贝叶斯统计及其推断PPT课件( 123页)
合集下载
贝叶斯公式算法PPT课件

j 1
直观地将Ai 看成是导致随机事件B发生的各 种可能的原因,则P(Ai)可以理解为随机事件 Ai发生的先验概率(a priori probability).如 果我们知道随机事件B发生这个新信息,则它 可以用于对事件Ai发生的概率进行重新的估计 .事件P(Ai|B)就是知道了新信息“A发生”后 对于概率的重新认识,称为随机事件Ai的后验
n
P( Ai | B) P( Ai )P(B|Ai ) P( Aj )P(B|Aj )
j 1
i 1,2,, n 该公式于1763年由贝叶斯(Bayes)给出.
它是在观察到事件B已发生的条件下,寻找导 致B发生的每个原因的概率.
13
贝叶斯公式:
n
P( Ai | B) P( Ai )P(B|Ai ) P( Aj )P(B|Aj )
由全概率公式:
P(B) P(B | A)P(A) P(B | A)P(A)
1
4 p 1
p (1 p)
5
5
16
2019/10/23
17
得到:
P(A | B) P(AB) 5 p P(B) 4 p 1
例如,若 p 1 2
则 P(A | B) 5 6
这说明老师们依据试卷成绩来衡量学 生平时的学习状况还是有科学依据的.
i 1
称满足上述条件的A1,A2,…,An为完备事件组.
6
n
P(B) P ( Ai )P(B|Ai )
i 1
全概率公式的来由, 不难由上式看出:
“全”部概率P(B)被分解成了许多部分之和.
它的理论和实用意义在于:
在较复杂情况下直接计算P(B)不易,但B总是 伴随着某个Ai出现,适当地去构造这一组Ai
直观地将Ai 看成是导致随机事件B发生的各 种可能的原因,则P(Ai)可以理解为随机事件 Ai发生的先验概率(a priori probability).如 果我们知道随机事件B发生这个新信息,则它 可以用于对事件Ai发生的概率进行重新的估计 .事件P(Ai|B)就是知道了新信息“A发生”后 对于概率的重新认识,称为随机事件Ai的后验
n
P( Ai | B) P( Ai )P(B|Ai ) P( Aj )P(B|Aj )
j 1
i 1,2,, n 该公式于1763年由贝叶斯(Bayes)给出.
它是在观察到事件B已发生的条件下,寻找导 致B发生的每个原因的概率.
13
贝叶斯公式:
n
P( Ai | B) P( Ai )P(B|Ai ) P( Aj )P(B|Aj )
由全概率公式:
P(B) P(B | A)P(A) P(B | A)P(A)
1
4 p 1
p (1 p)
5
5
16
2019/10/23
17
得到:
P(A | B) P(AB) 5 p P(B) 4 p 1
例如,若 p 1 2
则 P(A | B) 5 6
这说明老师们依据试卷成绩来衡量学 生平时的学习状况还是有科学依据的.
i 1
称满足上述条件的A1,A2,…,An为完备事件组.
6
n
P(B) P ( Ai )P(B|Ai )
i 1
全概率公式的来由, 不难由上式看出:
“全”部概率P(B)被分解成了许多部分之和.
它的理论和实用意义在于:
在较复杂情况下直接计算P(B)不易,但B总是 伴随着某个Ai出现,适当地去构造这一组Ai
贝叶斯估计课件

而, p(B1) 10(0.9)9(0.1) 0.387 , p(B2) 10(0.7)9(0.3) 0.121
此时, (1) 0.7 , (2 ) 0.3 p(B) 0.307 (1 B) 0.883 , (2 B) 0.117
经理看到, 经过二次试验对1 (高质量产品占90%)的概率
• 贝叶斯推断的基本方法是将关于未知参数的先 验信息与样本信息综合,再根据贝叶斯定理,得 出后验信息,然后根据后验信息去推断未知参数 (茆诗松和王静龙等,1998年)。 “贝叶斯提出了一种归纳推理的理论(贝叶斯定 理),以后被一些统计学者发展为一种系统的统计 推断方法,称为贝叶斯方法.”──摘自《中国大百 科全书》(数学卷)
总体信息 样本信息
而贝叶斯学派认为是三种信息:
总体信息 样本信息 先验信息
总体信息
即总体分布或总体所属分布族给我们的 信息。譬如,“总体是正态分布”就给我 们带来很多信息:他的密度函数是一条钟 形曲线;他的一切一阶距都存在;有关正 态变量(服从正态分布随机变量)的一些 事件的概率可以计算;由正态分布可以导 出分布,分布和分布等重要分布,还有许 多成熟的点估计、区间估计和假设检验方 法可供我们选用。总体信息是很重要的信 息,为了获得此信息,往往耗资巨大。
第一章先验分布与后验分布
统计学有两个主要学派:频率学派与贝叶斯学派. 它们之间有异同,贝叶斯统计是在与经典统计的争 论中发展起来,主要的争论有: 1.未知参数可否作为随机变量? 2.事件的概率是否一定的频率解释? 3.概率是否可用经验来确定? ……….
