AP 与B A 1所成角的大小为60................................14分19.解:(1)甲投篮3次得2分,即只投中1次,概率8321121213=⎪⎭⎫ ⎝⎛-⨯=C p .................3分(2)由题意知X 的所有可能取值为6,4,2,0则()1339025550P X ==⨯=.................4分()1231221328225525525525P X ==⨯+⨯⨯+⨯⨯=.................5分()1321221238425525525525P X ==⨯⨯+⨯⨯+⨯⨯=.................6分()1339625550P X ==⨯⨯=.................7分随机变量X 的分布为⎪⎪⎭⎫⎝⎛5096258425825090..................8分期望()98890246350252550E X =⨯+⨯+⨯+⨯=.................9分(3)设甲三次投篮的得分Y ,则Y =6,4,2,0可求得随机变量Y 的分布为⎪⎪⎭⎫⎝⎛816834832810所以()3816834832810=⨯+⨯+⨯+⨯=Y E .............11分()3381683483281022222=-⨯+⨯+⨯+⨯=Y D ...........12分又可算得()25973509625842582509022222=-⨯+⨯+⨯+⨯=X D .......13分因为()()Y E X E =,()()Y D X D >所以甲最终的得分均值等于乙最终的得分均值,但乙赢得的分值不如甲稳定........16分另解:设甲三次投篮的次数为ξ,3,2,1,0=ξ则()23213=⨯=ξE 设甲的投篮得分为Y ,则ξ2=Y ,从而()()()322===ξξE E Y E 20.解:(1)两条渐近线方程为02=±y x .............................1分()()1,2,1,221-==n n 设两条直线夹角为θ,则313312cos =⋅-=θ........................2分所以双曲线的两条渐近线夹角的余弦值为31...............................3分(2)设()()0,1,,1111>>y x y x P ,由已知得()()0,101B A 、,-..................4分()11,1y x P A ---=,()11,1y x PB --=,则912121≤+-=⋅y x PB P A 得102121≤+y x ..............................6分又点P 在双曲线上,有122121=-y x 即()122121-=x y 从而()10122121≤-+x x 得421≤x .又点P 是双曲线在第一象限的点,所以(]4,121∈x .()(]10,123122121212121∈-=-+=+=x x x y x OP (]101,OP ................................9分(3)椭圆C 中1,2==b a ,焦点在y 轴上,标准方程为1222=+x y ..................10分设()()0,0,,2222>>y x y x Q ,直线AP 的斜率为()0,>k k 则直线AP 的方程为()1+=x k y 联立方程组()⎪⎩⎪⎨⎧=++=12122x y x k y 得()02222222=-+++k x k xk 该方程的两根分别为1-和22222k k x +-=同理可得22122k k x -+=所以121=⋅x x .........................12分记2121111y y S S POA =⨯⨯==∆222221y y S S QAB =⨯⨯==∆..........................13分则()()2522112124142221222122212221-+=---⨯=-=-x x x x y y S S 21251225222121-=-≥-⎪⎪⎭⎫ ⎝⎛+=x x当且仅当212122x x =即221=x 时取等号,.....................15分所以2221S S -的最小值为21-,此时点P 的坐标为()22,.................16分另解:1,12211+=+=x yk x y k AQ AP 因为AQ APk k =,所以112211+=+x yx y 即22221111⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+x y x y 又()122121-=x y ,()222212x y -=,代入上式化简得11112211+-=+-x x x x ,整理得121=⋅x x 21.解(1)1ω=时,()sin ,g x x =则'()cos g x x =..................1分从而'(cos022k g ππ===..................3分所以直线l 的方程是1y =..................4分(2)由22ωπ=π,可知1ω=,则()sin ln h x x x x =-(0x >),.......................5分当()0h x =时ln sin xx x=.......................6分①当01x <<时,ln sin 0,0xx x><,此时函数()y h x =没有零点;.....................7分②当1x ≥时,因为2ln 1ln ()'x x x x -=,可知ln x y x=在[]1,e 上严格增,在[,)e +∞严格减又sin y x =在[1,]2π上严格增,在[,]2e π严格减,所以[1,]x e ∈时,x y sin =在e x =时有最小值sin e ,xxy ln =在e x =时有最大值ln 1e e e =因为1sin e e >所以ln sin x x x=在[1,]e 上没有交点,即()sin ln h x x x x =-在[1,]e 上没有零点.......................9分所以函数()y h x =的零点n x 满足12n e x x x <<<<< ,.因为ln x y x =在[,)e +∞严格减,所以1212ln ln ln n nx x x x x x >>>> .又因为ln sin nn nx x x =,所以数列{sin }n x 是严格减数列........................10分(3)因为[]()(2)(4)(4)f x f x a f x a f x a =-+=--+=+,所以()y f x =是以4a 为周期的周期函数.................11分因为任意[0,2]x a ∈,当x a ≠时,都有()()f x f a <且()1f a =,所以当x a =时,()y f x =在[0,2]a 上有唯一的最大值1...............................12分由ω=π得()sin g x x =π,()()sin ,()()cos F x f x x G x f x x =+π=+π................13分假设存在12x x R ∈、,使得12()()4F x G x =+成立,即[]1122()sin ()cos 4f x x f x x +π-+π=成立故,当()14x a ka k Z =+∈时,1()f x 取得最大值1;当()122x m m Z 1=+∈时,1sin x π取得最大值1由422a ka m 1+=+,可知4182m a k +=+①时,()11max ()sin 2f x x +π=...................15分又因为()y f x =是奇函数,所以当x a =-时,()f x 在[20]a -,上有唯一的最小值1-故,当()24x a na k Z =-+∈时,2()f x 取得最小值1-;当()212x t t Z =+∈时,2cos x π取得最小值1-由412a na t -+=+,可知2141t a n +=-②时()22min ()cos 2f x x +π=-.....................17分若[]1122()sin ()cos 4f x x f x x +π-+π=成立,则由①②得41218241m t k n ++=+-,即(41)(41)(21)(82)m n t k +-=++因为,,,m n k t Z ∈,此时等式左边为奇数,等式右边为偶数,所以等式不成立..............18分。

