数值分析幂法和反幂法培训资料

合集下载

数值分析幂法和反幂法

数值分析幂法和反幂法

数值分析幂法和反幂法数值分析中的幂法和反幂法是求解矩阵最大特征值和最小特征值的常用方法。

这两种方法在许多数值计算问题中都有着广泛的应用,包括图像压缩、数据降维、谱聚类等。

幂法(Power Method)是一种迭代算法,通过不断迭代矩阵与一个向量的乘积,来逼近原矩阵的最大特征值和对应的特征向量。

其基本思想是,对于一个矩阵A和一维向量x,可以通过不断迭代计算Ax,Ax,Ax...,来使得向量x逼近最大特征值对应的特征向量。

具体的迭代过程如下:1.初始化一个向量x0(可以是单位向量或任意非零向量)2.令x1=Ax0,对向量进行归一化(即除以向量的范数)得到x13.重复步骤2,即令x2=Ax1,x3=Ax2...,直到收敛(即相邻迭代向量的差的范数小于一些阈值)为止4. 最终得到的向量xn就是A的最大特征值对应的特征向量在实际求解时,我们可以将迭代过程中的向量进行归一化,以防止数值溢出或下溢。

此外,为了提高迭代速度,我们可以选择使得xn与xn-1的内积大于0的方向作为迭代方向,这样可以使得特征值的模快速收敛到最大特征值。

幂法的收敛性是保证的,但收敛速度可能较慢,尤其是当最大特征值与其他特征值非常接近时。

此时可能需要使用一些改进的方法来加速收敛,例如Rayleigh商或位移策略。

相反,反幂法(Inverse Power Method)是求解矩阵的最小特征值和对应的特征向量的方法。

它的基本思想和幂法类似,但在每次迭代中,需要计算A和依其逆矩阵A-1的乘积。

迭代过程如下:1.初始化一个向量x0(可以是单位向量或任意非零向量)2.令x1=A-1x0,对向量进行归一化(即除以向量的范数)得到x13.重复步骤2,即令x2=A-1x1,x3=A-1x2...4. 最终得到的向量xn就是A的最小特征值对应的特征向量反幂法和幂法的区别在于迭代过程中乘以了A的逆矩阵,从而可以利用矩阵的特殊结构或性质来提高迭代速度。

同时,在实际求解时,可能需要将矩阵进行一些变换,以确保A-1存在或数值稳定性。

幂法及反幂法

幂法及反幂法

v2
Au1
A2v0 max(Av0 )
,
vk
Auk 1
maxA(Akvk01v0 )
,
v0 0
u1
u2
uk
(且1 0)
规范 化
u2
v1 Av0
max( v1 ) v2
max( v2 )
mmaaxAx((2AAv02vv00))
vk max(vk
)
Ak
nxnn) nxn 1
Ax1
2 Ax2
n
Axn
且其从1 x收中而1。当由说敛k假kl明速ki=m设2,度(,(3当由2,(1i2…k比).充k121值))时分k 0xr式,大2(vik|时| 1k1k[2121,A(,|确|v 1k有x|1定11,xnn2v(1。)k1kA,|k2n1所v即(0)k以1211xk)xkl|nk有i11m,x)n122k或|x,kkl1得imv0k1k|v,2越k1k n21ni来k(|x2越n11n11))kx接k(x1xin近n]2特,n(2征(,n.n2k4向)x.)3n )量)
结论:
定理 8 (1)设 A Rnn 有n个线性无关的特征向量; (2)设A特征值满足 | 1 || 2 | | n |, 且 Axi i xi (i 1,,n); (3){uk } 及 {vk }由改进幂法得到的规范化向量序列及迭代向量
序列((2.7)式),则有
(a)
lim
k
uk
x1 ; max( x1 )
,对应特征向量为
xi
(i
1,,
n),
xn } 线性无关。求矩阵A的主特
征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量

数值幂法及反幂法分析方法

数值幂法及反幂法分析方法

xn组成规范化正交组,即(x, x j) ij ),则
1。n
Ax, x x, x
1
对于任意非零向量x Rn
2。1
max
xRn ,x0
Ax, x x, x
.
3。n
min
xRn ,x0
Ax, x x, x
证明:1。设x Rn
由于x1, x2 ,, xn为Rn的一组正交向量,有
X a1x1 a2 x2 an xn
X
2
X
,
X
1 2
a1x1 an xn , a1x1 an xn
a12 a22 ,an2 0.
n
于是
Ax, x x, x
ai 2i
i 1 n
ai 2
i 1
n
n
n ai2
n
i 1 n
ai 2
Ax, x x, xBiblioteka 1 ai 2i1 n
1
ai 2
i 1
i 1
本章主要介绍三种方法:幂法、反幂法、 正交相似变换的方法,来求A的特征值及相应 的特征向量.
w
max
2 1
p p
,
n 1
p p
min,
取2
p n
p,
p
2
p
2
p*时w最小.
这时,2 p* n p* 2 n . 1 p* 1 p* 21 2 n
2.Rayleigh商加速法
计算实对称阵A的主特征值1..
定理2 设A Rnn为实对称阵,1 2 3 n
对应的特征向量满足 xi , x j ij ,应用幂法计算1,
定理3(Gerschgorin’s圆盘定理)