§1.1 先介绍三种信息的概念
经典统计学派规定统计推断使用两种信息:
K
全概率公式:P(x) P(x | i )P(i ) i 1
此时, (1) 0.7 , (2 ) 0.3 p(B) 0.307 (1 B) 0.883 , (2 B) 0.117
经理看到, 经过二次试验对1 (高质量产品占90%)的概率
• 贝叶斯推断的基本方法是将关于未知参数的先 验信息与样本信息综合,再根据贝叶斯定理,得 出后验信息,然后根据后验信息去推断未知参数 (茆诗松和王静龙等,1998年)。 “贝叶斯提出了一种归纳推理的理论(贝叶斯定 理),以后被一些统计学者发展为一种系统的统计 推断方法,称为贝叶斯方法.”──摘自《中国大百 科全书》(数学卷)
总体信息 样本信息
而贝叶斯学派认为是三种信息:
总体信息 样本信息 先验信息
总体信息
即总体分布或总体所属分布族给我们的 信息。譬如,“总体是正态分布”就给我 们带来很多信息:他的密度函数是一条钟 形曲线;他的一切一阶距都存在;有关正 态变量(服从正态分布随机变量)的一些 事件的概率可以计算;由正态分布可以导 出分布,分布和分布等重要分布,还有许 多成熟的点估计、区间估计和假设检验方 法可供我们选用。总体信息是很重要的信 息,为了获得此信息,往往耗资巨大。
第一章先验分布与后验分布
统计学有两个主要学派:频率学派与贝叶斯学派. 它们之间有异同,贝叶斯统计是在与经典统计的争 论中发展起来,主要的争论有: 1.未知参数可否作为随机变量? 2.事件的概率是否一定的频率解释? 3.概率是否可用经验来确定? ……….
§1.1 先介绍三种信息的概念
经典统计学派规定统计推断使用两种信息:
K
全概率公式:P(x) P(x | i )P(i ) i 1
Bayes(贝叶斯)估计

•
参数作为随机变量
• 条件分布: p(x1,x2,..xn | )
精选完整ppt课件
几个学派(3)
• 信念学派:
• 带头人:Fisher
• 观点:概率是频率
•
主观不是概率,而是信念度
•
参数不是随机变量,仅是普通变量
• 似然函数: L( | x1,x2,..xn)
精选完整ppt课件
批评1:置信区间
后验风险:
• Bayesian风险与后验风险
(L(,)p(x|) ()d)dx
• 后验分析最小=>Bayesian风险最小
精选完整ppt课件
两种常用损失函数:
• 平方损失:
L(,)()2
– 最小Bayesian风险估计:后验期望
• 点损失:
L(a,
)
0,|
a
|
1,|
a
|
– 最大后验密度估计
精选完整ppt课件
• 3、联合分布密度->条件分布密度
• p(x1,x2,..xn | ), 是随机变量
• 4、确定的先验分布() • 5、利用Bayesian公式求后验分布密度 • 6、使用后验分布做推断(参数估计、假设检验)
精选完整ppt课件
例1:两点分布b(1,p)的
• 1. 联合分布:p(x|)nxx(1)nx
• 使得 h ( |r ) p (x |)* ( )与先验分布同类型
• 若p(x|)服从正态分布,选正态分布 • 若p(x|)服从两点分布,选Beta分布 • 若p(x|)服从指数分布,选逆Gamma分布
精选完整ppt课件
Bayes统计推断问题
• 参数估计:
– 点估计 – 区间估计
简单贝叶斯方法ppt课件

P ( X x | C 0 ) P ( C 0 ) P ( X x | C 0 ) P ( C 0 ) 0 0 P ( C 0 | X x ) 0 P ( X x ) P ( X x | C 1 ) P ( C 1 ) P ( X x | C 0 ) P ( C 0 ) 0 0 0
从这个意义上讲,它是一个“执果索因”的条 件概率计算公式.相对于事件B而言 ,概率论中 把 P(Ai) 称为先验概率( Prior Probability), 而 把 P(Ai|B) 称 为 后 验 概 率 ( Posterior Probability),这是在已有附加信息(即事件 B已发生)之后对事件发生的可能性做出的重新 认识,体现了已有信息带来的知识更新.