2024届上海市松江区高三二模数学试题及答案

2024届上海市松江区高三二模数学试题及答案

上海市松江区2024届高三二模数学试卷(满分150分,时间120分钟)一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.函数 lg 2y x 的定义域是.2.在复平面内,复数z 对应点的坐标是 1,2,则i z .3.4.已知点5.已知7x 6.7.8.9.已知1F 10.11.已知0 的取值范围是.12.某校高一数学兴趣小组一共有30名学生,学号分别为1,2,3,,30 ,老师要随机挑选三名学生参加某项活动,要求任意两人的学号之差绝对值大于等于5,则有种不同的选择方法.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.已知集合04A x x ,2,B x x n n Z ,则A B ().A 1,2;.B 2,4;.C 0,1,2;.D 0,2,4.14.某小区为了倡导居民对生活垃圾进行分类,对垃圾分类后处理垃圾x (千克)所需的费用y (角)的情况作了调研,并统计得到右表中几组对应数据,同时用最小二乘法得到y 关于x 的线性回归方程为0.70.4y x ,则下列说法错误的是().A 变量x 、y 之间呈正相关关系;.B 可以预测当8x 时,y 的值为6;.C 3.9m ;.D 由表格中数据知样本中心点为 3.5,2.85.15.已知某个三角形的三边长为a 、b 及c ,其中a b .若a 、b 是函数2y ax bx c 的两个零点,则a 的取值范围是().A 12.16.设n S ,2k N k ,则12S S ,2k N k ,则12S S .A .C 三、17.设 f x 为 .(1)(2), 32f A,求角C .18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在四棱锥P ABCD 中,底面ABCD 为菱形,PD 平面ABCD ,E 为PD 的中点.(1)设平面ABE 与直线PC 相交于点F ,求证://EF CD ;(2)若2AB ,60DAB ,PD ,求直线BE 与平面PAD 所成角的大小.19.现有甲、乙、,且每人能否闯(1)(2) E X ;(3)丙第20题图如图,椭圆22:12y x 的上、下焦点分别为1F 、2F ,过上焦点1F 与y 轴垂直的直线交椭圆于M 、N两点,动点P 、Q 分别在直线MN 与椭圆 上.(1)求线段MN 的长;(2)若线段PQ 的中点在x 轴上,求2F PQ 的面积;(3)是否存在以2F Q 、2F P 为邻边的矩形2F QEP ,使得点E 在椭圆 上?若存在,求出所有满足条件的点Q 的纵坐标;若不存在,请说明理由.已知函数 ln f x x x a (a 为常数),记 y f x x g x .(1)若函数 y g x 在1x 处的切线过原点,求实数a 的值.(2)对于正实数t ,求证: ln 2f x f t x f t t a ;(3)当1a 时,求证: e cos xg x x x.上海市松江区2024届高三二模数学试卷-简答1参考答案一、填空题1.(2,)2.2i3.0.24.1225.216.37.58.4910.(1,2)11.10,1212.1540二、选择题13.D14.C15.B16.C三、解答题17.解:(1)2()sin sin222f x x x x1cos 1=sin()2262x x x .……3分因为函数()y f x 图像的相邻两条对称轴之间的距离为 ,所以2 T ,即22,1T.所以1()sin(62f x x .……6分(2)由3()2f A,得13sin(),sin()16226A A .2(0,)3A A.……9分,由sin sin a b A B ,sin B,化简得sin 2 B 所以角4 B .……12分所以角23412C .……14分218.解:(1)因为底面ABCD 为菱形,所以//CD AB ,解法2:如图建系,由题可得:2AC BD ,则A, 0,1,0B , 0,1,0D , 0,1,P , 0,1,E ,……8分所以 0,2,BE , DA, 0,0,DP,设平面PAD 的法向量为 ,,z n x y,由00n DA n DP,得00y ,解得0y z,取1x ,可得平面PAD 的一个法向量为n.……12分设直线BE 与平面PAD 所成角的大小为090,x yzO3则1sin cos 22n BE n BE,解得30 ,所以,直线BE 与平面PAD 所成角的大小为30 .……14分19.解:(1)设“计划依次派出甲乙丙进行闯关,该小组比赛胜利”为事件A , 甲乙丙各自闯关成功的概率分别为134p ,223p ,312p ,每人能否闯关成功相互独立,解法1: 3323212311144343224P A解法2: P A 123111231(1)(1)(1)143224p p p .……4分(2)按甲在先,乙次之,丙最后的顺序派人,所需派出的人员数目X 的可能取值是1、2、3,11P X p , 1221P X p p , 12311P X p p ,所以X 的分布是: 11212123111p p p p p,……7分所以 1121212122(1)3(1)(1)23E X p p p p p p p p p .……10分(3)若先派丙,再派乙,最后派甲,所需派出的人员数目Y 的分布是: 33232123111p p p p p,则 323223E Y p p p p ,所以 121232322323E X E Y p p p p p p p p ,21313213220p p p p p p p p ……13分所以先派甲,再派乙,最后派丙时,派出的人员数目的数学期望较小.……14分4521.(1)因为 ln +g x x x ,所以 22'g x x x x ,所以 '11g a .……2分又因为 1ln11a g a ,所以 g x 在1x 处的切线方程为: 11y a x a .点 0,0O 代入切线方程可得12a .……4分(2)设函数 0h x f x f t x t ,ln ln +2h x x x t x t x a ,0x t .ln 1ln 1ln x h x x t x t x.……6分令 0h x ,得:2102x x t t x t t x t x . h x 在,2t t 上严格递增;在0,2t 上严格递减; h x 的最小值为2t h,即总有: 2t h x h .……8分而 ln +2ln 22222t t t t h f f t t a f t t a∴ ln 2f x f t x f t t a .……10分6(3)当1a 时,即证1e ln cos xx x x x,(0x )由于 cos 1,1x ,故e e cos 1x x x x x,只需证1e ln 1xx x x ,……12分令 1e ln 10xk x x x x x,只需证明 0k x .而 22211e e 111x x x x k x x x x x’,……14分因为0x ,所以1e 0x ,令 '0k x 得:01x ,令 '0k x 得:1x ,所以 k x 在1x 处取得极大值,也是最大值,……16分所以 max 12e<0k x k ,故 0k x 在 0,x 上恒成立,结论得证.……18分。

淮南市(二模)2023届高三第二次模拟考试数学试卷及答案

淮南市(二模)2023届高三第二次模拟考试数学试卷及答案

淮南市2023届高三第二次模拟考试学试题数本试卷分为第I卷(选择题〉和第E卷〈非选择题〉两部分.考试时间120分钟.第I卷,....... 3、N··一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,有且只有一项符合题目要求.1己知全集U=R ,集合A=�eRly=�},则CuA=<D . {x i x 三-1}C .{x lx 豆-1}B .{x lx <O }A .{x lx <-1}2己知复数z 满足(2-i)·z = i2023,(i 是虚数单位),则复数z 在复平面内所对应的点位于〉A.第一象限B.第二象限c.第三象限 D.第四象限3.四位同学各自在“五一”劳动节五天假期中任选一天参加公益活动,则甲在5月1日、乙不在5D .-25c 土25月1日参加公益活动的概率为(4 B. -54己知函数f(x )=A s 叫ω+的,[A >阳〉喇〈立的相邻两个对称中心距离为2且图\2)象经过Ml 乏,A i ,若将f(x )图象上的所有点向右平移至个单位长度得到函数g(x )的图象,飞。

