河北省石家庄市2020届高三数学二模试题理(含解析)
河北省石家庄市第二中学2020届高三教学质量检测数学(理科)试题

石家庄二中高三教学质量检测数学(理科)试卷(时间:120分钟 分值:150分)第I 卷 选择题(共60分)一.选择题(共12小题,每题5分,共60分)1.已知集合}101,lg |{},4241|{>==≤≤=x x y y B x A x ,则=B A ( ) A .]2,2[- B .),1(+∞ C .]2,1(- D .),2(]1,(+∞--∞2.已知复数z 在复平面内对应的点的坐标为)2,1(-,则=+i 1z ( ) A .i 2321+ B .i 2321+- C .i 2123+- D .i 2323+- 3.设b a ,是向量,则“||||b a =”是“||||b a b a -=+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数x e e x f x x cos 11)(⋅-+=的部分图象大致为( )5. 右侧茎叶图记录的是甲、乙两个班级各5名同学在一次数学小题训练测试中的成绩(单位:分,每题5分,共16题).已知两组数据的平均数相等,则x 、y 的值分别为( )A .0,0B .0,5C .5,0D .5,56.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等, 问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相 同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位), 在这个问题中,甲比戊多得( )钱?A .31B .32C .61D .65 7.将函数x x f 2cos )(=图象上所有点向左平移4π个单位长度后得到函数)(x g 的图象,若)(x g 在区间 ],0[a 上单调递减,则实数a 的最大值为( )A .8πB .4πC .2πD .43π8.已知双曲线)0,0(1:2222>>=-b a by a x C ,O 为坐标原点,21,F F 为其左、右焦点,点G 在C 的渐近线 上,OG G F ⊥2,||||61GF OG =,则该双曲线的渐近线方程为( )A .x y 2±=B .x y 22±=C .x y 23±= D .x y ±= 9.正四面体BCD A -中,E 是棱AD 的中点,P 是棱AC 上一动点,若PE BP +的最小值为14,则该正四面体的外接球的表面积为( )A .π32B .π24C .π12D .π810.已知点G 在ABC ∆内,且满足0432=++GC GB GA ,若在ABC ∆内随机取一点,此点取自,GAB ∆ GBC GAC ∆∆,的概率分别记为,,,321P P P 则( )A .321P P P ==B .321P P P <<C .321P P P >>D .312P P P >>11.《蒙娜丽莎》是意大利文艺复兴时期画家列奥纳多•达芬奇创作的油画,现收藏于法国罗浮宫博物馆.该油画规格为:纵cm 77,横cm 53.油画挂在墙壁上的最低点处B 离地面cm 237(如图所示).有一身高为cm 175的游客从正面观赏它(该游客头顶T 到眼睛C 的距离为cm 15),设该游客离墙距离为xcm ,视角为θ.为使观赏视角θ最大,x 应为( )A .77B .80C .100D .27712.已知点P 是曲线x x y ln sin +=上任意一点,记直线OP (O 为坐标原点)的斜率为k ,给出下列四个 命题:①存在唯一点P 使得1-=k ;②对于任意点P 都有0<k ;③对于任意点P 都有1<k ;④存在点P 使得 1≥k ,则所有正确的命题的序号为( )A .①②B .③C .①④D .①③第II 卷 非选择题(共90分)二.填空题(共4小题,每题5分,共20分)13. 若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥+-0420202y x y x y x ,则y x +的最小值为14. 已知πdx x m ⎰--=112110,则m x x)1(-的展开式中2x 的系数为 (用数字表示) 15. 已知点P 是椭圆)0(1:2222>>=+b a by a x C 上一点,点P 在第一象限且点P 关于原点O 的对称点为Q ,点P 在x 轴上的投影为E ,直线QE 与椭圆C 的另一个交点为G ,若PQG ∆为直角三角形,则椭圆C 的离心率为16. 若函数)(x f 的导函数)2||,0,0)(cos()('πϕωϕω<>>+=A x A x f ,)('x f 部分图象如图所示,则=ϕ ,函数)12()(π-=x f x g , 当]3,12[,21ππ-∈x x 时,|)()(|21x g x g -的最大值为 . 三.解答题(共70分,解答题应写出文字说明、证明过程或演算步骤,第 17—21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求选择其中一个作答.)(一)必考题(共60分)17.(12分)如图,四棱锥ABCD P -中侧面PAB 为等边三角形且垂直于底面BC AB ABCD ⊥,,AD BC AB AD BC 21,//==,E 是PD 的中点. (1)证明:直线//CE 平面PAB ;(2)求二面角D PC B --的余弦值. 18.(12分)甲、乙两同学在高三一轮复习时发现他们曾经做过的一道数列问题因纸张被破坏,导致一个条 件看不清,具体如下:等比数列{}n a 的前n 项和为n S ,已知 ,(1)判断321,,S S S 的关系并给出证明;(2)若331=-a a ,设||12n n a n b =,}{n b 的前n 项和为n T ,证明:.34<n T 甲同学记得缺少的条件是首项1a 的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是231,,S S S 成等差数列.如果甲、乙两同学记得的答案是正确的,请通过推理把条件补充完整并解答此题.19.(12分)如图,椭圆)0(1:2222>>=+b a b y a x E 的离心率为22,点)1,0(P 在短轴CD 上,且1-=⋅PD PC . (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于B A ,两点,是否存在常数λ, 使得⋅+⋅λ为定值?若存在,求λ的值;若不存在,请说明理由.20.(12分)调味品品评师的重要工作是对各种品牌的调味品进行品尝,分析,鉴定,调配与研发,周而复始、反复对比.调味品品评师需定期接受品味鉴别能力测试,一种常用的测试方法如下:拿出n 瓶外观相同但品质不同的调味品让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n 瓶调味品,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设4=n ,分别以4321,,,a a a a 表示第一次排序时被排为4,3,2,1的四种调味品在第二次排序时的序号,并令|4||3||2||1|4321a a a a X -+-+-+-=,则X 是对两次排序的偏离程度的一种描述.(如第二次排序时的序号为,4,2,3,1则2=X ).(1)写出X 的所有可能取值构成的集合(不用证明);(2)假设4321,,,a a a a 的排列等可能地为4,3,2,1的各种排列,求X 的分布列和数学期望;(3)某调味品品评师在相继进行的三轮测试中,都有2≤X .(i )试按(2)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);(ⅱ)请判断该调味品品评师的品味鉴别能力如何?并说明理由.21.(12分)已知函数.ln )(x x x f =(1)求曲线)(x f y =在2-=e x 处的切线方程;(2)关于x 的不等式)1()(-≥x x f λ在),0(+∞上恒成立,求实数λ的取值范围;(3)若0)()(21=-=-a x f a x f ,且21x x <,证明:221221)1(ae e x x +<--.(二)选考题(共10分)请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第一题计分. 22.(10分)已知曲线⎪⎩⎪⎨⎧+=+=ty t x C sin 21cos 21:1(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为θρsin 2=.(1)求曲线1C 的极坐标方程;(2)求曲线1C 与2C 交点的极坐标)20,0(πθρ<≤≥.23.(10分)已知绝对值不等式:45|1||1|2+->-++a a x x .(1)当0=a 时,求x 的取值范围;(2)若对任意实数x ,上述不等式恒成立,求a 的取值范围.。
2020-2021年高三数学二模考试试题理(含解析)

高三数学二模考试试题 理(含解析)第Ⅰ卷(共60分)一、选择题(本大题共12小题,共60.0分)1.已知集合{}|13A x R x =∈-<≤,{}2101234B =--,,,,,,,则A B ⋂=( ) A. {}1,0,1,2,3- B. {}0,1,2,3C. {}1,2,3D. {}0,1,2【答案】B 【解析】 【分析】利用交集定义直接求解即可.【详解】∵ 集合{}|13A x R x =∈-<≤,{}2,10123,4B =--,,,,,∴{}0,1,2,3A B =I . 故选:B .【点睛】本题考查集合交集的运算,考查交集定义,属于基础题.2.已知复数1i z i=-,则z 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简z ,求得z 在复平面内对应的点的坐标即可.【详解】∵ ()()()11111122i i i z i i i i +===-+--+,∴ 12z i +=+,∴z 在复平面内对应的点的坐标为12⎫⎪⎪⎝⎭,位于第一象限. 故选:A .【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.3.设x ,y 满足约束条件326020480x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值是( )A. -4B. -2C. 0D. 2【答案】A 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求解即可.【详解】作出不等式组对应的平面区域如图(阴影部分ABC ),由2z x y =-得122zy x =-, 平移直线122z y x =-,由图象可知当直线122zy x =-,过点B 时,直线122zy x =-的截距最大,此时z 最小,由48020x y x y -+=⎧⎨+-=⎩,解得()02,B .代入目标函数2z x y =-,得0224z =-⨯=-, ∴ 目标函数2z x y =-的最小值是4-. 故选:A .【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法,属于基础题.4.抛物线2:2(0)C y px p =>的焦点为F ,点()06,A y 是C 上一点,||2AF p =,则p =( ) A. 8 B. 4 C. 2 D. 1【答案】B【解析】 【分析】根据抛物线定义得62pAF =+,即可解得结果. 【详解】因为262pAF p ==+,所以4p =.故选:B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.5.已知等比数列{}n a 的首项为1,且()64312a a a a +=+,则1237a a a a L =( )A. 16B. 64C. 128D. 256【答案】C 【解析】 【分析】利用等比数列的通项公式可得q ,再利用通项公式及其等差数列的求和公式即可得出答案. 【详解】设等比数列{}n a 的公比为q , ∵()64312a a a a +=+,∴()53221q q q +=+,解得32q =.∴0+1+2++6213771237()2128a a q a a q q ⋅⋅⋅=====⋅L L .故选C .【点睛】本题考查等差数列与等比数列的通项公式及其求和公式,考查推理能力与计算能力,解题时注意整体思想的运用,属于中档题.6.函数4ln x y x=的图象大致是( )A. B.C. D.【答案】A 【解析】 【分析】根据函数奇偶性排除B ,C ;根据函数零点选A.【详解】因为函数4ln x y x =为奇函数,排除B ,C ;又函数4ln x y x=的零点为1-和1,故选:A.【点睛】本题考查函数奇偶性与函数零点,考查基本分析判断能力,属基础题.7.某学生5次考试的成绩(单位:分)分别为85,67,m ,80,93,其中0m >,若该学生在这5次考试中成绩的中位数为80,则得分的平均数不可能为( ) A. 70 B. 75C. 80D. 85【答案】D 【解析】 【分析】根据中位数为80,可知80m ≤,从而得到平均数小于等于81,从而确定结果. 【详解】已知的四次成绩按照由小到大的顺序排序为:67,80,85,93 该学生这5次考试成绩的中位数为80,则80m ≤ 所以平均数:85678093815m ++++≤,可知不可能为85本题正确选项:D【点睛】本题考查统计中的中位数、平均数问题,关键是通过中位数确定取值范围,从而能够得到平均数的范围.8.