简单贝叶斯方法
本节内容纲要
• • • • • • 贝叶斯定理回顾 简单贝叶斯(Naï ve Bayes) 贝叶斯分类法:二类别 对分类法的实用评价 不对称错误分类代价和贝叶斯风险分类 贝叶斯风险分类:多类别
贝叶斯定理回顾
定义 事件组A1,A2,…,An (n可为),称为样 本空间S的一个划分,若满足:
– 目标是预测类别C – 特别地, 我们想找能够最大化P(C| A1, A2,…,An )的 C值
• 能否从直接数据中估计P(C| A1, A2,…,An )?
贝叶斯分类方法
• 方法:
– 使用贝叶斯定理对于分类变量C的所有值计算后验概率 P(C | A1, A2, …, An) ,
P ( A A A | C ) P ( C ) P ( C | A A A ) P ( A A A )
i 1
P ( A P ( B |A j) j)
式子就称为贝叶斯公式。
贝叶斯定理回顾
从这个意义上讲,它是一个“执果索因”的条 件概率计算公式.相对于事件B而言 ,概率论中 把 P(Ai) 称为先验概率( Prior Probability), 而 把 P(Ai|B) 称 为 后 验 概 率 ( Posterior Probability),这是在已有附加信息(即事件 B已发生)之后对事件发生的可能性做出的重新 认识,体现了已有信息带来的知识更新.
简单贝叶斯方法
本节内容纲要
• • • • • • 贝叶斯定理回顾 简单贝叶斯(Naï ve Bayes) 贝叶斯分类法:二类别 对分类法的实用评价 不对称错误分类代价和贝叶斯风险分类 贝叶斯风险分类:多类别
贝叶斯定理回顾
定义 事件组A1,A2,…,An (n可为),称为样 本空间S的一个划分,若满足:
– 目标是预测类别C – 特别地, 我们想找能够最大化P(C| A1, A2,…,An )的 C值
• 能否从直接数据中估计P(C| A1, A2,…,An )?
贝叶斯分类方法
• 方法:
– 使用贝叶斯定理对于分类变量C的所有值计算后验概率 P(C | A1, A2, …, An) ,
P ( A A A | C ) P ( C ) P ( C | A A A ) P ( A A A )
i 1
P ( A P ( B |A j) j)
式子就称为贝叶斯公式。
贝叶斯定理回顾
《贝叶斯估计》PPT课件

前面的分析总结如下:人们根据先验信息对参数θ
已有一个认识,这个认识就是先验分布π (θ )。通
过试验,获得样本。从而对θ 的先验分布进行调整,
调整的方法就是使用上面的贝叶斯公式,调整的结
果就是后验分布 ( x1,。, xn后) 验分布是三种信息 的综合。获得后验分布使人们对θ 的认识又前进一
1)
,
x
0,1, n
( x)
(n 2)
x (1 )nx ,0 1
(x 1)(n x 1)
即
X ~ Be(x 1, n x 1)
9
贝叶斯统计学首先要想方设法先去寻求θ的先验分布。 先验分布的确定大致可分以下几步: 第一步,选一个适应面较广的分布族作先验分布族, 使它在数学处理上方便一些,这里我们选用β分布族
步,可看出,获得样本的的效果是把我们对θ的认识
由π(θ)调整到 应建立在后验分布
( 。x1,所,以xn)对θ的统计推断就 ( 的x1,基础, xn上) 。
7
例1 设事件A(产品为废品)的概率为 ,即P(A) 。 为了估计 而作n次独立观察,其中事件A出现次数
为X,则有X服从二项分布 b(n, )
第三章 贝叶斯估计
§3.1贝叶斯推断方法 一 、统计推断中可用的三种信息
美籍波兰统计学家耐(E.L.Lehmann1894~1981) 高度概括了在统计推断中可用的三种信息:
1.总体信息,即总体分布或所属分布族给我们 的信息。譬如“总体是指数分布”或“总体是正 态分布”在统计推断中都发挥重要作用,只要有 总体信息,就要想方设法在统计推断中使用。
假设Ⅱ 当给定θ后,从总体p(x|θ)中随机抽取一个样 本X1,…,Xn,该样本中含有θ的有关信息。这种信 息就是样本信息。