)6则函数g(x )的单调递减区间是〈 B.[k π中π刽k eZ[叶,kπ叶ke ZA.D.[k 什叶十εZC.[k 7r,ktr +f J.k eZ〉〉汩。

A ..!_52,r5.在A ABC中,己知LACB=一-,BC=4,AC=3,D是边AB的中点,点E满足3一-3一-1一一一一一『A E=-AB+-AC,则CD·DE=()4 4A.-三B.l c ..!.8 2 86.我国古代数学在宋元时期达到繁荣的顶点,涌现了一大批卓有成就的数学家,其中朱世杰与秦九韶、杨辉、李冶被誉为我国“宋元数学四大家”朱世杰著有《四元玉鉴》和《算学启蒙》等,在《算学启蒙》中,最为引人入胜的问题莫过于堆垛问题,其中记载有以下问题:“今有三角、四角果子垛各一所,共积六百八十五个,只云三角底子一面不及四角底子一面七个,问二垛底子一面几何?”其中“积”是和的意思,“三角果子垛”是每层都是正三角形的果子垛,自上至下依次有I,3, 6, 10, 15, ...,个果子,“四角果子垛”是每层都是正方形的果子垛,自上至下依次有L4, 9, 16, ...,个果子,“底子一面”指每垛最底层每条边”根据题意,可知该三角、四角果子垛最底层每条边上的果子数是〈(参考公式:川山·+n2=巾+俨1))A.4,11B.5,12 c.6,137.如圈,αiβ,αnβ=l,Aeα,Beβ,点A,B在棱l上的射影分别是码,B i,若AA1=BB1 =2, AB=4,则异面直线AB1与A1B所成角的余弦值为D.7,14A.主B.I第7题图5521c.一D.一338.定义在R上的函数f(x)满足f(-x)+f(x)+2cosx=0,当x�O时,J'(x)>sinx,则不等式f(x)+2cosx>f(π-x)的解集为A.(J, +co)B.(斗) c.(-咒) D.(一∞,π)二、多项选择踵I;I 尔踵共4,J、踵,每小题5分,共20分.在每小踵给出的选项中,有多项符合匾目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.己知单位向盘a,b ,则下列命题正确的是(A. (;i+b )土(;i -b )B剖=(-手,J.b -(coC若|二-bl 川,记向盘二,5的夹角为θ,则θ的最小值为子’--‘’霄『-.-D 若(a.b) =二,则向盘b栩如上的投影向盘是γ飞’I 3IO.己知圆M 的方程为:x 2+y 2+ax +咿-2a-4=o,(a εR ),点P(l,l ),给出以下结论其中正确的有(A.过点P 的任意直线与圆M都相交B若因l M 与直线川+川无交点则ae (÷棉)C.四M 面积最小时的圆与圆Q:x 2+ y 2 +6x-10y+16=0有三条公切线D.无论。

2024届上海普陀区高考数学二模试卷及答案

2024届上海普陀区高考数学二模试卷及答案

普陀区2023 -2024学年第二学期高三数学质量调研2024.4考生注意:1.本试卷共4页,21道试题,满分150分.考试时间120分钟.2.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.务必用钢笔或圆珠笔在答题纸相应位置正面清楚地填写姓名、准考证号,并将核对后的条码贴在指定位置上.一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得票分.1.已知复数1i z =+,其中i 为虚数单位,则z 在复平面内所对应的点的坐标为______.2.已知R a ∈,设集合{1,,4}A a =,集合{1,2}B a =+,若A B B =,则a =______.3.若3cos 35πθ⎛⎫−=⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭______. 4.已知()2~4,2X N ,若(0)0.02P X <=,则(48)P X <<=______. 5.若实数a ,b 满足20a b −≥,则124ab+的最小值为______.6.设2012(1)(1,N)nn n x a a x a x a x n n +=++++≥∈,若54a a >,且56a a >,则1ni i a ==∑______.7.为了提高学生参加体育锻炼的积极性,某校本学期依据学生特点针对性的组建了五个特色运动社团,学校为了了解学生参与运动的情况,对每个特色运动社团的参与人数进行了统计,其中一个特色运动社团开学第1周至第5周参与运动的人数统计数据如表所示.若表中数据可用回归方程 2.3(118,N)y x b x x =+≤≤∈来预测,则本学期第11周参与该特色运动社团的人数约为______.(精确到整数)8.设等比数列{}n a 的公比为(1,N)q n n ≥∈,则“212a ,4a ,32a 成等差数列”的一个充分非必要条件是______.9.若向量a 在向量b 上的投影为13b ,且|3|||a b a b −=+,则cos ,a b 〈〉=______.10.已知抛物线2y =的焦点F 是双曲线Γ的右焦点,过点F 的直线l 的法向量(1,3)n =−,l 与y 轴以及Γ的左支分别相交A ,B 两点,若2BF BA =,则双曲线Γ的实轴长为______.11.设k ,m ,n 是正整数,n S 是数列{}n a 的前n 项和,12a =,11n n S a +=+,若()11ki ii m t S==−∑,且{0,1}i t ∈,记12()k f m t t t =+++,则(2024)f =______.12.