已知某几何体是由一个三棱柱和一个三棱锥组合而成的,其三视图如图所示,则该几何体的体积为( )A.43B. 2C.52D.83【答案】B 【解析】 【分析】根据三视图还原几何体,可知为三棱柱和三棱锥的组合体,分别求解体积,加和得到结果. 【详解】由题意可知,该几何体的直观图如图所示:即该几何体为一个三棱柱与一个三棱锥的组合体 则三棱柱体积112323222V =⨯=;三棱锥体积21121233222V =⨯⨯= 所求体积122V V V =+= 本题正确选项:B【点睛】本题考查组合体体积的求解,关键是通过三视图准确还原几何体.9.已知函数()2sin 1(02)3f x x πωωπ⎛⎫=+-<< ⎪⎝⎭部分图像如图所示,则下列判断正确的是( )A. 直线6x π=是函数()y f x =图像的一条对称轴B. 函数()y f x =图像的对称中心是1,03k ⎛⎫-+ ⎪⎝⎭,k z ∈ C. 1316f ⎛⎫=⎪⎝⎭D. 函数()y f x =的最小正周期为π 【答案】C 【解析】 【分析】先根据对称轴求得ω,再根据正弦函数性质求对称轴、对称中心、周期以及函数值,最后作判断.【详解】由图可知,76x =是函数()y f x =的对称轴,所以73=2,632k k z ππωπ++∈解得12=+,7k k z πωπ∈,因为02ωπ<<,所以=ωπ,()2sin 13f x x ππ⎛⎫=+- ⎪⎝⎭,13132sin 11663f ππ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,函数()y f x =的最小正周期为22ππ=,由 =,32x k k z ππππ++∈得对称轴方程为1,6x k k z =+∈,由 =,3x k k z πππ+∈得对称中心为1,13k ⎛⎫-+- ⎪⎝⎭,k z ∈, 故选:C.【点睛】本题考查根据图象求三角函数解析式以及正弦函数性质,考查基本分析判断与求解能力,属中档题.10.已知数列{}n a 的首项121a =,且满足21(25)(23)41615n n n a n a n n +-=-+-+,则{}n a 的最小的一项是( ) A. 5a B. 6aC. 7aD. 8a【答案】A 【解析】 【分析】利用配凑法将题目所给递推公式转化为112325n n a a n n +=+--,即证得25n a n ⎧⎫⎨⎬-⎩⎭为首项为7-,公差为1的等差数列,由此求得25na n -的表达式,进而求得n a 的表达式,并根据二次函数的对称轴求得当5n =时n a 有最小值.【详解】由已知得112325n n a a n n +=+--,1725a =--,所以数列25n a n ⎧⎫⎨⎬-⎩⎭为首项为7-,公差为1的等差数列,7(1)825na n n n =-+-=--,则(25)(8)n a n n =--,其对称轴10.55.252n ==.所以{}n a 的最小的一项是第5项.故选A. 【点睛】本小题考查由数列的递推公式求数列的通项公式,考查二次函数求最值的方法,属于中档题.11.在平面直角坐标系xOy 中,双曲线2222:1y x C a b -=(0,0)a b >>的一条渐近线与22(2)(1)1x y -+-=相切,则ba=( ) A.43B.34C.169D.916【答案】B 【解析】 【分析】符合条件的渐近线方程为0by ax -=,与圆相切,即d=r ,代入公式,即可求解【详解】双曲线C 的渐近线方程为0by ax ±=,与圆相切的只可能是0by ax -=,所以圆心到直线的距离1r ==,得34a b =,所以34b a =,故选B 。
河北省部分高中2024届高三下学期5月二模试题 数学 PDF版含解析

匿暑国国詈婴图均瞅片芒芯怎曼;春归,售霾中行$~目芯扑高三数学考试本试书湍分l50分芍试用吟l为分钟.注覃事项l.本冬漏分ISO分肴认叶阔Ito..什.芩篷俞先朴t 己的1l名准*汪+填耳在议是尾和芩趟卡上升朴准舟让今豪外竭帖觞在冬髦十上的劝丈仕置2斗扑遍的竹答每小趟遠主答食启,用2B伺怎把芩越十上吟应遍屑的芩食绰号濠"·笃雇试趋息草镐最和芩遍卡上的非冬越巴拭均尤蚊3.`i斗抄趟妗怍答用薹宇芯直岭答儿子是卡上叶鱼的答趟区域内为在试趟息阜编纸和各是卡上的.芯趟邕域均儿故4骨仗灶众后,合抖本仗是患妒各趋卡一并上文透择冠太麓共1小蠼蕃小遁5分共功分在崎小翘给出的四个选项中只宥一项最符合麾目妻求的I.e知鬟合仁1,1夕一七心)B叩(.-m)丘{+2))>O)若AUB=R 剂实效的II(位苠Ill 是入(九+-ll.(一”C.(1.3)0.[一1.3]2.吝夏m-%心-扣(o“叶),是纯虔孜附tm勿一入组":包C.一也2S,.e知讷数,-1,.-1)为奇丙败J1l 函败y-/(z)+1的Ill象入关千点(I.I)叶杯a 关于点(I.1)对你C.关于点(1.l)对杯1l关于点(1.11月杯夕土,.过隽l1lC,-+=1的中心作立找{交厥l1l于P.Q钙红.F是C的一个集点·附APFQ风长的最小"..伉为^·161`“ C. l2DIO5在交闾Ill边形ABCD中.AB一CD一3,£,P分别是心8C上的点·JlEF=几“,ED一BF·氏一1•2怜lAB与CD税咸角的余孜值为八2e.了C.+n 斗&巳知示敷I(0-“n("叶)g(9-四(叶f)若对任Jil的蠢托(贯...J 江>b时瓜)一/(6)<4('4)g(让)佩成立说实败m的默Ill范印为八(句恃)且(H 祒]C.行·皆)第1真(共4黄·吐g.如Ill/Ji禾.正方休的棱长为几以其所有荀的中心为DI点的多面体为正^面休吝蛉0能在此正A蔽休内自由转动则环0半径的最大位为^且,叶C. 几D.一8,已知们,.>”..成萼比效列漓足..+.. +.,+",(o+“>+·,y.lJ...>1则A .“'义,a..>“C.“'<“>a .“女,二选择惠本惠共3小篡雹小愚`分共18分在氯小霞绘出的迳项中有多嚷符合履11冥求全邸选对的得·分霉分选对的傅撼分分有选憾的得·分'如1!1为在松违吝快餐扩A,B两仲英过的套餐在劝认平霄3个月的钠仔情况伎计图巳知A套餐实出一份叔利20元0套霍卖出一份赦科IO 元田中点A ,,A 心血江妞A 廷管202,年蔚3个月的悄售量点B ,心儿的纵全标分财衷示8套餐伪2·年荀3个月的销胄量,根撰图中Ill 息.下"结论中正崎的悬```立$均有c…一十蜊二鹤量8.效列(?'+I }不是飞I数列蜘C.若妏列(“)为M 数列',.Jl1欢"伈十~”“`.M 孜兴D.若数列(b.}漓足. 1...+.."”)<..勺为常败l,员欢列(..)不是M数列·l).巳知函数I(9-z(已十2)..(,)一(又+?)lo怎赠下升说抉正噙的是A.函数I(怎)在R上麟潭违增8.若对任怠丘又K不等天/(“,);>,/("'-")饭成立则实数.的最个置为C.希数"工)在(0十)上存在晟偏点,.,D.若f(z,)-g(r.)一'(t>0)员的最大鼠为工,"、十”三真空题本暑共3小嫌餐小嫌S分共1$分比.e 知(I+红)'*+(Iz)“8.,妇,叶."汗...+”“辽十生蜘r'"'.JIJ••·-·13.巳知A,8,C是小径为2的噩上三个功点,0若IBCt-,儿则兀·冗冶最大值为,0若IBAIE<o,,),111邧.AC1'l 朵个缸为,,,.e知伽纹八,i-y 响坟n,/+(y-.r-K 心OJl,«<)若病足轰件几在八的上方且几有两条不问的切线被n/Ji截书的饮段长相等JIJ 实欢"的取伉范Ill力,尔2黄(共·页)0.什·¥1)四斛答蠼本履共5小锺,"7分鳞吝攻写出文字说峭任嗣过攫玉演算步鞭IS,(本小赵漓分13分)人工簪能(Al)是一门极富挑战性的科学白诞生以草ll!论和校术日益成熟某公司研兖了一款答题讯抒人参与一场答触授故.若开始基礁分值为m(mEN.)分笱伦答2惠祁答对句1分.仅答刃1贼符0分彝答镶得一1分·符轮的累汁得分为基过分加该轮得分若滇答厄扒晷人答对蔼道题的慨拿均为一褂伦答题相互栈立·哥抡馆束后饥荔人累计徇分为X当x-纭射答题纣束.饥钞人挑战2成功当X一0时答题也结束机"人挑战失败,(l)出m=3囚求机芯人第一轮答题后擘1日得分X的分布列与败学期以(2)当m-“斗求扒晷人在第6抡齐赶坊奴且挑战成功的概廖16.(本小匠漪分15分)巳知凸ABC中角A,B,C的对边分别为“心c c,.ABC的面积为S..-弘(I)若s-,✓百凸"冗为等鞭三角形求它的风长;3(2)苦心•C--求幻nA.五,B.s".(本小髦满分IS分)如Ill在四梭锥P•Al/CD中底薰"汒D是边长为"许正方形PAJ.平llll"妃D,PA一4.点E在侧拔PC上(镶点除外),平面ABE交PD于点F.(I)求证印边形ABEF为夏角幛形(2)若PF=3FD求直坟PC与平面ABEF妖成角的正弦俏.三笫3页(共4页)1&(本小氪滇分"分)巳知双曲坟书-户IOl)的右熄点为P,过AF的Pl交衄C干点A,8,且IABI的垃归,,迅,.(ll*C的方苞(2)若P(-.J't,O),A,I)均在C的右亨t.Jll>ABP的外心幕在y输上欢直线1的方程I寸忙19.(本小艇漓分17分)j 吐五纽毗)稣不应工的最逞败,例如(•l=2心-`(1]•1对于谄饮肛)若存l腺在mER.m《Z使符/(m)•/((..p则称iii数/()是Oiii欢“.(I)井断丙效I”)一釭工从工)一1和,心1是书是nili坟,(�)设iii攸f")是定义在R上的闪朗函效.其最小正JII阴是T若I(工)不是飞谩蚁.求T的最小优,(3)若函数f")一”卫.处ll函效伸求.的取饥花句上价`页(共4页)日七`.名参考答案LC 织合J\=位·旧-心-S <O}=(一],5),B ={.r l <.,·-m)心一(111+2)]>0)=(一=.m )U (m +2.十~).若J\U B =R,叫'n>-l ,解得mE(-13)故选C .m +2<52.Atan 2()=产言()=-组故选A.3 c 3sin 0-+=0令5因胪=s m()一奇+(cosO叶),是纯瑶数所以{所以SIIl0=奇cosO =-+tan0=-十所以4CO S ()一下#0`J函数y =f <x 一l )为奇函数,图象关于(0,0)对称.则函数y =f (:i .)关于(-1,0)对称,所以函数y =f (:i ·)十]的图象关千(-1,1)对称.故选C.4.B 设C的另一个焦点为F勹根据椭圆的对称性知I PFI = IQF'I,所以L:c,.PFQ的周长为I PFI + I Q FI + I PQI =I Q 'I + I QFI + I P QI =8+ I P QI ,当线段PQ为椭圆短轴时,IPQI有酘小值6.所以么PFQ的周长的品小值为J4.故选B .5.C AE BG.. A E BF,.-,.. BG B F 作EGIIA B父BD 于G 如图,连接FG,则一-=一-义一-=-:,所以一-=-勹所以E D C D '�E D FC 'U"AC D F C AE BF 1 FG//CD ,所以乙FGE是/\B与CD所成的角或其补角/\B=CD =3.一-=--=—,所ED F C 2 FC = l .在么EFC 中,cos乙FC E =8.. EG _ ED _ 2 �� _ �FG _ BF_ 1 以一一=--=-;:;-E C = 2一-=一-=- AB AD 3. v v -· C D BC 3 ',所以FG 2+EG2-E户ZFG• EC 选C .沪+12一(屈)2 1] 2X2X l=-一,所以AB 与C D )所成角的余弦值为一.故4.,,,,,.. --'---,,,,-,.. """,_ = 4 ADc6.D 当正>1)时.由.f位)-.I .(b)<g(2«) -f.,, (2b)得f(a)-g(2a)<J(b)-g(2t,).所以Ii 釭)=.l(x)-K(2x) = s in (2.r +气-.(.f =.ff s i n(.,一工穴6 co ,加十6)=墨n(2,12)在.r E G -m ,m ]上单调递减,小妨设2.,12 -一=I 则问题转化成h (1) 23穴12 —-2m;;a,,-¼+2krr,2硕sin I在1E( 23六六节-2m,2m 一百)上单悯递减,所以穴3亢17六2m -一<-+2k 穴,其中k E Z,解得..!!.<m ;;;;;一.故选D .l 2---22 24 2m -玉>竺-2m12� 12B7· 根据图形,在正方体中易知正八面体的棱长为JF?广;亿汀=孕,如图,存正八面体中连接/\F,DB,CE ,可得AE D B .CE 互相誰直平分,存R 心AO D中.A U=坏了=方飞(孕)2-(句=§则该止八面体的体积V =2]瓦屈乔万万瓦2X -X 产了行气,该八面体的表面积S =8X 丁X 行)=3万.设正八而体的内切球半径为1因为+s r =V ,J:,泛q 甲,则(l +q +#+心q =叮(l +q +q 叩,所以"•I =…气琴沪>]即(l +q 8``户-、二+q 开心q 一(l +q +汀>0,即l +q +岈+c/<O ,令f(.r )=.,·3+2.r 2十.r +l./(.r)=3.r 2""-\:;I [ I即一X3.fI • r =—,解得r =一.故选B .3 2 28.D 设公比为q,则a,O+q+q2+<()=[a,(q+q i十矿))2,则(l+q+q2 +q1) =a, q 2 (I +q++4x + l = (x + l) (3:i· + J).故xE (-oo . -1) U (--}-+oo )时.J'(x)>O -x E (-1,一+)时,f (.,)<O .故f (.r)存(-OO .- l),(--1 ,十oo )上单调递增存3 I " " J '.., � -. •� J '.., "'-�'"'\ 3 (-l -.l.)上单调递减且f (-1)=-1+2-l+1=1,j .(--1 \ r I \'3 3)=(-寸+2X (-十)2+(叶)+l =簪>0,作f(.1)的图象如图所示,结合图象可知,q<-l ,又山>J.所以(,,<O.则a,>(/,护,所以(l,<幻心<a,.a,>a,,"卢<(l,故选D.yDF-2`r9.BC 根据统计图可得B 3`儿的纵坐标之和显然最大·故3月A 、B 两种套餐的总销售垃品多.故A错误.13止矿。