数值分析(10)幂法

数值分析(10)幂法

(2)1 2 , 1 3 , 且矩阵A有n个线性无关的特征向量。
) 由上式可知, y(k 是个摆动序列,当k 充分大时,有 V k k 1) 2 k 1 (1) (2) X x (2 ( x x ) X X 2 k 1 1 1 2 1 2
3 k (3) X X y k [1 x ( 1) x ( ) x V X 2 3 2 3 1
两点说明: 1)如果V y (0) 的选取恰恰使得1 0, 幂法计算仍能 0 进行。因为计算过程中舍入误差的影响,迭代若干
k) (1) X 次后,必然会产生一个向量V y (k , 它在x 1 方向上的分
量不为零,这样,以后的计算就满足所设条件。
k k) k (1) 2)因V y (k 1 x X 1 1 1 1 , 计算过程中可能会出现溢出
k 1 n n i k k i k 1 [1 X 1 ( ) i X i ] [1 X 1 ( ) i X i ] i 2 1 i 2 1 n n i k i k k 1 max [1 X 1 ( ) i X i ] max [1 X 1 ( ) i X i ] i 2 1 i 2 1 n
第四章 代数特征值问题
工程实践中有多种振动问题,如桥梁 或建筑物 的振动,机械机件、飞机机翼的振动,及 一些稳定 性分析和相关分析可转 化为求矩阵特征值与特征向 量的问题。
矩阵A aij

n n
的特征值是A的特征多项式
f ( ) I A 的n个零点.
但高次多项式求根精度低 , 一般不作为求解方 法. 目前的方法是针对矩阵不同的特点给出不同的 有效方法.

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量幂法和反幂法是求解矩阵最大最小特征值及其对应特征向量的常用方法。

在本文中,我们将详细介绍这两种方法的原理和具体实现。

一、幂法(Power Method)幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。

其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。

幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A和向量b1的乘积Ab1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A和向量b的乘积Ab,得到新的向量b;7.特征值的近似值λ=,Ab,/,b。

具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=A*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,A*bn,/,bn;4. 特征向量的近似值vbn=bn。

幂法的优点是计算简单、迭代次数少,但对于含有多个特征值接近的矩阵,可能会收敛到次大特征值。

二、反幂法(Inverse Power Method)反幂法是幂法的拓展,用于求解矩阵的最小特征值及其对应的特征向量。

其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。

反幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A的逆矩阵Ai和向量b1的乘积Ai*b1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A的逆矩阵Ai和向量b的乘积Ai*b,得到新的向量b;7.特征值的近似值λ=,Ai*b,/,b。

具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=inv(A)*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,inv(A)*bn,/,bn;4. 特征向量的近似值vbn=bn。

《幂法和反幂法》课件

《幂法和反幂法》课件

应用范围比较
总结词
幂法适用于求解特征值和特征向量,而反幂法适用于求解线性方程组和最小二 乘问题。
详细描述
幂法主要用于求解特征值和特征向量,在物理、工程和科学计算等领域有广泛 应用。反幂法适用于求解线性方程组和最小二乘问题,在统计学、机器学习和 数据分析等领域有广泛应用。
优缺点比较
总结词
幂法的优点在于能够求解特征值和特征向量,但缺点是计算复杂度高;反幂法的优点在于计算复杂度低,但缺点 是可能存在数值不稳定性。
幂法的性质
01
02
03
幂法具有高效性
相对于直接计算矩阵的幂 ,幂法可以大大减少计算 量和存储空间。
幂法具有收敛性
在适当的条件下,幂法能 够收敛到正确的矩阵幂的 结果。
幂法具有稳定性
在计算过程中,幂法能够 保持数值的稳定性,避免 误差的累积。
幂法的应用场景
数值分析
用于求解线性方程组、特 征值问题等数值计算问题 。
详细描述
幂法的优点在于能够精确求解特征值和特征向量,适用于需要高精度计算的情况。然而,由于其计算复杂度高, 对于大规模数据集可能效率较低。反幂法的优点在于计算复杂度相对较低,适用于处理大规模数据集。然而,反 幂法可能存在数值不稳定性,对于某些问题可能需要额外的数值稳定化技术。
04
幂法和反幂法的实现
05
幂法和反幂法的应用实 例
幂法在密码学中的应用
加密算法
幂法常被用于构造加密算法,如RSA算法。通过使用幂法,可以 快速地计算大数的幂次,从而实现高效的加密和解密过程。
密钥交换
在Diffie-Hellman密钥交换协议中,幂法被用于生成共享密钥,确 保通信双方安全地交换密钥。
数字签名