已知R a ∈,若关于x 的不等式(2)e 0xa x x −−−>的解集中有且仅有一个负整数,则a 的取值范围是______.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,否则一律得零分.13.从放有两个红球、一个白球的袋子中一次任意取出两个球,两个红球分别标记为A 、B ,白球标记为C ,则它的一个样本空间可以是( )A .{,}AB BC B .{,,}AB AC BC C .{,,,}AB BA BC CBD .{,,,,}AB BA AC CA CB14.若一个圆锥的体积为3,用通过该圆锥的轴的平面截此圆锥,得到的截面三角形的顶角为2π,则该圆锥的侧面积为( )AB .2πC .D .15.直线l 经过定点(2,1)P ,且与x 轴正半轴、y 轴正半轴分别相交于A ,B 两点,O 为坐标原点,动圆M 在OAB △的外部,且与直线l 及两坐标轴的正半轴均相切,则OAB △周长的最小值是( )A .3B .5C .10D .1216.设n S 是数列{}n a 的前n 项和(1,N)n n ≥∈,若数列{}n a 满足:对任意的2n ≥,存在大于1的整数m ,使得()()10m n m n S a S a +−−<成立,则称数列{}n a 是“G 数列”.现给出如下两个结论:①存在等差数列{}n a 是“G 数列”;②任意等比数列{}n a 都不是“G 数列”.则()A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤S ABCD −ABCD 2SA SB ==E F SC 17.(本题满分14 分)本题共有 2 个小题,第1 小题满分 6 分,第2 小题满分8 分如图,在四棱锥 中,底面 是边长为1 的正方形, , 、 分别是、BD 的中点.(1)求证://EF 平面SAB ; (2)若二面角S AB D −−的大小为2π,求直线SD 与平面ABCD 所成角的大小. 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 设函数()sin()f x x ωϕ=+,0ω>,0ϕπ<<,它的最小正周期为π.(1)若函数12y f x π⎛⎫=−⎪⎝⎭是偶函数,求ϕ的值;(2)在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,若2a =,6A π=,2B f ϕ−⎛⎫=⎪⎝⎭,求b 的值.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分张先生每周有5个工作日,工作日出行采用自驾方式,必经之路上有一个十字路口,直行车道有三条,直行车辆可以随机选择一条车道通行,记事件A 为“张先生驾车从左侧直行车道通行”.(1)某日张先生驾车上班接近路口时,看到自己车前是一辆大货车,遂选择不与大货车从同一车道通行.记事件B 为“大货车从中间直行车道通行”,求()P AB ;(2)用X 表示张先生每周工作日出行事件A 发生的次数,求X 的分布及期望[]E X .20.(本题满分18 分)本题共有 3 个小题,第1 小题满分 4 分,第2 小题满分6 分,第 3 小题满分8 分.设椭圆222:1(1)x y a aΓ+=>,Γ的离心率是短轴长的4倍,直线l 交Γ于A 、B 两点,C 是Γ上异于A 、B 的一点,O 是坐标原点.(1)求椭圆Γ的方程;(2)若直线l 过Γ的右焦点F ,且CO OB =,0CF AB ⋅=,求CBF S ∆的值;(3)设直线l 的方程为(,R)y kx m k m =+∈,且OA OB CO +=,求||AB 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 对于函数()y f x =,1x D ∈和()y g x =,2x D ∈,设12D D D =,若1x ,2x D ∈,且12x x ≠,皆有()()()()1212(0)f x f x t g x g x t −≤−>成立,则称函数()y f x =与()y g x =“具有性质()H t ”.(1)判断函数2()f x x =,[1,2]x ∈与()2g x x =是否“具有性质(2)H ”,并说明理由;(2)若函数2()2f x x =+,(0,1]x ∈与1()g x x=“具有性质()H t ”,求t 的取值范围; (3)若函数21()2ln 3f x x x=+−与()y g x =“具有性质(1)H ”,且函数()y g x =在区间(0,)+∞上存在两个零点1x ,2x ,求证22122x x +>.参考答案一、填空题 1.()1,1− 2. 2 3.354.0.485. 26. 10237. 578. q=39.310.2 11. 7 12.211,23e e ⎡⎫⎪⎢⎣⎭二、选择题13.B 14. C 15. C 16. D 三、解答题 17.(1)证明略(2)3π18.(1)23π(2)19.(1)16(2)分布列:01234532808040101243243243243243243⎛⎫ ⎪ ⎪ ⎪⎝⎭,期望5320.(1)2212x y +=(2)1(3)21.(1)具有,说明略 (2)[)2,+∞(3)证明略。