贝叶斯统计及其推断(PowerPoint 123页)

1.先验矩法
历史数据得的估计值1,..., k
计算
1 +...+k
k
, S2
1 k 1
k
(i
i 1
)2
令E =
Var
(
)2 (
1)
S2
解得 , 的一个估计 ,
先验分布的确定
2.利用先验分位数
若历史经验得 ( )的下P1和上P2分位数L和U
则有
L 0
( ) 1(1 ) 1d ( )T ( )
解:m(x) p(x, )d p(x | ) ( )d , ( | x) p(x, ) / p(x, )d p(x | ) ( ) / m(x).
求解的例子
设x b(n, ), ~ U (0,1).求m(x), ( | x)
解:m(x)
1 0
Cnx
x
(1
)nx
1d
Cnx
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于 ch(x)dx 1(或 ch(x) 1) x
c
1
从而P(x) h( x)
h(x)dx
h(x)dx
即P( x)由核唯一确定,
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例3.1.设x ~ N (1, 4)
可信区间——选择标准
由上例知的1 可信区间a, b不唯一
选择区间长度最短的。假如,某人年龄的两个
1 可信区间为30,40和38,41,则38,41更好,
精度更高,信息更精确
可信区间——选择标准
a, b为1 可信区间,则
b
a ( | x)d 1
贝叶斯统计ppt课件

29
二 参数的Bayes点估计
(3)后验中位数估计
若 Me是后验分布h(θ| x )的中位数, 则 Me称为θ的后验中位数估计。即若
u0.5 h( x)d 0.5
则后验分布中位数估计
Me u0.5
30
二 参数的Bayes点估计
以上三种估计统称θ的Bayes估计,记为
或简记B 为 。它们 皆是样本观察值
18
历史迭代图
不收敛 收敛
19
(2)观察自相关性图 (m)
自相关性图用于描述(m)序列在不同迭代
延迟下的相关性,延迟i的自相关性是指相 距i步的两迭代之间的相关性。具有较差的 性质的链随着迭代延迟的增加会表现出较 慢的自相关衰弱。
20
21
22
23
Bayes Bayes统计推断
Bayes统计推断概述 参数的Bayes点估计 Bayes区间估计 Bayes假设检验
选择检验统计量,确定抽样分布,等等。
41
四 Bayes假设检验
Bayes假设检验不同型:
简单假设 简单假设
复杂假设 复杂假设 假单假设 复杂假设
42
四 Bayes假设检验
Bayes因子
设两个假设Θ0,Θ1的先验概率分布为π0与π1,
即:
0 P( 0 ),1 P( 1)
则 0 1 称为先验概率比。
3
(一)预备知识
4
5
(二)基本思想
6
(三)常用MCMC算法 Gibbs抽样(吉布斯采样算法)
7
8
立即更新的Gibbs抽样
每次迭带的时候 的一些元素已经被跟新了,如果在更
新其他的元素时不使用这些更新后的元素会造成一定程度 的浪费。事实上, Gibbs抽样 可通过在每一步都利用近似 得到的其他元素的值来获得更好的效果。这种方法改进了 练的混合,换句话说,链能更加迅速,更加详尽的搜索目 标分布的支撑空间。
Bayes统计Full ppt课件

A:试制5个产品,全是高质量的产品。 依Bayes思想,A的发生可以用来修正原先的判断
即求: (1|A), (2|A)
12
Bayes统计Full
P(A|1)=0.95=0.590 P(A|2)=0.75=0.168 由离散Bayes公式:
(1|A)=P(A|1)(1)/P(A) (2|A)=P(A|2)(2)/P(A)
18
Bayes统计Full
贝叶斯推断的基本步骤如下:
选择一个概率密度函数 f ( ) ,用来表示在取得数据之
前我们对某个参数 的信念。我们称之为先验分布。
选择一个模型 f ( x | )(在参数推断中记为 f ( x ; ) ) 来