2020届河北省石家庄市二模数学(理)试题(解析版)

所以有 ,
由 ,故 ,即 ,
从而 ,
解得 ,即 。
所以直线 的方程为 。
【点睛】
本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。
20.随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税) 收入 个税起征点 专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用 等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:
【详解】
画出不等式组 所表示平面区域,如图所示,
由目标函数 ,化为直线 ,当直线 过点A时,
此时直线 在y轴上的截距最大,目标函数取得最大值,
又由 ,解得 ,
所以目标函数的最大值为 ,故选A.
【点睛】
本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.
【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.
【详解】
解:几何体的直观图如图,是正方体的一部分,P−ABC,
正方体的棱长为2,
该几何体的表面积:
.
故选:C.
【点睛】
本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键.
7.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为
2019-2020年高三二模数学试题 含答案

2019-2020年高三二模数学试题 含答案一、填空题(每小题4分,共56分)1.已知集合{}{}221,,0,1<<=-=x x B a A ,若,则实数的取值范围是 2.函数cos ()sin ()y x x ππ22=+-+44的最小正周期为 . 3.在等差数列中,已知则 .4.若,是直线的倾斜角,则= .(用的反正切表示) 5.设(i 为虚数单位),则 .6.直角坐标系内有点A (2,1),B (0,2),将线段绕直线旋转一周,所得到几何体的体积为 .7.已知平面向量,若,则8.设,行列式34210231D -=xa 中第3行第2列的代数余子式记作,函数的反函数经过点,则a= .9.某学生参加3门课程的考试。
假设该学生第一门、第二门及第三门课程取得合格水平的概率依次为,,且不同课程是否取得合格水平相互独立。
则该生只取得一门课程合格的概率为 .10.已知是椭圆上的一点,为椭圆的左、右焦点,则的最小值为 . 11.已知是等差数列,设.某学生设计了一个求的算法框图(如图),图中空白处理框中是用的表达式对赋值,则空白处理框中应填入:←____________.12.不等式对一切非零实数均成立,则实数的范围为13.平面直角坐标系中,为坐标原点.定义、两点之间的“直角距离”为1212(,)d P Q x x y y =-+-,已知点,点M 是直线30(1)kx y k k -++=?上的动点,的最小值为 .14.当为正整数时,用表示的最大奇因数,如,设(1)(2)(3)(4)(21)(2)n n n S N N N N N N =+++++-+K ,则数列的前项和的表达式为 .二、选择题(每小题5分,共20分)15.已知,是两条不同的直线,是一个平面,以下命题正确的是( ) (A ) 若, , 则; (B )若, , 则 ; (C )若, , 则 ; (D ) 若, , 则 ;16.以下是科学家与之相研究的领域不匹配的是( ) (A )笛卡儿—解析几何; (B )帕斯卡—概率论;(C )康托尔—集合论;(D )祖暅之—复数论;(第11题图)17.已知各项均不为零的数列,定义向量,,. 下列命题中真命题是( ) (A) 若总有成立,则数列是等差数列(B) 若总有成立,则数列是等比数列 (C) 若总有成立,则数列是等差数列(D) 若总有成立,则数列是等比数列 18.方程的正根从小到大地依次排列为,则正确的结论为( ) (A )(B ) (C ) (D )三、解答题(12+14+14+16+18,共74分)19.已知向量()()wx a b wx a sin 3,1,1,cos 1+=+=(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求的最大值.20.已知三棱柱的侧棱与底面垂直,11,,AA AB AC AB AC M ===⊥是的中点,是的中点,点在上,且满足(1)证明:;(2)当取何值时,直线与平面所成的角最大?并求该角的最大值的正切值。
河北省石家庄一中高三数学第二次考试试题 理(含解析)

2012-2013学河北省石家庄一中高三暑期第二次考试数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.每小题选出答案后,请填涂在答题卡上.2.(5分)设向量=(1,2),=(﹣2,y),若∥,则|3+2|=()|3+2|=3.(5分)已知函数是奇函数,则=()解:∵函数,即,,=4.(5分)“”是“(x+2)(x﹣1)≥0”的()可得≥0,可得5.(5分)在△ABC中,a,b,c分别是角A,B,C的对边,,则=()中,∵A==sinB=sinA=则由正弦定理得:=,6.(5分)(2009•天津)已知函数的最小正周向左平移个单位长度向右平移向左平移个单位长度向右平移由周期函数的周期计算公式:7.(5分)下列四种说法中,错误的个数是()①A={0,1}的子集有3个;②命题“存在”的否定是:“不存在;③函数f(x)=e﹣x﹣e x的切线斜率的最大值是﹣2;=2”的否定是对任意的﹣(时,即=2﹣2x围成的三角形的面积为×1×=9.(5分)(2010•江西)等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…810.(5分)(2011•淮南一模)已知点G是△ABC的重心,(λ,μ∈R),若∠A=120°,,则的最小值是()由三角形重心的性质可得,,设,结合基本不等式可求解:由向量加法的三角形法则及三角形重心的性质可得,∵∠A=120°,==即的最小值为==11.(5分)(2012•乐山二模)若函数f(x)的导数为f′(x)=﹣x(x+1),则函数f(log a x).×≤0x≤0∴,12.(5分)设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0)时,f(x)=﹣1,若在区间(﹣2,6)内的关于x的方程f(x)﹣logg a(x+2)=0(a ,=﹣1=﹣﹣二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题纸相应的空内.13.(5分)已知,且,则= .sin=﹣,,.==2×(﹣)14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,则= ﹣.,用表示出来,利用向量的数量积的运算法则和定义式即可求得,∴D﹣故答案为﹣.15.(5分)已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是a>.==a+>.16.(5分)函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f (x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1﹣x)+f(x)=1x∈[0,1];③当时,恒成立.则= 1 .③当时,),结合)≥,又由[,=),时,)≥,,恒成立,),(=),=1,]恒成立,是解答本题的关键.三、解答题:本大题共6小题,共70分.请将解答过程书写在答题纸上,并写出文字说明、证明过程或演算步骤.17.(10分)(2010•江苏)在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()•=0,求t的值..从而得:AD=)由题设知:)•从而得:,,得:(方法一)由题设知.、BC=;)由题设知:)•,所以,,18.(12分)已知p:对任意m∈[﹣1,1],不等式恒成立;q:存在x,使不等式x2+ax+2<0成立,若“p或q”为真,“p且q”为假,求a的取值范围.得,解得假,则真,则19.(12分)设函数(1)求f(x)的最小正周期;(2)在△ABC中,a,b,c分别是角A,B,C的对边,,求b,c的长.=)=,即,解得.20.(12分)设函数f(x)=x﹣ae x﹣1.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若f(x)≤0对x∈R恒成立,求a的取值范围.21.(12分)ABC中,a、b、c分别是角A、B、C的对边,<C<,且.(1)判断△ABC的形状(2)若,求的取值范围、,又由因为)由值范围,进而求出))因为22.(12分)(2012•湘潭三模)抛物线y=g(x)过点O(0,0)、A(m,0)与点P(m+1,m+1),其中m>n>0,b<a,设函数f(x)=(x﹣n)g(x)在x=a和x=b处取到极值.(1)用m,x表示y=g(x)并比较a,b,m,n的大小(要求按从小到大排列);(2)若,且过原点存在两条互相垂直的直线与曲线y=f(x)均相切,求y=f(x).,两条切线垂直,即可求得函数解析式.﹣()+mnx﹣)又切线过原点,故﹣)﹣(=0=,≥8,∴,…(。
2020年石家庄市二模数学有答案(理科).docx

2020 年石家庄市高中毕业班第二次模拟考试高三数学 ( 理科)注意事项:1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上 .2.回答第 I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑 . 如需改动,用橡皮擦干净后,再选涂其他答案标号 . 写在本试卷上无效 .3.回答第 II 卷时,将答案写在答题卡上,写在本试卷上无效 .4.考试结束后,将本试卷和答题卡一并交回 .第 I 卷( 选择题 60 分)一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .1. 已知集合A. B.M={5, 6, 7 }C., N={5, 7, 8 }D.,则2.若 F(5 ,0) 是双曲线(m 是常数)的一个焦点,则 m的值为3.已知函数 f(x) ,g(x) 分别由右表给出,则,的值为A. 1B.2C. 3D. 44.的展开式中的常数项为A. -60B. -50C. 50D. 605.的值为A. 1B.C.D.6.已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A. 充分而不必要条件B.必要而不充分条件C. 充要条件D.既不充分也不必要的条件7.—个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8.从某高中随机选取 5 名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm 的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.059.程序框图如右图,若输出的 s 值为位,则 n 的值为A. 3B. 4C. 5D. 610.已知a是实数,则函数_的图象不可能是11.已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线 l与AB边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域的概率为 P. 则下列结论正确的是A. 不论边长 AB, CD如何变化, P 为定值;B.若- 的值越大, P 越大;C. 当且仅当 AB=CD时, P 最大;D.当且仅当AB=CD时,P最小.M12.设不等式组表示的平面区域为D n a n表示区域 D n中整点的个数 ( 其中整点是指横、纵坐标都是整数的点),则=A. 1012B. 2020C. 3021D. 4001第 II卷(非选择题共90分)本卷包括必考题和选考题两部分,第13 题? 第 21 题为必考题,每个试题考生都必须作答 . 第 22 题?第 24 题为选考题,考生根据要求作答 .二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13.复数(i为虚数单位 ) 是纯虚数,则实数 a 的值为 _________.14.在ABC 中,,,则 BC 的长度为 ________.15.己知 F1 F 2是椭圆( a>b>0) 的两个焦点,若椭圆上存在一点P 使得,则椭圆的离心率 e 的取值范围为 ________.16.在平行四边形 ABCD中有,类比这个性质,在平行六面体中 ABCD-A 1 B1 C1 D1中有=________三、解答题:本大题共 6 小题,共 70 分. 解答应写出文字说明,证明过程或演算步骤.17.