2024届上海市长宁区高三下学期二模数学试卷(解析版)

2024届上海市长宁区高三下学期二模数学试卷(解析版)

2024届长宁区二模2024.04.07一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知集合{}{}1,2,1,,3A B a ==,且A B ⊆,则=a ______.【答案】2【解析】【分析】根据集合自己的概念即可求解.【详解】∵{}{}1,2,1,,3A B a ==,且A B ⊆,∴集合A 里面的元素均可在集合B 里面找到,∴a =2.故答案为:22.不等式|21|3x -<的解集为________.【答案】{|12}x x -<<【解析】【分析】根据绝对值定义化简求解,即得结果.【详解】∵|21|3x -<3213x ⇔-<-<12x ⇔-<<,∴不等式|21|3x -<的解集为{|12}x x -<<.故答案为:{|12}x x -<<.【点睛】本题考查解含绝对值不等式,考查基本分析求解能力,属基础题.3.在41x x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为_______.【答案】4【解析】【分析】利用二项式定理的通项公式即可求解.【详解】由二项式定理可知,41x x ⎛⎫+ ⎪⎝⎭的展开式的通项为4421441C C rr r r r r T x x x --+⎛⎫== ⎪⎝⎭,令422r -=,解得1r =,所以12224C 4T x x ==,所以二项式41x x ⎛⎫+ ⎪⎝⎭的展开式中含2x 项的系数为4.故答案为:4.4.在ABC ∆中,内角A,B,C 所对的边分别为a,b,c,若222a b bc c =++,则A =_____________.【答案】120︒【解析】【分析】根据已知可化为余弦定理的形式,从而求出A 的余弦,进而求出A.【详解】由题意可知,2221cos 222b c a bc A bc bc +--===-,所以120A =︒.【点睛】本题主要考查了利用余弦定理公式求三角形的角,属于中档题.5.已知236a b ==,则11a b +=________.【答案】1【解析】【分析】首先利用指数和对数互化得到2log 6a =,3log 6b =,再利用换底公式即可得到答案.【详解】由236a b ==可知2log 6a =,3log 6b =,所以66611log 2log 3log 61a b+=+==.故答案为:16.直线230x y --=与直线350x y --=的夹角大小为_______.【答案】π4##45︒【解析】【分析】先由斜率的定义求出两直线的倾斜角,然后再利用两角差的正切展开式计算出夹角的正切值,最后求出结果.【详解】设直线230x y --=与直线350x y --=的倾斜角分别为,αβ,则1tan 2,tan 3αβ==,且[),0,παβ∈,所以αβ>,因为()12tan tan 3tan 121tan tan 13αβαβαβ---===++,所以π4αβ-=,即两条直线的夹角为π4,故答案为:π4.7.收集数据,利用22⨯列联表,分析学习成绩好与上课注意力集中是否有关时,提出的零假设为:学习成绩好与上课注意力集中_______(填:有关或无关)【答案】无关【解析】【分析】根据题意,由零假设的定义,即可得到结果.【详解】零假设等价于两个变量相互独立,所以此题中的零假设为:学习成绩好与上课注意力集中无关.故答案为:无关8.已知函数()y f x =是定义域为R 的奇函数,当0x >时,()2log f x x =,若()1f a >,则实数a 的取值范围为_______.【答案】{1|02a a -<<或}2a >【解析】【分析】由已知结合奇函数的定义可求出0x <及0x =时的函数解析式,然后结合对数函数性质即可求解不等式.【详解】因为函数()y f x =是定义域为R 的奇函数,所以()00f =,当0x >时,()2log f x x =,当0x <时,0x ->,所以()()()2log f x x f x -=-=-,所以()()2log f x x =--,若()1f a >,当0a >时,可得2log 1a >,解得2a >,当a<0时,可得()2log 1a -->,解得102a -<<,当0a =时,可得01>,显然不成立,故a 的取值范围为{1|02a a -<<或}2a >.故答案为:{1|02a a -<<或}2a >.9.用铁皮制作一个有底无盖的圆柱形容器,若该容器的容积为π立方米,则至少需要_______平方米铁皮【答案】3π【解析】【分析】由柱体的体积公式可得21r h ⋅=,再求出圆柱形容器的表面积,由基本不等式求解即可.【详解】设圆柱形容器的底面半径为r ,高为h ,所以圆柱形容器的体积为2ππV r h =⋅=,所以21r h ⋅=,所以圆柱形容器的表面积为:()22π2ππ3π3πS r rh r rh rh =+=++≥⋅,当且仅当2r rh =,又21r h ⋅=,即1r h ==时等号成立,故至少需要3π平方米铁皮.故答案为:3π.10.已知抛物线2Γ:4y x =的焦点为F ,准线为l ,点M 在Γ上,,30MN l NFM ⊥∠=︒,则点M 的横坐标为_______.【答案】13【解析】【分析】过点F 作FH NM ⊥于点H ,由抛物线定义以及三角函数可用含M 的横坐标M x 的式子表示,NM HM ,注意到()112MN MH NH +==--=,由此即可列方程求解.【详解】如图所示:过点F 作FH NM ⊥于点H ,显然抛物线2Γ:4y x =的焦点为()1,0F ,准线为:l =1x -,由抛物线定义有MF MN =,结合30NFM ∠=︒得180230120NMF ∠=︒-⨯︒=︒,而()11,cos 6012M M MF MN x MH MF x ==+=︒=+,所以()()111111223M M M MN MH x x x +=+++=--=⇔=.故答案为:13.11.甲、乙、丙三辆出租车2023年运营的相关数据如下表:甲乙丙接单量t (单)783182258338油费s (元)107150110264110376平均每单里程k (公里)151515平均每公里油费a (元)0.70.70.7出租车空驶率=出租车没有载客行驶的里程出租车行驶的总里程;依据以述数据,小明建立了求解三辆车的空驶率的模型(),,,u f s t k a =,并求得甲、乙、丙的空驶率分别为23.26%21.68%%x 、、,则x =_______(精确到0.01)【答案】20.68【解析】【分析】根据题意得到出租车空驶率的模型,检验甲、乙两辆出租车的空驶率,满足题意,从而利用该模型求得丙的空驶率,从而得解.【详解】依题意,因为出租车行驶的总里程为s a,出租车有载客时行驶的里程为tk ,所以出租车空驶率1s tk tka a u s s a -==-,对于甲,7831150.710.232623.26%107150⨯⨯-≈=,满足题意;对于乙,8225150.710.216821.68%110264⨯⨯-≈=,满足题意;所以上述模型满足要求,则丙的空驶率为8338150.7%10.206820.68%110376x ⨯⨯=-≈=,即20.68x =.故答案为:20.68.12.已知平面向量,,a b c 满足:2a b c === ,若()()0c a c b -⋅-= ,则a b - 的最小值为_______.【答案】2【解析】【分析】先利用()2214a b a b a b ⋅=+-- 和()()2240a b a b ++-= 证明228a b --≤ ,再解不等式得到22824a b --≤ ,从而有2a b -≥ ,再验证()3,1a = ,()3,1b =- ,()2,0c =时2a b -= ,即得到a b - 的最小值是2.【详解】由于()()()()()()()2222222211122444a b a b a b a b a b a b a b a b a b ⋅=++⋅-+-⋅=+--=+-- ,且()()()()()()222222222222101040a b a b a b a b a b a b a b ++-=++⋅++-⋅=+=+= ,故有()()0c a c b =-⋅- ()2c a b c a b =-+⋅+⋅ 2c a b c a b ≥-++⋅ 42a b a b =-++⋅ ()()()221424a b a b a b =-+++-- ()()21424024a b a b =-++-- ()2144024a b =-+--21142a b =--- ,所以228a b --≤ ,记228a b x --= ,则有x ≤,从而120x -≤≤或()21612x x ≤+,即120x -≤≤或824x ≤≤.