反映在给定参数 情况下我们对x的信念。
当得到数据 X1, X2,…Xn 后,我们更新我们的信念并且
为了得到后验的均值,我们必须计算
n
f |xn d
nf n fd
在这个例子中可以解析计算。后验恰好为Beta分布
f p; ,
p11 p 1
其中参数
p s1 n2
f p |x n
s 1, n s 1,均值为
n2
ps111pns11
s1 ns1
25
Bayes统计Full
p的极大似然估计为 p s n ,为无偏估计。
②后验分布。
根据样本分布和未知参数的先验分布,用概率论中求条件概 率分布的方法,求出的在样本已知下,未知参数的条件分布。 因为这个分布是在抽样以后才得到的,故称为后验分布。
贝叶斯推断方法的关键是任何推断都必须且只须根据 后验分布,而不能再涉及样本分布,即对没有观察到 的样本不予考虑。
9
Bayes统计Full
值。 将 视为随机变量且具有先验分布具有实际意义,能拓广
即求: (1|A), (2|A)
12
Bayes统计Full
P(A|1)=0.95=0.590 P(A|2)=0.75=0.168 由离散Bayes公式:
(1|A)=P(A|1)(1)/P(A) (2|A)=P(A|2)(2)/P(A)
18
Bayes统计Full
贝叶斯推断的基本步骤如下:
选择一个概率密度函数 f ( ) ,用来表示在取得数据之
前我们对某个参数 的信念。我们称之为先验分布。
选择一个模型 f ( x | )(在参数推断中记为 f ( x ; ) ) 来
反映在给定参数 情况下我们对x的信念。
当得到数据 X1, X2,…Xn 后,我们更新我们的信念并且
为了得到后验的均值,我们必须计算
n
f |xn d
nf n fd
在这个例子中可以解析计算。后验恰好为Beta分布
f p; ,
p11 p 1
其中参数
p s1 n2
f p |x n
s 1, n s 1,均值为
n2
ps111pns11
s1 ns1
25
Bayes统计Full
p的极大似然估计为 p s n ,为无偏估计。
②后验分布。
根据样本分布和未知参数的先验分布,用概率论中求条件概 率分布的方法,求出的在样本已知下,未知参数的条件分布。 因为这个分布是在抽样以后才得到的,故称为后验分布。
贝叶斯推断方法的关键是任何推断都必须且只须根据 后验分布,而不能再涉及样本分布,即对没有观察到 的样本不予考虑。
9
Bayes统计Full
值。 将 视为随机变量且具有先验分布具有实际意义,能拓广
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
0
即 P ( x) (a b) x a1 (1 x)b1 (a) (b)
0 x 1
计算的简化---边缘密度的核
法二:由于Be(a,b)的核 为xa1(1 x)b1, 0 x 1, 故x ~ Be(a, b), P(x) ~
计算的简化---后验密度的核
先验信息的利用
先 验 信 息 通 过 给 出 参 数 的 一 个 分 布 来 反 映 , 称 此 分 布 为 参 数 的 先 验 分 布 , 记 为 ( )
贝叶斯统计与经典统计的区别
总之,贝叶斯统计与经典统计的区别反映在:对 参数、概率的理解上,先验信息有无利用上
符号的改变
P (x;) P (x|) 右 边 : 在 给 定 (一 个 样 本 值 ) 时 , X 的 条 件 分 布
0 1
即| x~Be(x1,nx1)
计算的简化
核的定义,设r.v.x的概率密度(或分布列)
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于ch(x)dx 1(或ch(x) 1) x
c 1 从而P(x) h(x)
h(x)dx
h(x)dx
即P(x)由核唯一确定,
设X~P(x|)
经 典 统 计 认 为 是 个 常 数 , 但 未 知 。
贝 叶 斯 统 计 认 为 是 个 随 机 变 量 , 无 论 是 否 可 变 。