( 本小题满分 12 分)已知 S n是等比数列 {a n} 的前 n 项和, S4、S10、S7成等差数列 .(I )求证而a3,a9,a6成等差数列;(II)若a1=1,求数列W{a3n}的前n项的积.18.( 本小题满分 12 分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出 . 某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准?用水量不超过 a 的部分按照平价收费,超过 a的部分按照议价收费). 为了较为合理地确定出这个标准,通过抽样获得了 100 位居民某年的月均用水量 ( 单位 :t) ,制作了频率分布直方图,(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望 80%的居民每月的用水量不超出标准 &则月均用水量的最低标准定为多少吨,并说明理由;(III) 若将频率视为概率,现从该市某大型生活社区随机调查 3 位居民的月均用水量 ( 看作有放回的抽样),其中月均用水量不超过(II) 中最低标准的人数为x,求x 的分布列和均值 .19.( 本小题满分 12 分)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB1交于AB=1,, D 为AA1中点, BD与点0,C0丄侧面 ABB1A1(I )证明:BC丄AB1;(II)若OC=OA,求二面角C1-BD-C的余弦值.20.( 本小题满分 12 分)在平面直角坐标系中,已知直线l:y=-1 ,定点 F(0 ,1) ,过平面内动点 P 作 PQ丄 l 于 Q点,且?(I )求动点P的轨迹E的方程;P 的纵坐标(II)过点P作圆的两条切线,分别交x 轴于点 B、 C,当点y0>4 时,试用 y0表示线段 BC的长,并求PBC面积的最小值 .21.( 本小题满分 12 分)已知函数( A, B R, e 为自然对数的底数),.(I )当 b=2 时,若存在单调递增区间,求 a 的取值范围;(II)当a>0时,设的图象C1与的图象C2相交于两个不同的点P、Q,过C1于点,求证.线段PQ的中点作 x 轴的垂线交请考生在第 22? 24 三题中任选一题做答,如果多做,则按所做的第一题记分.22.( 本小题满分 10 分) 选修 4-1 几何证明选讲已知四边形ACBE,AB交 CE 于 D 点,,BE2=DE-EC.( I ) 求证 :;( I I ) 求证: A、E、B、 C 四点共圆 .23.( 本小题满分 10 分) 选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,以 O 为极点, X 轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系. 曲线 C1的参数方程为:(为参数);射线C2的极坐标方程为:, 且射线 C2与曲线 C1的交点的横坐标为(I )求曲线C1的普通方程;(II)设 A、 B为曲线 C1与 y 轴的两个交点, M为曲线 C1上不同于 A、 B 的任意一点,若直线 AM与 MB分别与 x 轴交于 P,Q 两点,求证 |OP|.|OQ| 为定值 .24.( 本小题满分 10 分) 选修 4-5 不等式选讲设函数(I) 画出函数(II)若不等式,的图象;恒成立,求实数 a 的取值范围.2020 年石家庄市高中毕业班第二次模拟考试高三数学 ( 理科答案 )一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 CDADB 6-10 ABBCB 11-12 AC二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.13.114. 1 或 215.1,116. 24( AB 2AD 2AA12 ) .三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤.17. 解:(Ⅰ) 当 q 1 , 2S 10 S 4 S 7所以 q1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..2 分2a 1 1 q 10a (1 q 4 ) a 1 1 q 7由2S 10S 4 S 7 , 得11 q1 q 1 qQ a 10, q 1 2q 10q 4 q 7, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .4 分2a 1 q 8 a 1q 2 a 1q 5 ,2a 9a 3 a 6 ,所以 a 3, a 9, a 6 成等差数列 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分( Ⅱ ) 依 意 数列a n 3的前 n 的 T n ,T n = a 13 a 23 a 33 K a n 313 q 3 ( q 2 )3 K ( q n 1 )3 = q 3 (q 3 )2 K (q 3 )n 1 (q 3 )1 2 3K (n 1) =( q 3)n(n 1)2,⋯⋯⋯⋯⋯⋯⋯ 8 分又由(Ⅰ)得 2q 10q 4 q 7 ,2q6q31 0 ,解得 q31(舍),q31. ⋯⋯⋯⋯⋯⋯⋯ 10 分21n n 12所以 T n2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .12 分18. 解: (Ⅰ)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分(Ⅱ)月均用水量的最低 准 定 2.5 吨 . 本中月均用水量不低于 2.5 吨的居民有 20 位,占 本 体的 20%,由 本估 体,要保 80%的居民每月的用水量不 超 出 准 , 月 均 用 水 量 的 最 低 准 定 2.5 吨 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅲ)依 意可知, 居民月均用水量不超 (Ⅱ)中最低 准的概率是4,X ~ B(3, 4) ,55P( X 0) (1)31 P( X 1) C 314 (1) 2 12 5 1255 5125P( X 2) C 32 (4 )2( 1 ) 48 P( X 3) ( 4 )364⋯⋯⋯⋯⋯⋯ 8 分5 51255125分布列X0 12 3 P1 12 48 64125 125125 125⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10分E( X ) 3412⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分5519. 解:(Ⅰ)因 ABB 1A 1 是矩形,D AA 1 中点, AB1 , AA 12 ,AD 2 ,2所 以 在 直 角 三 角 形 ABB 1中 , tan AB 1 BAB 2BB 1 ,2 在 直 角三 角 形 ABD 中 , tan ABDAD 2AB 1 2 ,所以 AB 1 B = ABD ,又 BAB 1AB 1 B 90o ,BAB 1ABD90o ,所以在直角三角形 ABO 中,故 BOA 90o ,即 BDAB 1 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3分又因 CO 侧面 ABB 1 A 1 , AB 1 侧面 ABB 1 A 1 , 所以 CO AB 1 所以, AB 1面 BCD , BC 面 BCD ,故 BC AB 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(Ⅱ) 解法一:如 ,由(Ⅰ)可知,OA, OB, OC 两两垂直,分 以 OA, OB, OC x 、 y 、 z 建立空 直角坐 系 O xyz .在RtVABD中 , 可求得OB6, OD6 , OC OA3 ,363在 RtVABB 1 中,可求得 OB 12 3 ,3故D 0,6,0 , B 0,6,0, C 0,0,3 ,633B 12 3,0,03uuur6,0 uuur6 , 3uuur 2 3 , 6,0所以 BD0,, BC0, , BB 123 333uuuur uuur uuur 2 3 , 2 6 , 3 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分 可得, BC 1 BC BB 13 3 3uuur uuuur平面 BDC 1 的法向量 mx, y, z , m BD0,m BC 1 0 ,23 x 2 6 y3z 0即333,取 x 1, y0, z 2 ,6y 02m 1,0,2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分又 面 BCD n 1,0,0 , 故 cos m, n15 ,55所以,二面角C 1BD C 的余弦5 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分 5解法二: 接 CB 1 交 C 1B 于 E , 接 OE ,因CO侧面 ABB1 A1,所以BD OC ,又BD AB1,所以BD面 COB1,故BD OE所以EOC 二面角C1BD C 的平面角⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分BD6, AB13, AD AO1, OB12AB12 3 , 2BB1OB1233OC OA 1AB13,33在 RtVCOB1中, B1C OC 2OB121415,⋯⋯⋯⋯⋯⋯⋯⋯10 分333又EOC OCE cos EOC OC 5 ,CB15故二面角 C1 BD C 的余弦 5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分520.解:(Ⅰ) P x, y , Q x, 1 ,uuur uuur uuur uuur∵QPgQF FP gFQ ,∴ 0, y 1 g x,2x, y 1 g x, 2 .⋯⋯⋯⋯⋯⋯⋯ 2分即 2 y 1x2 2 y 1 ,即x2 4 y ,所以点 P 的迹 E 的方程x2 4 y .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(Ⅱ)解法一: P (x0 , y0 ), B(b,0), C(c,0),不妨 b c .直 PB 的方程:y y0( x b) ,化得y0 x( x0b) y y0 b0 .x0 b又心 (0, 2) 到 PB 的距离2,2( xb)y0b2,y02(x0b)2故 4[ y02( x0 b)2 ]4( x0b)24( x0b) y0 b y02b 2,易知 y0 4 ,上式化得( y0 4) b2 4 x0 b 4 y00 ,同理有 ( y04)c24x0c 4 y0 0 .⋯⋯⋯⋯ 6 分所以b c4x0 ,bc 4 y0,⋯⋯⋯⋯⋯⋯⋯ 8 分y04y0 4(b c)216(x2y2 4 y).000( y04)2因 P (x0 , y0 ) 是抛物上的点,有 x02 4 y0,(b c)216y02,b c4y04.⋯⋯⋯⋯⋯⋯ 10 分( y04)2y0所以 S PBC 1(b c)y0 2 y0y02[( y04)168] 2y04y044 16832 .当 ( y04) 216 ,上式取等号,此x042, y0 8 .因此 S PBC的最小32.⋯⋯⋯⋯⋯⋯⋯⋯ 12 分解法二: P(x0 , y0 ) ,y0x02, PB 、 PC 的斜率分k1、k2,4PB :y x02k1 ( x x0 ) ,令 y0得x B x0x02,同理得 x C x0x02;44k14k2所以 | BC | | x B x C| |x02x02|x02|k1k2 | ,⋯⋯⋯⋯⋯ 6分4k24k14k1 k2下面求 | k1k2 | ,k1 k22| k1 x0 2x02|由 (0, 2) 到PB :y x0k1( x x0 ) 的距离2,得4 2 ,4k121因 y0 4 ,所以 x0216 ,化得 ( x024)k12x0(4x02)k1( x02)2x020 ,24同理得 ( x024)k22x0(4x02)k2( x02)2x020 ⋯⋯⋯⋯⋯⋯⋯8分24所以 k1、 k2是 ( x024) k 2x0(4x02) k( x02) 2x020 的两个根.24x 0 x 024)x 2)22 2 x 021)(2 ( 0 x 0x 0 (所以 k 1k 2,k 1k 2 416 ,x 024x 02 4x 024| k 1 k 2 |(k 1 k2 ) 24k 1k 2x 02, |k 1 k 2 |1,x 024k 1k 2x 02116| xx|x 02|k1k2 |x 02 1 y1 4 y 0 ,⋯⋯⋯⋯⋯ 10 分BC4k 1k 24 x 021y 0 1 y 0 4164所以 S PBC1| BC | y 02 y 0 y 0 2[( y 0 4)16 48]2y 0 4y 04 16832 .当 ( y 0 4) 2 16 ,上式取等号,此 x 0 4 2, y 0 8 .因此 S PBC 的最小 32. ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分21. 解 : (Ⅰ)当 b2 ,若 F (x)f ( x) g( x)ae 2 x 2e x x ,F (x) 2ae 2 x2e x 1 ,原命 等价于 F (x)2ae 2x2e x 1⋯0 在 R 上有解.