总之有24x ≤,故22824a b --≤ ,即2a b -≥ .存在()3,1a = ,()3,1b =- ,()2,0c = 时条件满足,且此时2a b -= ,所以a b - 的最小值是2.故答案为:2.【点睛】关键点点睛:对于a b - 的最小值问题,我们先证明2a b -≥ ,再给出一个使得2a b -= 的例子,即可说明a b - 的最小值是2,论证不等关系和举例取到等号两个部分都是证明最小值的核心,缺一不可.二、选择题(13-14每小题4分,15-16每小题5分,共18分)13.设C z ∈,则“z z =”是“R z ∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】【分析】由充分条件和必要条件的定义结合复数的定义求解即可.【详解】设i z a b =+,则i z a b =-,由z z =可得0b =,所以R z a =∈,充分性成立,当R z ∈时,即z a =,则z a =,满足z z =,故“z z =”是“R z ∈”的充要条件.故选:C .14.已知直线,a b 和平面α,则下列判断中正确的是()A.若//,//a b αα,则//a bB.若//,//a b b α,则//a αC.若//,a b αα⊥,则a b⊥ D.若,//a b b α⊥,则a α⊥【答案】C【解析】【分析】利用空间线线线面的位置关系判断A 错误;举反例判断B 错误;利用线面平行的性质定理和线面垂直性质得到C 正确;由线面平行和线线垂直的性质判断D 错误.【详解】A :若//,//a b αα,则两直线平行或异面或相交,故A 错误;B :若//,//a b b α,当直线a 在平面α内时,则直线a 不平行于平面α,故B 错误;C :若//a α,设过a 的平面与α相交于c ,则//a c ,又因为b α⊥,c α⊂,所以b c ⊥,所以b a ⊥,所以a b ⊥ ,故C 正确;D :若,//a b b α⊥,则a α⊥或//a α或a α⊂,故D 错误;故选:C.15.某运动员8次射击比赛的成绩为:9.6、9.7、9.5、9.9、9.4、9.8、9.3、10.0;已知这组数据的第x 百分位为m ,若从这组数据中任取一个数,这个数比m 大的概率为0.25,则x 的取值不可能是()A.65B.70C.75D.80【答案】D【解析】【分析】先利用古典概型分析m 的取值范围,再利用百分位数的定义逐一分析各选项,从而得解.【详解】将该运动员8次射击比赛的成绩从小到大排列:9.3、9.4、9.5、9.6、9.7、9.8、9.9、10.0,因为从这组数据中任取一个数,这个数比m 大的概率为0.25,一共有8个数,所以比m 大的数有两个,则9.89.9m ≤<,对于A ,因为80.65 5.2⨯=,所以第65百分位为第6个数,即9.8,满足题意;对于B ,因为80.7 5.6⨯=,所以第70百分位为第6个数,即9.8,满足题意;对于C ,因为80.756⨯=,所以第75百分位为第6,7个数的平均数,即9.89.99.852+=,满足题意;对于D ,因为80.8 6.4⨯=,所以第80百分位为第7个数,即9.9,不满足题意.故选:D.16.设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A.①真②真B.①真②假C.①假②真D.①假②假【答案】B【解析】【分析】直接构造21n a n =-和()11n n a -=-,说明存在等差数列{}n a 具有性质p ,且存在等比数列{}n a 具有性质p ,从而得到①真②假.【详解】一方面,对21n a n =-,知{}n a 是等差数列.而()211212n S n n n =⋅+-=,令1c =就有2211n n n a c ==-+=+,所以{}n a 具有性质p ,这表明存在等差数列{}n a 具有性质p ;另一方面,对()11n n a -=-,知{}n a 是等比数列.当n 为奇数时,1n a =;n 为偶数时,1n a =-.故当n 为奇数时,1n S =;n 为偶数时,0n S =.故当n为奇数时,2111n a ==+=+;n为偶数时,0111n a ==-+=+.这表明1n a =+恒成立,再令1c =就有n a c =+,所以{}n a 具有性质p ,这表明存在等比数列{}n a 具有性质p .综上,①正确,②错误,故B 正确.故选:B.【点睛】关键点点睛:构造21n a n =-和()11n n a -=-作为例子,直接判断命题的真假,是判断选项正确性的简单有效的方法.三、解答(共78分)17.某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx ∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x fx x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪ ⎪⎢⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;【答案】(1)补充表格见解析,()πsin 26f x x ⎛⎫=+⎪⎝⎭(2)10,2⎡⎤+⎢⎥⎢⎥⎣⎦【解析】【分析】(1)由表得ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解方程组即可得,ωϕ,进一步可据此完成表格;(2)由题意结合二倍角公式、诱导公式以及辅助角公式先化简()g x 的表达式,进一步通过整体换元法即可求解.【小问1详解】由题意ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解得π2,6ωϕ==,所以函数()y f x =的解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令π206x +=时,解得π12x =-,当5π12x =时,ππ2π,sin 2066x x ⎛⎫+=+= ⎪⎝⎭,将表中Δ处的数据补充完整如下表:x ωϕ+0π2π3π22πx π12-π65π122π311π12()sin x ωϕ+0101-0【小问2详解】若1,0ωϕ==,则()22πsin sin sin sin sin cos 2g x x x x x x x ⎛⎫=+-=+ ⎪⎝⎭1cos 212π1πsin 2sin 20,222422x x x x ⎛⎫-⎛⎫⎡⎤=+=-+∈⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ3π2,444x⎡⎤-∈-⎢⎥⎣⎦,进而πsin 2,142x ⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,所以函数()y g x =的值域为10,2⎡⎤+⎢⎢⎥⎣⎦.18.如图,在长方体1111ABCD A B C D -中,12,1AB AD AA ===;(1)求二面角1D AC D --的大小;(2)若点P 在直线11A C 上,求证:直线//BP 平面1D AC ;【答案】(1)6arccos 3(2)见解析【解析】【分析】(1)以A 为原点,建立空间直角坐标系,分别求得平面1ACD 和平面ACD 的一个法向量()1,1,2n =- 和()0,0,1m =,结合向量的夹角公式,即可求解.(2)设()11101A P A C λλ=≤≤ ,求出()2,2,1P λλ,则()22,2,1BP λλ=- ,再由0BP n ⋅=可证明直线//BP 平面1D AC .【小问1详解】以A 为坐标原点,建立如图所示的空间直角坐标系,所以()()()()0,0,0,0,2,0,2,0,0,2,2,0A D B C ,()()()()11110,0,1,0,2,1,2,0,1,2,2,1A D B C ,因为()()12,2,0,0,2,1AC AD ==,设平面1ACD 的法向量为(),,n x y z = ,则122020n AC x y n AD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1y =-,可得1,2x z ==,所以()1,1,2n =-,设平面ACD 的法向量为()0,0,1m =所以6cos ,361m nn m n m ⋅===⨯,所以二面角1D AC D --的大小为6arccos3.