数值分析 -第7讲_幂法和反幂法

数值分析 -第7讲_幂法和反幂法
数值分析
则存在酉矩阵U使 定理9( Schur定理) 设A ∈ R n×n, r11 r12 L r1n r22 L r2n ∆ = R, U T AU = O rnn 其中rii (i = 1,2,L, n)为A的特征值.
定理10(实Schur分解) 设A ∈ R n×n, 则存在正交矩阵Q使 R11 R12 L R1m R22 L R2m , QT AQ = O Rmm 其中当Rii (i = 1,2,L, m)为一阶时Rii是A的实特征值,当Rii为 二阶时Rii的两个特征值是A的两个共轭复特征值.
xn xn
α1 x1 α1 x1
数值分析
不同范数选取下的特征值的计算
1. 取范数为2-范数时 取范数为2
T T yk −1uk = yk −1 Ayk −1 ⇒
α1 x1T α1 x1 A = λ1 α1 x1 2 α1 x1 2
对应的迭代公式
∀ u0 ∈ R n T η k −1 = uk −1uk −1 yk −1 = uk −1 η k −1 uk = Ayk −1 T β k = yk −1uk ( k = 1, 2,...)
数值分析
实际使用的迭代公式为: 实际使用的迭代公式为:
uk −1 yk −1 = u k −1 u = Ay k −1 k
于是可得
Auk −1 A2uk −2 A k u0 uk = = = L = k −1 uk −1 Auk −2 A u0
uk Ak u0 yk = = k uk A u0
数值分析
定义3 定义3 设A = (aij ) n×n , 令 n ( )i = ∑ | aij | (2) Di = {z | | z − aii |≤ ri , z ∈ C }, (i = 1,L, n) 1 r , j≠i 称Di为复平面上以aii为圆心以ri为半径的Gerschgorin圆盘.

北航数值分析-lec7-幂法和反幂法

北航数值分析-lec7-幂法和反幂法
线性方程组求解
迭代收敛性
反幂法在求解特征值问题中的应用
特征值问题
反幂法主要用于求解矩阵的特征值和特征向量问题。通过迭代过程,反幂法能够找到矩阵的所有特征 值和对应的特征向量。
数值稳定性
反幂法在求解特征值问题时,需要关注数值稳定性问题。由于计算机浮点运算的误差累积,反幂法可 能会产生数值不稳定的解。因此,需要采取适当的策略来提高数值稳定性。
误差分析比较
幂法
由于幂法是通过连续的矩阵乘法来计算矩阵的幂,因此误差会随着计算的次数逐渐 累积。为了减小误差,需要选择合适的计算精度和减少计算次数。
反幂法
反幂法是通过求解线性方程组来计算矩阵的逆和行列式,因此误差主要来自于线性 方程组的求解精度。为了减小误差,需要选择合适的求解方法和提高求解精度。
202X
北航数值分析-lec7-幂法 和反幂法
单击此处添加副标题内容
汇报人姓名 汇报日期
目 录幂法介绍Fra bibliotek反幂法介绍
幂法和反幂法的比较
幂法和反幂法的实现细节
幂法和反幂法的实际应用案例
单击此处输入你的正文,文字是
您思想的提炼,请尽量言简意赅
的阐述观点
contents
单击此处输入你的正文,文字是 您思想的提炼,请尽量言简意赅 的阐述观点
反幂法的实现细节
反幂法是一种迭代算法,用 于求解线性方程组的近似逆。
反幂法的收敛速度取决于矩阵的谱 半径,如果矩阵的谱半径较小,则 反幂法收敛速度较快。
ABCD
反幂法的实现步骤包括:选择初始 矩阵、计算迭代矩阵、更新解矩阵 和判断收敛性。
在实际应用中,反幂法通常用于 求解大规模稀疏线性系统的预处 理和后处理问题。
01
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=max(v (k ) ),
u (k) =
v (k) /
m k
2、对于反幂法的定理
(2)
收集于网络,如有侵权请联系管理员删除
精品文档
按式(2)计算出的 m k 和 u (k ) 满足:
lim
k
m
k
=1 n
,
lim u (k ) = xn
k
max(xn )
在式(2)中,需要用到 A 1 ,这给计算带来很大的不方便,因此,把(2)式
k
max(x1 )
(二)反幂法算法的理论依据及推导
反幂法是用来计算绝对值最小的特征值忽然相应的特征向量的方法。是对 幂法的修改,可以给出更快的收敛性。 1、反幂法的迭代格式与收敛性质
设 A 是非奇异矩阵,则零不是特征值,并设特征值为 | 1 |≥| 2 |≥…≥| n1|>| n |
则按 A 1 的特征值绝对值的大小排序,有
输入 A; [m,u,inde x] 结束 =pow(A,1e -6)
三、算法的理论依据及其推导
(一)幂法算法的理论依据及推导
收集于网络,如有侵权请联系管理员删除
精品文档
幂法是用来确定矩阵的主特征值的一种迭代方法,也即,绝对值最大的特
征值。稍微修改该方法,也可以用来确定其他特征值。幂法的一个很有用的特