⋯⋯⋯⋯⋯ 2 分法一:当 a ⋯0 , 然成立;当 a0 , F ( x)2ae 2x 2e x1 2a(e x1 )2 (1 1 )1 12a 2a∴ (10 ,即 a 0 .)22a 合所述a1.⋯⋯⋯⋯⋯⋯⋯ 5 分2法二:等价于 a1 ( 1)2 1 在 R 上有解,即2 e xe x∴ a1.⋯⋯⋯⋯⋯⋯ 5 分2,x 2x1(Ⅱ) P( x 1, y 1 ), Q (x 2 , y 2 ) ,不妨 x 1x 2x 0 ,2ae2x2bex2x 2 , ae2 x 1bex1x 1 ,两式相减得: a(e 2 x 2 e 2 x 1) b(e x 2e x 1 ) x 2 x 1 ,⋯⋯⋯⋯⋯ 7 分整理得x 2 x 1x 2 x 1 a(e x 2e x 1)(e x 2e x 1)b(e x 2 e x 1 )⋯ a(e x 2e x 1 )g2e 2b(e x 2e x 1)x2x 2 x 1x 1⋯2ae 2b ,于是ex2ex1x 2x 1x 2 x 1xx 1x 2 x 1f ( x 0 ) ,⋯⋯⋯⋯⋯⋯⋯ 9 分e 2⋯2ae2 be 2xxe 2e 1x 2x 1x 2 x 1x 2x 1x 2 x 1而e2e2xe xx x1e21e 2 1tt令 txx 0 , G (t)e 2 e 22 1ttttG (t ) 1 e 2 1 e 2 1 12e 2 e 22 2 2t ,1 0 ,∴y G (t) 在 (0,) 上 增,ttttG(t)e 2 e 2t G(0) 0 ,于是有 e 2e 2t ,t即 e t 1 te 2 ,且 e t1 0 ,t t∴e21,e t 1即 f ( x 0 ) 1.⋯⋯⋯⋯⋯⋯⋯ 12 分考生在第 22~ 24 三 中任 一 做答,如果多做, 按所做的第一 分22. 修 4-1几何 明明: ( Ⅰ) 依 意,DEBE , 11 ,BEEC所以 DEB : BEC , ⋯⋯⋯⋯⋯⋯ 2 分 得 3 4,因 4 5 ,所以 35 , 又 26 ,可得 EBD :( Ⅱ) 因ACD . ⋯⋯⋯⋯⋯⋯⋯⋯5 分因 EBD : ACD ,所以EDBD , 即 ED AD , 又 ADECDB , ADE : CDB ,AD CD BD CD所以 48 ,⋯⋯⋯⋯⋯⋯ 7 分因 1231800 ,因 2 78 ,即 274 ,由 ( Ⅰ ) 知 35 ,所以1745 180 0 ,即 ACBAEB 1800 ,所以 A 、 E 、 B 、 C 四点共 . ⋯⋯⋯⋯⋯⋯ 10 分 23. 修 4-4 :坐 系与参数方程2x2解: ( Ⅰ) 曲 C 1 的普通方程 2y 1 ,射 C 2 的直角坐 方程 yx( x 0) ,⋯⋯⋯⋯⋯⋯⋯ 3 分可知它 的交点6 , 6 ,代入曲 C 1 的普通方程可求得 a 2 2 .3 32所以曲 C 1 的普通方程xy 2 1. ⋯⋯⋯⋯⋯⋯ 5 分2( Ⅱ) | OP | | OQ | 定 .由 ( Ⅰ ) 可知曲 C 1 ,不妨AC 1 的上 点,M (2 cos ,sin ) , P(x P ,0) , Q ( x Q ,0) ,因 直 MA 与 MB 分 与 x 交于 P 、 Q 两点,所以 K AMK AP , K BM K BQ , ⋯⋯⋯⋯⋯⋯ 7 分由斜率公式并 算得x P12 cos, x Q 2 cos, sin1sin所以 | OP | |OQ | x P x Q2. 可得| OP | | OQ |定 . ⋯⋯⋯⋯⋯ 10 分24.修 4-5 :不等式解 : ( Ⅰ) 由于 f ( x)3x7,x 2,⋯⋯⋯⋯ 2 分3x5x 2.函数的象如所示 : (略)⋯⋯⋯⋯⋯ 5 分( Ⅱ) 由函数y f ( x) 与函数y ax 的象可知 ,当且当1a 3, 函数 y ax 的象与函数y f ( x)象没有交2点, ⋯⋯⋯⋯⋯ 7 分所以不等式 f (x) ax 恒成立,a 的取范1 ,3. ⋯⋯⋯⋯⋯⋯⋯10 分2。
2020年高考数学【真题母题解密】比较大小(天津卷)(解析版)

『高考真题·母题解密』『分项汇编·逐一击破』专题06比较大小【母题来源】2020年高考数学天津卷【母题题文】设,则的大小关系为()0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,,a b c A. B. C. D. a b c <<b a c <<b c a <<c a b<<【答案】D【试题解析】利用指数函数与对数函数的性质,即可得出的大小关系.,,a b c 【详解】因为,,,0.731a =>0.80.80.71333b a-⎛⎫==>= ⎪⎝⎭0.70.7log 0.8log 0.71c =<=所以.故选:D.1c a b <<<【命题意图】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,是历年高考的热点.考查对简单函数单调性的理解及不等式的有关知识;常见的命题角度有:与常用基础函数如:幂函数、指数函数、对数函数等知识结合.【方法总结】比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;x y a =1a >01a <<(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;log a y x =1a >01a <<(3)借助于中间值,例如:0或1等.1.【2020·天津九校高三下学期4月联考】设,,则().0.5log 0.8a = 1.10.8b log =0.81.1c =A. B. b a c <<b c a <<C. D. a b c <<a c b<<【答案】A 【解析】【分析】结合指数和对数函数的单调性分别与0和1比较,易得,,,所以.0a 1<<b 0<c 1>b<a<c 【详解】解:因为0.50.50.50log 1a log 0.8log 0.51=<=<=所以 故选A1.1 1.1b log 0.8log 10=<=0.80c 1.1 1.11=>=b<a<c 【点睛】本题考查了指数和对数函数性质的运用,在指数和对数比较大小过程中一般先比较与0,1的大小关系.2.【2020·天津市北辰区高三高考模拟】已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为()A. B.C.D.【答案】C 【解析】【分析】根据奇偶性得:,通过临界值的方式可判断出自变量之间的大小关系,再利用函数的单调性得到的大小关系.【详解】;,即:为偶函数又在上单调递增,即本题正确选项:【点睛】本题考查利用函数单调性判断大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.3.【2020·天津市北辰区2020届高三第一次诊断测试】已知函数的定义域为,且函数()y f x =(),ππ-的图象关于直线对称,当时,(其中是()2y f x =+2x =-()0,x π∈()ln 'sin 2f x x f xππ⎛⎫=- ⎪⎝⎭()'f x 的导函数),若,,,则的大小关系是( )()f x ()log 3a f π=13log 9b f ⎛⎫= ⎪⎝⎭13c f π⎛⎫= ⎪⎝⎭,,a b c A B. C. D. b a c >>a b c>>c b a>>b c a>>【答案】D 【解析】【分析】求出,可得的值,能确定的解析式,分类讨论可确定的符号,可得在()'f x '2f π⎛⎫ ⎪⎝⎭()'f x ()'f x ()f x 上递增,再利用指数函数、对数函数的单调性比较的大小关系,结合函数的奇()0,π13log 32ππ、、()f x 偶性与单调性可得结果.【详解】,,()ln 'sin 2f x x f x ππ⎛⎫=- ⎪⎝⎭ ()''cos 2f x f xx ππ⎛⎫∴=- ⎪⎝⎭,,'2'cos 2222f f πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭()'2cos f x xx π=-当时,;当时,,2x π≤<π()2cos 0,'0x f x ≤>02x π<<()2,2cos 2,'0x f x x π><∴>即在上递增,的图象关于对称,()f x ()0,π()2y f x =+ 2x =-向右平移2个单位得到的图象关于轴对称,()2y f x ∴=+()y f x =y 即为偶函数,,,()y f x =()()13log 922b f f f ⎛⎫==-= ⎪⎝⎭0log 1log 3log 1ππππ=<<=,即,,1103212πππ=<<<130log 32πππ<<<<()()132log 3f f f ππ⎛⎫∴>> ⎪⎝⎭即.故选D.b c a >>【点睛】本题主要考查函数的奇偶性、对数函数的性质、指数函数的单调性及比较大小问题,属于难题. 在比较,,,的大小时,首先应该根据函数的奇偶性与周期性将,()1f x ()2f x ()n f x ()f x ()1f x ,,通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.()2f x ()n f x 4.【2020·天津市滨海新区三校2020届高三高考数学5月份模拟】已知奇函数f (x )在R 上是减函数,若a =﹣f (1og 3),b =f (),c =f (2﹣0.8),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .b <c <aD .c <a <b【答案】B【分析】结合函数的单调性及奇偶性进行比较函数值的大小.解:奇函数f (x )在R 上是减函数,∵log 34∈(1,2),0,2﹣0.8∈(0,1),∵a =﹣f (1og 3)=f (log 34),b =f (),c =f (2﹣0.8)=f (),则a <c <b ,故选:B .5.【2020·天津市部分区2020届高考二模】已知,,,则,,的大小3log 0.3a =0.3log 2b =0.23c =a b c 关系是( )A B. C. D. a b c >>b c a>>c b a >>c a b>>【答案】C 【解析】【分析】由题意结合指数函数、对数函数的单调性可知,即可得解.10a b c <-<<<【详解】由题意,,,331log 0.3log 13<=-0.30.30.3log log 2lo 1013g 10=<<-=0.20331>=所以.10a b c <-<<<故选:C.【点睛】本题考查了指数式、对数式的大小比较,考查了指数函数、对数函数单调性的应用,属于基础题.6.【2020·天津市第一百中学2020届高三高考模拟】已知函数是定义在上的偶函数,且在()f x R 上单调递增,则三个数,,的大小关系为[)0,∞+()3log 13a f =-121log 8b f ⎛⎫= ⎪⎝⎭()0.62c f =A. B. a b c >>a c b >>C. D. b a c >>c a b>>【答案】C 【解析】【分析】根据奇偶性得:,通过临界值的方式可判断出自变量之间的大小关系,再利用函数的单调()3log 13a f =性得到的大小关系.,,a b c 【详解】;,3332log 9log 13log 273=<<=1221log log 838==0.610222<<=即:为偶函数 0.6312102log 13log 8<<<()f x ()()33log 13log 13a f f ∴=-=又在上单调递增,即()f x [)0,+∞()()0.61321log log 1328f f f ⎛⎫∴>> ⎪⎝⎭b a c>>本题正确选项:C【点睛】本题考查利用函数单调性判断大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系.7.【2020·天津市第一中学2020届高三下学期第四次月考】已知奇函数,且在()f x ()()g x xf x =上是增函数.若,,,则a ,b ,c 的大小关系为[0,)+∞2(log 5.1)a g =-0.8(2)b g =(3)c g =A. B. C. D. a b c <<c b a<<b a c<<b c a<<【答案】C【解析】【详解】因为是奇函数,从而是上的偶函数,且在上是增函数,()f x ()()g x xf x =R [0,)+∞,22(log 5.1)(log 5.1)a g g =-=,又,则,所以即,0.822<4 5.18<<22log 5.13<<0.8202log 5.13<<<,0.82(2)(log 5.1)(3)g g g <<所以,故选C .b ac <<【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.8.【2020·天津市东丽区耀华滨海学校高三年级上期第二次统练】已知,则0.20.32log 0.2,2,0.2a b c ===A. B. C. D. a b c <<a c b<<c a b<<b c a<<【答案】B 【解析】【分析】运用中间量比较,运用中间量比较0,a c 1,b c【详解】则.故选B .22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=01,c a c b <<<<【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.9.