【小问2详解】设(),,P x y z ,则设()11101A P A C λλ=≤≤ ,()()111,,1,2,2,0A P x y z A C =-=,所以2,2,1x y z λλ===,所以()2,2,1P λλ,()22,2,1BP λλ=-平面1ACD 的法向量为()1,1,2n =-,22220BP n λλ⋅=--+=,因为BP ⊄平面1D AC ,所以直线//BP 平面1D AC .19.盒子中装有大小和质地相同的6个红球和3个白球;(1)从盒子中随机抽取出1个球,观察其颜色后放回,并同时放入与其颜色相同的球3个,然后再从盒子随机取出1个球,求第二次取出的球是红球的概率;(2)从盒子中不放回地依次随机取出2个球,设2个球中红球的个数为X ,求X 的分布、期望与方差;【答案】(1)23(2)分布见解析,期望()()47,318E X D X ==【解析】【分析】(1)由独立乘法公式、互斥加法公式即可运算求解古典概型概率;(2)X 的所有可能取值为0,1,2,它服从超几何分布,结合超几何分布概率的求法求得相应的概率进而可得X 的分布,结合期望、方差计算公式即可求解.【小问1详解】第一次取出红球的概率为23,取出白球的概率为13,第一次取出红球,第二次取出红球的概率为231342⨯=,第一次取出白球,第二次取出红球的概率为111326⨯=,所有第二次取出的球是红球的概率为112263+=;【小问2详解】X 的所有可能取值为0,1,2,()()()21123636222999C C C C 1150,12C 12C 2C 12P X P X P X =========,所以X 的分布为01211512212⎛⎫ ⎪ ⎪ ⎪⎝⎭,它的期望为()1154012122123E X =⨯+⨯+⨯=,它的方差为()22214145470121232312318D X ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.20.已知椭圆22Γ:1,63x y O +=为坐标原点;(1)求Γ的离心率e ;(2)设点()1,0N ,点M 在Γ上,求MN 的最大值和最小值;(3)点()2,1T ,点P 在直线3x y +=上,过点P 且与OT 平行的直线l 与Γ交于,A B 两点;试探究:是否存在常数λ,使得2PA PB PT λ⋅= 恒成立;若存在,求出该常数的值;若不存在,说明理由;【答案】(1)22(2)MN 的最大值为1+(3)54λ=【解析】【分析】(1)利用椭圆方程即可直接求得其离心率;(2)利用椭圆的几何性质,结合两点距离公式与二次函数的性质即可得解;(3)分别利用向量的模与线性运算的坐标表示求得2,,PT PA PB,再联立直线l 与椭圆方程得到1212,x x x x +关于a 的表达式,进而化简PA PB ⋅ 得到PA PB ⋅ 与2PT 的关系,由此得解.【小问1详解】设Γ的半长轴长为a ,半短轴长为b ,半焦距为c ,则a b ==,则c =22c e a ===.【小问2详解】依题意,设(,)M x y,则x ≤≤22163x y +=,故2232x y =-,则MN ==所以由二次函数的性质可知,当2x =时,MN取得最小值为,当x =时,MN1=+【小问3详解】设()()1122(,3),,,,P a a A x y B x y -,又()2,1T,易得12OT k =,则直线l 为()()132y a x a --=-,即13322y x a =+-,而()()22222312(2)PT a a a =-+--=- ,()111111131,3,33,2222a PA x a y a x a x a a x a x ⎛⎫⎛⎫=--+=-+--+=-- ⎪ ⎪⎝⎭⎝⎭ ,()222222131,3,33,2222a PB x a y a x a x a a x a x ⎛⎫⎛⎫=--+=-+--+=-- ⎪ ⎪⎝⎭⎝⎭ ,联立2213322163y x a x y ⎧=+-⎪⎪⎨⎪+=⎪⎩,消去y ,得222(2)3(2)40x a x a +-+--=则()222Δ4(2)43(2)48420a a a a ⎡⎤=--⨯--=--+>⎣⎦,得22a -<<+所以212122(2),3(2)4x x a x x a +=--=--,故()()()()121214PA PB x a x a x a x a ⋅=--+--()()()21212125544x a x a x x a x x a =--=-++()2253(2)4224a a a a =--+-+252(2)4a =-,所以25||||4PA PB PT ⋅= ,故存在54λ=,使得2||||PA PB PT λ⋅= 恒成立.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.设函数()y f x =的定义域为D ,若存在实数k ,使得对于任意x D ∈,都有()f x k ≤,则称函数()y f x =有上界,实数k 的最小值为函数()y f x =的上确界;记集合n M ={()()nf x f x y x =在区间()0,∞+上是严格增函数};(1)求函数2(26)1y x x =<<-的上确界;(2)若()3212ln f x x hx x x M =-+∈,求h 的最大值;(3)设函数()y f x =一定义域为()0,∞+;若()2f x M ∈,且()y f x =有上界,求证:()0f x <,且存在函数()y f x =,它的上确界为0;【答案】(1)2(2)4(3)证明见解析【解析】【分析】(1)由函数的单调性求出值域再根据题意可得;(2)求出()f x y x=的表达式,求导,再利用()nf x y x=在()0,∞+上严格递增得到导函数大于等于零恒成立,然后利用基本不等式求出最小值即可;(3)假设存在,由单调性可得()()102210f x f x xx>>,再取21x x >,且2x >可得()()212221f x f x x x >,推出①②互相矛盾,然后令()1,0f x x x=->,根据题意求出值域最后确定上确界即可.【小问1详解】因为函数21y x =-在区间()2,6上严格递减,所以函数2(26)1y x x =<<-的值域为2,25⎛⎫ ⎪⎝⎭,所以函数2(26)1y x x =<<-的上确界为2.【小问2详解】()22ln f x y x hx x x==-+,22,0y x h x x'=-+>,因为记集合n M ={()()nf x f x y x =在区间()0,∞+上是严格增函数},所以0y '≥恒成立,因为224x h h h x -+≥=-,当且仅当1x =时取等号,所以4h ≤,所以h 的最大值为4.【小问3详解】证明:因为函数()y f x =有上界,设()f x k ≤,假设存在()00,x ∈+∞,使得()00f x ≥,设10x x >,因为()2y f x M =∈,所以()2f x y x=在()0,∞+上严格递增,进而()()102210f x f x xx>>,得()10,0f x k >>,取21x x >,且2x >,由于21x x >,得到()()212221f x f x xx>,①由2x >,得()()12222122f x f x k x x x >≥,②显然①②两式矛盾,所以假设不成立,即对任意()0,x ∈+∞,均有()0f x <,令()1,0f x x x =->,则()231f x y x x==-,因为当0x >时,430y x'=>,所以()2f x y x=在()0,∞+上严格递增,()2y f x M =∈,因为()1,0f x x x=->的值域为(),0∞-,所以函数()1f x x=-的上确界为零.【点睛】关键点点睛:(1)第二问的关键是导函数大于等于零恒成立,用基本不等式求解;(2)第三问关键是根据不等式的结构能够想到取2x >,再得到()()12222122f x f x k x x x >≥与当21x x >,得到()()212221f x f x x x >矛盾.。