参数理解的例子
例1 估计某特定教师的年龄
经典统计认为 是一常数, 但未知,实际上 确实是一
个未知的不可变数。贝叶斯
统计仍然认为 为一个r.v.。
例4.2.设x ~ N ( , 2 ), ~ N ( , 2 )求 ( | x)
解: ( | x)
1
e
(
x ) 2 2
2
2
1
e
( 22
)2
2
e
( x ) 2 2
2
e
( 2 2
)
2
e
2
(
x
)2 2 2
2 2
(
)
2
exp{
(
2
2 )
2 2( 2 x 2 2 2
2 )
}
ቤተ መጻሕፍቲ ባይዱ
2 exp{
2(
2
x
2
2
2
21
)
[ } exp{
(
2 2
2
x
2
2 1
2 2
2
)]2 }
1 2
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例 3 . 1 .设 x ~ N (1 , 4 )
则 P (x)
1
( x 1)2
e 24 , x R
2 2
2
1
2
x2 2 x 1
e
2 4
x2 2 x
e 8 h(x)
计算的简化---边缘密度的核
边缘密度和后验密度
设X的密度为P(x|),现有 观察值x,及(),求 边缘密度m(x),后验密度(| x) 解 : m (x)p(x,)dp(x|)()d, (|x)p(x,)/p(x,)dp(x|)()/m (x).
求解的例子
设 x b ( n ,) ,~ U ( 0 ,1 ) . 求 m ( x ) ,(|x )
计算的简化---边缘密度的核
例 4.1.设 X b(n, ), u (0,1), 求 ( | x)
解 : P(x| )=C nx x(1- )n x ( ) 1, 0 1
0 1
( | x) P ( x | ) / m ( x)
C nx x (1 ) n x 1 x (1 ) n x
例 2.3.设 后 验 密 度 为 ( | x ) C nx x (1 ) n x / m ( x ) x (1 ) n x h ( )
注 : 在 后 验 密 度 (|x)中 , x要 视 作 常 数 ,
后 验 密 度 是 一 个 条 件 密 度 。 实 际 上 贝 叶 斯 统 计 式 基 于 当 前 观 察 Xx的 条 件 统 计 推 断
例3.2.设 x的 密 度 核 为 x a1 (1 x)b1, 0 x 1, 求 P ( x)
解 : 法1.P ( x) c.h( x)
又
1
ch(x)dx
1
P(x)dx 1
0
0
c
1
1
h(x)
1 1 x a 1 (1
x )b1
(a b) (a) (b)
( x 1)1 (1 ) ( n x 1)1 , 0 1 .
故 |xB e (x 1 ,n x 1 )
注 : 由 于 丢 弃 部 分 x的 函 数 Cnx等 ,
故x(1)nxd不 能 导 出 m(x).
计算的简化---边缘密度的核
概率理解的不同
设P(A)=0.9…… (1) ●经典统计:(1)式意味着重复试验n次,A
发生的次数约为0.9n,故又称为频率学派
●贝叶斯统计:认为A发生的可能性为90%, 试验不一定会重复
概率理解的不同
例2
在 例 1 中 , 根 据 生 活 经 验 , 断 定 在 [30,40] 之 间 的 可 能 性 为 0.9,即 P(3040)=90%
解:m(x) 01Cnx x(1)nx 1d
Cnx
1
x
(1
)nx
d
0
1 n1
,
x 0,1,...,n.
(| x) Cnxx(1)nx / m(x)
(n2)
(1 ) (x1)1
(nx1)1
(x1)(nx1)
贝叶斯统计
贝叶斯中的
信息 三种信息:
总体信息~可知r.v.的分布类型 样本信息~由此可推断未知参数的信息 先验信息~由历史经验得到的参数信息
有一定的主观性通常由专家给出
经典统计与贝叶斯统计
经典统计与贝叶斯统计的区别反映在三个方 面:
• 参数的理解上 • 概率的理解上 • 先验信息的有无利用上
对参数的理解