【2020·天津市和平区2020届高三高考二模】已知:,,,则a ,b ,c 的11ln 4a =113eb ⎛⎫= ⎪⎝⎭11log 3e c =大小关系为( )A. B. C. D. c a b >>c b a>>b a c>>a b c>>【答案】A 【解析】【分析】利用指数函数,对数函数的性质求解.【详解】因为,,11111ln ln log ln 343e e a c =<=<==1111033eb ⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭<=所以a ,b ,c 的大小关系为.c a b >>故选:A【点睛】本题主要考查指数函数,对数函数的性质,还考查了转化问题的能力,属于基础题.10.【2020·天津市河北区高三高考数学一模】已知函数f (x )是定义在R 上的偶函数,且f (x )在[0,+∞)单调递增,设a =f (),b =f (log 37),c =f (﹣0.83),则a ,b ,c 大小关系为( )A .b <a <c B .c <b <aC .c <a <bD .a <c <b【答案】C 【解析】根据题意,由偶函数的性质可得c =f (﹣0.83)=f (0.83),又由指数、对数的性质可得0.83<1log 3log 37,结合函数的单调性分析可得答案.根据题意,函数f (x )是定义在R 上的偶函数,则c =f (﹣0.83)=f (0.83),又由f (x )在[0,+∞)单调递增,且0.83<1log 3log 37,则有c <a <b ,故选:C .【点评】本题考查函数的奇偶性与单调性的综合应用,涉及对数值的大小比较,属于基础题.11.【2020·天津市河北省区2019届高三总复习质量检测】.已知,则13241log 3log 72a b c ⎛⎫=== ⎪⎝⎭,,的大小关系为( ),,a b c A. B. C. D. a c b <<b a c<<c a b<<a b c<<【答案】A 【解析】【分析】容易得出,再根据对数函数的性质将b 化为与c 同底的对数,即可比较出大01,a <<12,12b c <<<<小.【详解】解:,,,所以.故选A.1312a ⎛⎫= ⎪⎝⎭ 01a ∴<<244log 3log 9log 71b c ==>=>b c a >>【点睛】本题考查指数与对数大小的比较,考查对数换底公式以及对数函数的单调性,属于基础题.12.【2020·天津市红桥区2020届高三高考二模】已知,,,则( )131log 2a =121log 3b =32log 3c =A. B. C. D. b a c >>a b c>>c b a>>a c b>>【答案】A 【解析】【分析】根据对数函数单调性得到,,,得到答案.01a <<l b >0c <【详解】,,,111333110log 1log log 123a =<=<=112211log log 132b =>=332log log 310c =<=故.b a c >>故选:A.【点睛】本题考查了利用对数函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.13.【2020·天津高三一模】已知函数.若,,()25x f x x =+131log 2a f ⎛⎫= ⎪⎝⎭(3log b f =.则a ,b ,c 的大小关系为()()0.26c f =A. B. C. D. a b c >>a c b>>c a b>>c b a>>【答案】D 【解析】【分析】先根据对数函数与指数函数的性质,得到,,再根据函数单调性,即可判13310log log 12<<<0.261>断出结果.【详解】因为,,113333310log 1log log log lo 2g 312=<=<<=0.261>函数与都是增函数,所以也是增函数,2xy =5y x =()25x f x x =+因此,即.故选:D.(()0.21331log log 62f f f ⎛⎫< ⎪<⎝⎭c b a >>【点睛】本题主要考查由函数单调性比较大小,熟记指数函数与对数函数的性质即可,属于常考题型.14.【2020·天津市六校高三上学期期初检测】已知,,,则,,的大ln a π=lg125b =0.31c e ⎛⎫= ⎪⎝⎭a b c 小关系是( )A. B. a b c >>b a c >>C. D. 以上选项都不对c a b >>【答案】B 【解析】【分析】利用指数对数函数的图像和性质确定的范围即得它们的大小关系.,,a b c 【详解】由题得,2ln ln ln 2e a e π<=<=所以.12a <<,2lg125lg102b =>=,0.3011()1c e e ⎛⎫=<= ⎪⎝⎭所以.b a c >>故选:B【点睛】本题主要考查指数函数和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平.15.【2020·天津市南开区南开中学高三下学期第一次月考】设,则0.231012143a b og c lg =-==,,a ,b ,c 的大小关系是( )A. B. C. D. a c b<<b c a<<c a b<<c b a<<【答案】A 【解析】【分析】判断每个数的大致范围再分析即可.【详解】,,0.2221,0a >=∴< 331031,13log log b >=∴> ,,故选:A .1410,01lg lg lg c <<∴<< a c b ∴<<【点睛】本题主要考查了函数值大小的关系,属于基础题型.16.【2020·天津高三一模】已知定义在上的函数满足,且函数在上是减函数,若 ,则的大小关系为()A. B.C. D.【答案】A 【解析】【分析】化简,根据指数函数的单调性以及对数函数的单调性分别判断出,的取值范围,结合的单调性与奇偶性即可得结果.【详解】,是偶函数,,,,,,,又因为在上递减,,,即,故选A.【点睛】本题主要考查函数的奇偶性与单调性,以及指数函数与对数函数的性质,属于综合题. 在比较,,,的大小时,首先应该根据函数的奇偶性与周期性将,,,通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.17.【2020·天津南开中学高三月考】已知奇函数在上是增函数,若,()f x R 21log 5a f ⎛⎫=- ⎪⎝⎭,,则的大小关系为()()2log 4.1b f =()0.82c f =,,a b c A. B. C. D. a b c <<b a c<<c b a<<c a b<<【答案】C 【解析】由题意:,且:,()221log log 55a f f ⎛⎫=-= ⎪⎝⎭0.822log 5log 4.12,122>><<据此:,结合函数的单调性有:,0.822log 5log 4.12>>()()()0.822log 5log 4.12f f f >>即.本题选择C 选项.,a b c c b a >><<【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.18.【2020·天津市实验中学滨海分校2020届高三模拟考试(】已知定义在R 上的奇函数满足()f x ,且在区间[1,2]上是减函数,令,,,则(2)()f x f x +=-ln 2a =121(4b -=12log 2c =的大小关系为( )(),(),()f a f b f c A. B. ()()()f b f c f a <<()()()f a f c f b <<C. D. ()()()f c f b f a <<()()()f c f a f b <<【答案】C 【解析】【分析】由满足,且在区间[1,2]上是减函数,确定在上是增函数,再由奇函数()f x (2)()f x f x +=-()f x [1,0]-性质得在上递增,在上单调递增.然后把自变量的值都转化到上,比较大小.()f x [0,1][1,1]-[1,1]-【详解】设,则,又在上递减,1210x x -≤<≤121222x x ≤+<+≤()f x [1,2]∴,而,,∴,即12(2)(2)f x f x +>+11(2)()f x f x +=-22(2)()f x f x +=-12()()f x f x ->-,∴在是递增,12()()f x f x <()f x [1,0]-∵是奇函数,∴在上递增,从而在上单调递增,,()f x ()f x [0,1][1,1]-(0)0f =,,,,ln 2(0,1)a =∈121()24b -==12log 21c ==-()(2)(0)0(0)f b f f f ==-==∴由得,即.10ln 2-<<(1)(0)(ln 2)f f f -<<()()()f c f b f a <<故选:C .【点睛】本题考查函数的奇偶性与单调性.解题关键是确定函数的单调性,难点在于由满足()f x ,且在区间[1,2]上是减函数,确定在上是增函数,然后就是这类问题的常(2)()f x f x +=-()f x [1,0]-规解法,确定出上单调性,转化比较大小[1,1]-19.【2020·天津和平区高三第三次质检】设正实数分别满足,则,,a b c 2321,log 1,log 1a a b b c c ⋅===的大小关系为( ),,a b c A. B. C. D. a b c >>b a c>>c b a>>a c b>>【答案】C 【解析】【分析】把看作方程的根,利用数形结合思想把方程的根转化为函数图象交点的横坐标,则可以利用图象比,,a b c 较大小.【详解】由已知可得231112,log ,log ,a b c ab c ===作出函数的图象,它们与函数图象的交点的横坐标分别为,232,log ,log xy y x y x ===1y x =,,a b c 如图所示,易得.故选C.c b a >>【点睛】本题考查函数与方程,基本初等函数的图象.对于含有指数、对数等的方程,若不能直接求得方程的根,一般可以利用数形结合思想转化为函数图象的交点问题.20.【2020·天津市芦台一中2020届高三年级第二次模拟】已知定义在R 上的函数的图象关于()f x 1-对称,且当时,单调递减,若,,,则x 1=x 0>()f x ()0.5a f log 3=()1.3b f 0.5-=()6c f 0.7=a ,b ,c 的大小关系是 ()A. B. C. D. c a b >>b a c>>a c b>>c b a>>【答案】A 【解析】【分析】先根据对称性将自变量转化到上,再根据时单调递减,判断大小.0x >0x >()f x 【详解】∵定义在上的函数的图像关于对称,∴函数为偶函数,R ()1f x -1x =()f x ∵,∴,∴,,0.50.5log 3log 10<=()()0.52log 3log 3f f =2221log 2log 3log 42=<<= 1.31.30.522-=>.∵当时,单调递减,∴,故选A .600.71<<0x >()f x c a b >>【点睛】比较两个函数值或两个自变量的大小:首先根据函数的性质把两个函数值中自变量调整到同一单调区间,然后根据函数的单调性,判断两个函数值或两个自变量的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档!河北省石家庄市2020届高三数学二模试题 理(含解析)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.设i 是虚数单位,复数1ii+=( ) A. 1i -+ B. -1i -C. 1i +D. 1i -【答案】D 【解析】 【分析】利用复数的除法运算,化简复数1i1i i+=-,即可求解,得到答案. 【详解】由题意,复数()1i (i)1i 1i i i (i)+⋅-+==-⨯-,故选D . 【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.2.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()⋂=U C A B ( ) A. {}|12x x <≤ B. {}12x x #C. {}11x x -≤< D. {}|1x x ≥-【答案】B 【解析】 【分析】由补集的运算求得{}1U C A x x =≥,再根据集合的并集运算,即可求解,得到答案. 【详解】由题意,集合{}{}1,12A x x B x x =<=-≤≤,则{}1U C A x x =≥, 根据集合的并集运算,可得()⋂=U C A B {}12x x ≤≤,故选B .【点睛】本题主要考查了集合混合运算,其中解答中熟记集合的并集和补集的概念及运算是解答的关键,着重考查了运算与求解能力,属于基础题. 3.如图是一个算法流程图,则输出的结果是( )A. 3B. 4C. 5D. 6【答案】A 【解析】 【分析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案. 【详解】由题意,执行上述的程序框图: 第1次循环:满足判断条件,2,1x y ==; 第2次循环:满足判断条件,4,2x y ==; 第3次循环:满足判断条件,8,3x y ==; 不满足判断条件,输出计算结果3y =, 故选A .【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.4.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A. 3B. 2C. 32-D. 2-【答案】A 【解析】【分析】画出不等式组所表示的平面区域,结合图形确定目标函数的最优解,代入即可求解,得到答案.