江西省南昌市2023届高三二模数学(文)试题(含答案)

江西省南昌市2023届高三二模数学(文)试题(含答案)

江西省南昌市2023届高三二模数学〈文〉试题学校姓名:班级-考号:一、单选题l.己知集合A={xl ι4x-5豆叶,B = {xjlog 2 x <牛则A r B =( ) A.(-1,4)B.[-1,4]c.[-l,5]D.(0,4)2.己知复数z满足(z+i)i=l+z ,则复数z在复平面内对应的点在()A.第一象限B.第二象限C 第三象限D.第四象限7π3.执行如l到所示的程序框图,若输入x =τ,则输出y的值为()开始每�d-2A ..fj B.-一-l-2C D.24已知数列{a 小若a ,+a zn ”I =4n-6,则。

7= ()A.9B.l lc.13 D.155.己知α=log, 0.4, b = l og 0., 0.2, c = 0.4°·2,则(〉A.C>a>bB.c>b >。

C.b>c>aD.a>c>b6.己知函数f(对=2•;n,,命题p :3码,与ε(0,π),使得f (x,)+ f (毛)=2,命题q:Vx,,Xz el -�,.'.: I,当引〈乓时,都有!(,飞)<f(x 2),则下列命题中为真命趣的是(〉飞Z 2)A.pvqB.p,-...qC.pA (「q)D.(-p )A(-q)7.己知抛物线C:y 2=4x 的准线为l,点Mf是抛物线上一点,若因M过点A(3,0)且与革线l相切,则因M与y轴相交所得弦长是(A. 2../2B. 2./3c.4 D.2./5P-ABC 的主视图、左视图的面积都是1,俯视图的面积为2,贝I]三棱锥P-ABC 的体积为(〉’...+ (7)A/主视BA..!_B.14-3户UD.豆39.己知如t J {饨,}的前峭的积为T,,,若a.=__!!__,则汇的最大值为〈〉2n-5A.豆3B.2c .1D . .!_310.在“ABC 中,角A,8, C所对的边分别为α,b,c ,若a 2,b 2,C 2成等差数列,且J JJC 的丽积为号,则叫=(A.tB. 2A吨-qJCD.三411.己知函数f(x)= X 3+旷+bx+c 的三个零点分别为1,抖,毛(O<x,<与),若函数/(x + I)为奇函数,则/(2)的取值范围为(〉A. [0,1]B.(0,1)c.(0,2)D.[0,2J12.己知M是因C : (x-1)2 + y 2= 4上的动点,以点M为圆心,IOMI为半径作圆M,设圆M 与圆C 交于A,B 两点,则下列点中,直线AB 一定不经过()、飞’EE,,/AU4-5/fa『B’飞、A、、It--/l -2 , -A -qtM fttlk口υc肚子)、、IBEE-J 5-4AU/FIll--、D二、填空题13.f(x)是以2为周期的函数,若xe[O,I J时,I<心=2‘,则/(3)=一一一一··14.某红绿灯十字路口早上9点后的某分钟内10辆汽车到达路口的时间依次为(单位:在n,l, 2, 4, 7, I L 16, 21, 29, 37, 46,令A(i)(i = I, 2, 3, · ·, 10)表示第i辆车到达路口的时间,记B(i)= A(i)-A (i-l)(i = 2, 3, ·, 10),则B (i )的方差为-15.圆锥曲线都具有光学性质,女日双曲线的光学性质是:从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发敞的,其反向延长线会经过双曲线的另一个焦点.如图,一镜面的轴截而因是一条双曲线的部分,AP 是它的一条对称轴,F 是它的FBC 90?,贝I]1亥双曲线的离心率等于一一一一··A16.己知正四面体的棱长为2币,现截去四个金等的小正四面体,得到如图的八丽体,若这个八面体能放进半径为J6的球形容!击cl才,则截去的小正四面体的楼长最小值为.三、解答题17.如|因是瞅f(x)=叫叫(仙O叫司的部分图象己知AB·A印y, 步BA x(1)求ω:(�)=子求伊创胖.r18.如阂,在四棱锥P-ABCD中,已知底iii ABCD是边长为4的菱形,平面PABJ_平π面ABCD,且ζPAB=LDAB=一,PAJ_PB,点E在结段附上,BE=2PE.3c(1)求证:AB.LDE;(2)求点E jlj平丽PAD 的距离19.一地质探测队为探测一矿中金属键的分布悄况,先设了l个原点,再确定了5个采样点,这5个采样点到原点距离分别为儿,其中x = i (i = 1,2,3,4,5),并得到了各采样点金属锐的含量Y ;,得到一组数据(码,只),i =1,2,3,4,S ,经计算得到如下统计量的值:主只=62,主(λ;-x )(川)=47,主li;""4.烈主(川)2,::: l饥�:(u, -u)(y, -y) "'19.38,其中问=I叫,(i = 1,2,3,4,5).(1)利用相关系数判断y =a+bx 与y =α+blnxl!)J l l 一个更适宣作为y关于x的回归模型:(2)建立y关于x的回归方程.参考公式:回归方程y =α+bf 中斜率、截距的最小二乘估计公式、相关系数公式分别为艺(t,-η(y;-y) 艺以-f 冯工(t;-T)(y, -y)b = .l=• " =牛一一-,a= y-bt ,三(,,-r )'L r? -n,-2 19.382参考数据:-一一=232.56l .615,=i(卜,')120.己失u椭困C :兰+t =l (α>b >O )的焦距为2♂,左、右]页,奇分别为A ,’Az,上顶α0 为8,且t a nLA,B O =2.(1)求椭圆C的方程:(2)若过A,且斜率为k的直线l与椭圆C在第一象限相交干点Q ,与Z主线A,B 相交于点P,与y辅相交子点M ,旦IPAillMQI = 3IQAzllM叫.求k的值.21.己知函数f (巾。

2024北京西城区高三二模数学试题及答案

2024北京西城区高三二模数学试题及答案

2024北京西城高三二模数 学2024.5本试卷共 6 页, 150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共 40 分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)在复平面内,复数z 对应的点的坐标是,1)-,则⋅=z z (A )1(B )2(C )3(D )4(2)已知向量,a b 满足(4,3)=a ,2(10,5)-=-a b ,则(A )0+=a b (B )0=⋅a b (C )||||>a b (D )//a b(3)已知集合{}1,0,1=-A ,{|}>=x x c B .若{}0,1=A B I ,则c 的最小值是(A )1(B )0(C )1-(D )2-(4)设443243210(21)-=++++x a x a x a x a x a ,则1234+++=a a a a (A )1-(B )0(C )1(D )2(5)已知,R R ∈∈a b .则“1>ab ”是“222+>a b ”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(6)已知双曲线22:1+=C mx ny 的焦点在y 轴上,且C 的离心率为2,则(A )30-=m n (B )30-=m n (C )30+=m n (D )30+=m n (7)将函数()tan =f x x 的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()=g x (A )1tan -x (B )1tan --x (C )tan (1)--x (D )tan (1)-+x (8)楔体形构件在建筑工程上有广泛的应用.如图,某楔体形构件可视为一个五面体ABCDEF ,其中面ABCD 为正方形.若6cm =AB ,3cm =EF ,且EF 与面ABCD 的距离为2cm ,则该楔体形构件的体积为(A )318cm (B )324cm (C )330cm (D )348cm (9)已知{}n a 是无穷等比数列,其前n 项和为n S ,1233,2==a S .若对任意正整数n ,都有(1)0--⋅>n n S A ,则A 的取值范围是(A )(3,1)-(B )[2,1)-(C )3(3,)2-(D )3[2,)2-(10)一组学生站成一排.若任意相邻的3人中都至少有2名男生,且任意相邻的5人中都至多有3名男生,则这组学生人数的最大值是(A )5(B )6(C )7(D )8第二部分(非选择题 共 110 分)二、填空题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区2017届高三数学二模试题文
(考试时间120分钟满分150分)
本试卷分为选择题(共40分)和非选择题(共110分)两部分
第一部分(选择题共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.
(1)已知i 为虚数单位,则复数对应的点位于
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
(2)已知,则下列不等式一定成立的是
(A )(B )(C )(D )
(3)执行如图所示的程序框图,则输出的值是
(A)15 (B)29(C)31(D)63

(4)“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件
(5)将函数图象上所有点向右平移个单位长度后得到函数的图象,若在区间上单调递增,则实数的最大值为
(A )(B )(C )(D )
(6)某三棱锥的三视图如图所示,则该三棱锥最长的棱长为
(A)(B )(C)(D )
(7
)已知过定点
的直线与曲线相交于,两点,为坐标原点,当
的面积最大时,直线的倾斜角为 (A ) (B )
(C )
(D )
(8)“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为,,(

),选手最终得分为各项得分之和.已知
甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是
(A)甲(B )乙(C )丙(D )乙和丙都有可能
第二部分(非选择题 共110分) 二、填空题:本大题共6小题,每小题5分,共30分. (9)已知集合

,则.
(10)在平面直角坐标系中,已知点
,
,
,点

边界及
内部的任意一点,则的最大值为.
(11)已知平面向量满足
,且

,则与的夹角等于.
(12)设函数

;若在其定义域内为单调递增函数,则
实数的取值范围是.
俯视图
正视图
侧视图。

相关文档
最新文档