【详解】画出不等式组210210x yx yy-+≥⎧⎪--≤⎨⎪≥⎩所表示平面区域,如图所示,由目标函数3z x y=-+,化为直线3y x z=+,当直线3y x z=+过点A时,此时直线3y x z=+在y轴上的截距最大,目标函数取得最大值,又由210x yy-+=⎧⎨=⎩,解得(1,0)A-,所以目标函数的最大值为3(1)03z=-⨯-+=,故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.将函数()sin2f x x=的图象向左平移02πϕϕ⎛⎫≤≤⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为()A.12πB.6πC.3πD.4π【答案】D【解析】【分析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【详解】将将函数()sin 2f x x =的图象向左平移ϕ个单位长度, 可得函数()sin[2()]sin(22)g x x x ϕϕ=+=+ 又由函数()g x 为偶函数,所以2,2k k Z πϕπ=+∈,解得,42k k Z ππϕ=+∈, 因为02πϕ≤≤,当0k =时,4πϕ=,故选D .【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )A. 623+B. 622+C. 442+D.443+【答案】C 【解析】 【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可. 【详解】解:几何体的直观图如图,是正方体的一部分,P −ABC ,正方体的棱长为2, 该几何体的表面积:111122222242222⨯⨯+⨯⨯+⨯⨯⨯⨯=+ 故选C .【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键. 7.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( ) A.15B.25C.35D.110【答案】B 【解析】 【分析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数2353C 10n C ==,6和28恰好在同一组包含的基本事件个数22123234m C C C C =+=, ∴6和28恰好在同一组的概率42105m p n ===. 故选B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.8.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A.54B. 5 【答案】C 【解析】 【分析】由双曲线1C 与双曲线2C 有相同的渐近线,列出方程求出m 的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,可得102m m -=,解得2m =,此时双曲线221:128x y C -=,则曲线1C 的离心率为2852c e a +===,故选C . 【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题. 9.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A. B.C. D.【答案】B 【解析】 【分析】由题设条件知:0x <时,()0y xf x '=->,01x <<时,()0y xf x '=-<,0x =或1x = 时,()0y xf x '=-=,1x >时,()0y xf x '=->,由此即可求解.【详解】由函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,所以当1x >时,()0f x '<;1x =时,()0f x '=;1x <时,()0f x '>; 所以当0x <时,()0y xf x '=->,当01x <<时,()0y xf x '=-<, 当0x =或1x = 时,()0y xf x '=-=,当1x >时,()0y xf x '=->, 可得选项B 符合题意,故选B .【点睛】本题主要考查了利用导数研究函数的极值的应用,其中解答中认真审题,主要导数的性质和函数的极值之间的关系合理运用是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A. m n >B. ||||m n <C. m n <D. m 与n 的大小关系不确定【答案】C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果. 【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-,则2()3cos 022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <, 所以m n <. 故选C .【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为K ,点P 为抛物线上任意一点KPF ∠的平分线与x 轴交于(,0)m ,则m 的最大值为( )A. 322-B. 233-C. 23-D.22-【答案】A 【解析】 【分析】求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,211(1)4mmx x-=+++, 求出等式左边式子的范围,将等式右边代入,从而求解. 【详解】解:由题意可得,焦点F (1,0),准线方程为x =−1, 过点P 作PM 垂直于准线,M 为垂足,由抛物线的定义可得|PF |=|PM |=x +1, 记∠KPF 的平分线与x 轴交于(m,0),(1m 1)H -<<根据角平分线定理可得||||||=||||||PF PM FH PK PK KH =, 211(1)4mmx x-=+++, 当0x =时,0m =,当0x ≠2124(1)4112x xx x⎫=⎪⎪++⎣⎭+++,21103221m m m-∴≤<⇒<≤-+, 综上:0322m ≤≤-. 故选A .【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.12.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( )A.112V B. 18VC. 16VD. 19V【答案】D 【解析】 【分析】由题意画出图形,将1,MN ND 所在的面延它们的交线展开到与AM 所在的面共面,可得当11111,33BM BB C C N C ==时1AM MN ND ++最小,设正方体1AC 的棱长为3a ,得327V a =,进一步求出四面体1AMND 的体积即可.【详解】解:如图,∵点M ,N 分别在棱11,BB CC 上,要1AM MN ND ++最小,将1,MN ND 所在的面延它们的交线展开到与AM 所在的面共面,1,,AM MN ND 三线共线时,1AM MN ND ++最小,∴11111,33BM BB C C N C == 设正方体1AC 的棱长为3a ,则327a V =,∴327V a =. 取13BG BC =,连接NG ,则1AGND 共面,在1AND ∆中,设N 到1AD 的距离为1h ,12212212222211111112(3)(3)32,(3)10,(32)(2)22,cos 21022255319sin 25511sin =223192192D NA AD a a a D N a a a AN a a a D NA a a D NA S D N AN D NA AD aa h h ∆=+==+==+=∴∠==⋅⋅∴∠=∴=⋅⋅⋅∠=⋅⋅∴,设M 到平面1AGND 的距离为2h ,22111111[(2)322]3231922219222M AGN A MGNa a V V h a a a a a a h a --∴=∴⋅⋅⋅+⋅-⋅⋅-⋅⋅∴=⋅⋅= 123131933919AMND a V V a ∴===.故选D .【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.二、填空题:本大题共4小题,每题5分,共20分13.已知直线4x y b -=被圆222210x y x y +--+=截得的弦长为2,则b 的值为__ 【答案】3 【解析】 【分析】根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得. 【详解】解:圆222210x y x y +--+=的圆心为(1,1),半径1r =, 因为直线4x y b -=被圆222210x y x y +--+=截得的弦长为2, 所以直线40x y b --=经过圆心(1,1),410b ∴--=,解得3b =.故答案为3.【点睛】本题考查了直线与圆相交的性质,属基础题.14.已知230x dx n =⎰,则(1)n x y ++展开式中2x y 的系数为__【答案】12. 【解析】 【分析】由题意求定积分得到n 的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中2x y的系数.【详解】∵已知24032044x x dx n ⎰===,则4( 1)(1)n x y x y ++=++,它表示4个因式(1)x y ++的乘积.故其中有2个因式取x ,一个因式取y ,剩下的一个因式取1,可得2x y 的项.故展开式中2x y 的系数21142112C C C ⋅⋅=.故答案为12.【点睛】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题.15.在平行四边形ABCD 中,已知1AB =,2AD =,60BAD ∠=︒,若CE ED =u u u r u u u r,2DF FB =u u u r u u u r,则AE AF ⋅=u u u u r u u u r ____________.【答案】52【解析】 【分析】设,AB a AD b ==u u u r r u u u r r,则1,2a b ==r r ,得到12AE b a =+u u u r r r ,2133AF a b =+u u u r r r ,利用向量的数量积的运算,即可求解.【详解】由题意,如图所示,设,AB a AD b ==u u u r r u u u r r,则1,2a b ==r r ,又由CE ED =u u u r u u u r ,2DF FB =u u u r u u u r,所以E 为CD 的中点,F 为BD 的三等分点,则12AE b a =+u u u r r r ,221()333AF b a b a b =+-=+u u u r r r r r r ,所以22121151()()233363AE AF a b a b a a b b ⋅=+⋅+=+⋅+u u u r u u u r r r r r r r r r2021515112cos6023632=⨯+⨯⨯+⨯=.【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.16.在ABC ∆中,角A ,B ,C 的对边长分别为a ,b ,c ,满足22(sin 3)40a a B B -++=,27b =ABC ∆的面积为__.【答案】3【解析】 【分析】由二次方程有解的条件,结合辅助角公式和正弦函数的值域可求B ,进而可求a ,然后结合余弦定理可求c ,代入1sin 2ABC S ac B ∆=,计算可得所求.【详解】解:把22(sin )40a a B B -+=看成关于a 的二次方程,则0∆≥,即24(sin )160B B +-≥, 即为242sin 1603B π⎛⎫⎛⎫+-≥ ⎪ ⎪⎝⎭⎝⎭, 化为2sin 13B π⎛⎫+≥ ⎪⎝⎭,而2sin 13B π⎛⎫+≤ ⎪⎝⎭, 则2sin 13B π⎛⎫+= ⎪⎝⎭, 由于0B π<<,可得4333B πππ<+<, 可得32B ππ+=,即6B π=,代入方程可得,2440a a -+=, 2a ∴=,由余弦定理可得,2428cos 622c c π+-==⨯,解得:c =,111sin 2222ABC S ac B ∆∴==⨯⨯=.故答案为【点睛】本题主要考查一元二次方程的根的存在条件及辅助角公式及余弦定理和三角形的面积公式的应用,属于中档题.三、解答题:共70分解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答第2223题为选考题考生根据要求作答(一)必考题:共60分17.已知数列{}n a 是等差数列,前n 项和为n S ,且533S a =,468a a +=.(1)求n a . (2)设2n nn b a =⋅,求数列{}n b 的前n 项和n T .【答案】(1) ()23n a n =- (2) 2(4)216n n T n +=-⋅+【解析】 【分析】(1)由数列{}n a 是等差数列,所以535S a =,解得30a =,又由46582a a a +==,解得2d =, 即可求得数列的通项公式;(2)由(1)得()1232nn n n b a n +=⋅=-⋅,利用乘公比错位相减,即可求解数列的前n 项和.【详解】(1)由题意,数列{}n a 是等差数列,所以535S a =,又533S a =,30a ∴=, 由46582a a a +==,得54a =,所以5324a a d -==,解得2d =, 所以数列的通项公式为()()3323n a a n d n =+-=-. (2)由(1)得()1232nn n n b a n +=⋅=-⋅,()()()234122120232n n T n +=-⋅+-⋅+⋅++-⋅L , ()()()()3412221242322n n n T n n ++=-⋅+-⋅++-⋅+-⋅L ,两式相减得()()2341222222232n n n n T T n ++-=⋅-++++-⋅L ,()1228128(3)2(4)21612n n n n n -++--+-⋅=-⋅+=-,即2(4)216n n T n +=-⋅+.【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18.已知三棱锥P ABC -中,ABC △为等腰直角三角形,1, AB AC PB PC ====点E 为PA 中点,点D 为AC 中点,点F 为PB 上一点,且2PF FB =.(1)证明://BD 平面CEF ;(2)若PA AC ⊥,求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)证明见解析;(2) 26【解析】 【分析】(1)连接PD 交CE 于G 点,连接FG ,通过证//BD FG ,并说明FG ⊂平面CEF ,来证明//BD 平面CEF(2)采用建系法以AB 、AC 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,分别表示出对应的点,,,BC P E 坐标,设平面PBC 的一个法向量为(,,)n x y z =r,结合直线对应的CE u u u r 和法向量n r,利用向量夹角的余弦公式进行求解即可【详解】()1证明:如图,连接PD 交CE 于G 点,连接FG ,Q 点E 为PA 的中点,点D 为AC 的中点,∴点G 为PAC ∆的重心,则2PG GD =,2PF FB =Q ,//FG BD ∴,又FG⊂Q平面CEF,BD⊂/平面CEF,//BD∴平面CEF;()2AB AC=Q,PB PC=,PA PA=,PAB PAC∴∆≅∆,PA AC⊥Q,PA AB∴⊥,可得2PA=,又AB AC⊥Q,则以AB、AC、AP所在直线分别为x、y、z轴建立空间直角坐标系A xyz-,则()0,0,0A,()1,0,0B,()0,1,0C,()002P,,,()0,0,1E(1,1,0)BC=-u u u r,(1,0,2)BP=-u u u r,(0,1,1)CE=-u u u r.设平面PBC的一个法向量为(,,)n x y z=r,由·0·20n BC x yn BP x z⎧=-+=⎨=-+=⎩u u u vru u u vr,取1z=,得(2,2,1)n=r.设直线CE与平面PBC所成角为θ,则2sin|cos,|23n CEθ=<>==⨯u u u rr.∴直线CE与平面PBC2.【点睛】本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式sin|cos,|n CEθ=<>u u u rr使用广泛,需要识记19.在平面直角坐标系中,(2,0)A-,(2,0)B,且ABC∆满足1tan tan2A B=(1)求点C的轨迹E的方程;(2)过(2F,0)作直线MN交轨迹E于M,N两点,若MAB∆的面积是NAB∆面积的2倍,求直线MN的方程.【答案】(1)221(0)42x yy+=≠.(2)MN的方程为142x y=-【解析】【分析】(1)令(,)C x y ,则1222y y x x ⋅=--+,由此能求出点C 的轨迹方程. (2)令()()1122,,,M x y N x y,令直线:MN x my =-得()22220m y +--=,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程. 【详解】解:(1)因为1tan tan 2A B =,即直线AC,BC斜率分别为12,k k 且1212k k ⋅=-, 设点(,)C x y ,则1222y y x x ⋅=--+, 整理得221(0)42x y y +=≠.(2)令()()1122,,,M x y N x y ,易知直线MN 不与x 轴重合,令直线:MN x my =22142x y +=联立得()22220m y +--=,所以有12122220,,22y y y y mm -∆>+==++, 由2MAB NAB S S ∆∆=,故122y y =,即122y y =-,从而()2212122122141222y y y y m y y m y y +-==++=-+, 解得227m =,即7m =±. 所以直线MN 的方程为x y =- 【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题.20.随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用⋯⋯等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额X的分布列与期望.【答案】(1)李某月应缴纳的个税金额为2910元,(2)分布列详见解析,期望为1150元【解析】【分析】(1)分段计算个人所得税额;(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可.【详解】解:(1)李某月应纳税所得额(含税)为:29600−5000−1000−2000=21600元不超过3000的部分税额为3000×3%=90元超过3000元至12000元的部分税额为9000×10%=900元,超过12000元至25000元的部分税额为9600×20%=1920元所以李某月应缴纳的个税金额为90+900+1920=2910元,(2)有一个孩子需要赡养老人应纳税所得额(含税)为:20000−5000−1000−2000=12000元,月应缴纳的个税金额为:90+900=990元有一个孩子不需要赡养老人应纳税所得额(含税)为:20000−5000−1000=14000元, 月应缴纳的个税金额为:90+900+400=1390元;没有孩子需要赡养老人应纳税所得额(含税)为:20000−5000−2000=13000元, 月应缴纳的个税金额为:90+900+200=1190元;没有孩子不需要赡养老人应纳税所得额(含税)为:20000−5000=15000元, 月应缴纳的个税金额为:90+900+600=1590元;3(990),51(1190),101(1390) ,51(1590)10P X P X P X P X ========. 所以随机变量X 的分布列为:3111E(x)9901190139015901150510510=⨯+⨯+⨯+⨯=.【点睛】本题考查了分段函数的应用与函数值计算,考查了随机变量的概率分布列与数学期望,属于中档题. 21.已知函数1()lnxf x x+=(1)若1()f x ax x<+恒成立,求实数a 的取值范围;(2)若方程()f x m =有两个不同实根1x ,2x ,证明:122x x +>. 【答案】(1)1(,)2e+∞(2)详见解析 【解析】 【分析】(1)将原不等式转化为2ln x a x >,构造函数2ln ()xg x x =,求得()g x 的最大值即可;(2)首先通过求导判断()f x 的单调区间,考查两根的取值范围,再构造函数()()(2)h x f x f x =--,将问题转化为证明()0h x <,探究()h x 在区间内的最大值即可得证.【详解】解:(1)由1()f x ax x <+,即ln x ax x <, 即2ln xa x >, 令2ln (),(0)xg x x x =>,则只需max ()a g x >,312ln ()xg x x'-=,令()0g x '=,得x = ()g x ∴在上单调递增,在)+∞上单调递减,max 1()2g x g e∴==, a ∴的取值范围是1(,)2e+∞; (2)证明:不妨设'122ln ,()xx x f x x <=-, ∴当(0,1)x ∈时,'()0,()f x f x >单调递增,当(1,)x ∈+∞时,'()0,()f x f x <单调递减,1(1)1,0f f e ⎛⎫== ⎪⎝⎭Q ,当x →+∞时,()0f x →,1210m 1,1x x e∴<<<<<,要证122x x +>,即证212x x >-, 由211,21,()x x f x >->在(1,)+∞上单调递增,只需证明()()212f x f x <-,由()()12f x f x =,只需证明()()112f x f x <-, 令()()(2)h x f x f x =--,(0,1)x ∈, 只需证明()0h x <,易知22ln ln(2)(1)0,()()(2)(2)x x h h x f x f x x x '''-==+-=---, 由(0,1)x ∈,故22ln 0,(2)x x x -><-, 22ln ln(2)ln[(2)]()0(2)(2)x x x x h x x x '-----∴>=>--, 从而()h x 在(0,1)上单调递增,由(1)0h =,故当(0,1)x ∈时,()0h x <,故122x x +>,证毕.【点睛】本题考查利用导数研究函数单调性,最值等,关键是要对问题进行转化,比如把恒成立问题转化为最值问题,把根的个数问题转化为图像的交点个数,进而转化为证明不等式的问题,属难题.(二)选考题:共10分请考生从第22,23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.在极坐标系中,曲线C 的方程为()2cos sin 0a a ρθθ=>,以极点为原点,极轴所在直线为x 轴建立直角坐标,直线l的参数方程为2212x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与C 交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设点()2,1P -;若PM 、MN 、PN 成等比数列,求a 的值【答案】(1) 曲线C 的直角坐标方程为()20x ay a =>,直线l 的普通方程为10x y +-= ; (2) 1a =【解析】【分析】(1)由极坐标与直角坐标的互化公式和参数方程与普通方程的互化,即可求解曲线的直角坐标方程和直线的普通方程;(2)把l 的参数方程代入抛物线方程中,利用韦达定理得12t t +=,1282t t a =+,可得到2211,,PM N MN t t t t P ===-,根据因为PM ,MN ,PN 成等比数列,列出方程,即可求解.【详解】(1)由题意,曲线C 的极坐标方程可化为()22cos sin ,0a a ρθρθ=>, 又由cos sin x y ρθρθ=⎧⎨=⎩,可得曲线C 的直角坐标方程为()20x ay a =>, 由直线l的参数方程为2212x y ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),消去参数t ,得10x y +-=,即直线l 的普通方程为10x y +-=;(2)把l的参数方程221x t y ⎧=-⎪⎪⎨⎪=-+⎪⎩代入抛物线方程中,得()()2820t t a -++=,由2280a a ∆=+>,设方程的两根分别为1t ,2t ,则120t t +=>,12820t t a =+>,可得10,t >,20t >. 所以12MN t t =-,1PM t =,2PN t =. 因为PM ,MN ,PN 成等比数列,所以()21212t t t t -=,即()212125t t t t +=,则()()2582a =+,解得解得1a =或4a =-(舍), 所以实数1a =.【点睛】本题主要考查了极坐标方程与直角坐标方程,以及参数方程与普通方程的互化,以及直线参数方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.23.设函数()22f x x x a =-+-.(1)当1a =时,求不等式()3f x ≥的解集;(2)当()2f x x a =-+时,求实数x 的取值范围.【答案】(1) (][),02,-∞+∞U (2) 当4a ≤时,x 的取值范围为22a x ≤≤;当4a >时,x 的取值范围为22a x ≤≤. 【解析】【分析】 (1)当1a =时,分类讨论把不等式()3f x ≥化为等价不等式组,即可求解.(2)由绝对值的三角不等式,可得()()222f x x a x x a ≥---=-+,当且仅当()()220x a x --≤时,取“=”,分类讨论,即可求解.【详解】(1)当1a =时,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩, 不等式()3f x ≥可化为33312x x -+≥⎧⎪⎨≤⎪⎩或13122x x +≥⎧⎪⎨<<⎪⎩或3332x x -≥⎧⎨≥⎩ , 解得不等式的解集为(][),02,-∞+∞U .(2)由绝对值的三角不等式,可得()()22222f x x x a x a x x a =-+-≥---=-+, 当且仅当()()220x a x --≤时,取“=”,所以当4a ≤时,x 的取值范围为22a x ≤≤;当4a >时,x 的取值范围为22a x ≤≤. 【点睛】本题主要考查了含绝对值的不等式的求解,以及绝对值三角不等式的应用,其中解答中熟记含绝对值不等式的解法,以及合理应用绝对值的三角不等式是解答的关键,着重考查了推理与运算能力,属于基础题.。