( I-A)x=0
(3)

的解,就可得到相应的特征向量。
上述方法对于 n 很小时是可以的。但当 n 稍大时,计算工作量将以惊
人的速度增大,并且由于计算带有误差,方程(2)未必是精确的特征方
程,自然就不必说求解方程(2)与(3)的困难了。幂法是一种计算矩阵
主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,特别是
的第一式改为求解线性方程组
A v (k ) = u (k 1)

3.设计程序并进行计算;
4.对结果进行解释说明;
对于幂法和反幂法求解矩阵特征值和特征向量的问题将从问题分析,算 法设计和流程图,理论依据,程序及结果进行阐述该问题。
一.问题的分析:
求 n 阶方阵 A 的特征值和特征向量,是实际计算中常常碰到的问题,

如:机械、结构或电磁振动中的固有值问题等。对于 n 阶矩阵 A,若存在
数值分析幂法和反幂 法
精品文档

幂法和反幂法求矩阵特征值

具 随机产生一对称矩阵,对不同的原点位移和初值(至少取 3 个)分别使用幂
体 法求计算矩阵的主特征值及主特征向量,用反幂法求计算矩阵的按模最小特征
内 值及特征向量,并比较不同的原点位移和初值说明收敛。

1.认真读题,了解问题的数学原形;

2.选择合适问题求解的数值计算方法;
(3)解线性方程组
Ly (k ) =u (k 1) ,Uv (k ) =y (k )
(4)计算
m =max(v (k ) ), u (k ) = v (k ) / m
k
k
(5)若|m k =m k1 |< ,则停止计算(1/m k 作为绝对值最小特征值 n ,u (k ) 作
为相应的特征向量);否则置 k=k+1,转(3).
收集于网络,如有侵权请联系管理员删除
幂法流程图:
精品文档
开始 输入 A;[m,u,index] =pow(A,1e-6)
k=0;m1= v=A*u
[vmax,i]=max(abs(v))
m1=m;k=k+1
m=v(i);u=v/m
abs(m-m1)< 1e-6
index=1;break; 输出:m,u,index
用于大型稀疏矩阵。反幂法是计算海森伯格阵或三角阵的对应一个给定近
似特征值的特征向量的有效方法之一。
收集于网络,如有侵权请联系管理员删除
精品文档
二.算法设计及流程图
1、幂法算法
(1)取初始向量 u (0) (例如取 u (0) =(1,1,…1) T ),置精度要求 ,置 k=1.
(2)计算
v (k ) =Au (k 1) ,m =max(v (k ) ), u (k ) = v (k ) / m
k
k
(3)若|
m= k
m k1 |< ,则停止计算(m k 作为绝对值最大特征值 1 ,u (k ) 作
为相应的特征向量)否则置 k=k+1,转(2)
2、反幂法算法
(1)取初始向量 u (0) (例如取 u (0) =(1,1,…1) T ),置精度要求 ,置 k=1.
(2)对 A 作 LU 分解,即 A=LU
| 1 |>| 1 |≥…≥| 1 |
n
n 1
1
对 A 1 实行幂法,就可得 A 1 的绝对值最大的特征值 1/ n 和相应的特征向量, 即 A 的绝对值最小的特征值和相应的特征向量。
由于用 A 1 代替 A 作幂法计算,因此该方法称为反幂法,反幂法的迭代格
式为
v (k) =
A 1 u (k 1) ,m k

数 和 n 维向量 x 满足

Ax= x
(1)
则称 为矩阵 A 的特征值,x 为相应的特征向量。

由高等代数知识可知,特征值是代数方程

|
I-A|=
n
+a 1
n1 +…+a n1
+a n
=0
(2)

的根。从表面上看,矩阵特征值与特征向量的求解问题似乎很简单,只需

求解方程(2)的根,就能得到特征值 ,再解齐次方程组
性是它不仅可以生成特征值,而且可以生成相应的特征向量。实际上,幂法经
常用来求通过其他方法确定的特征值的特征向量。
1、幂法的迭代格式与收敛性质
设 n 阶矩阵 A 的特征值 1 , 2 ,…, n 是按绝对值大小编号的, x i (i=1,2,…,n)为对应 i 的特征向量,且 1 为单根,即
| 1 |>| 2 |≥…≥| n | 则计算最大特征值与特征向量的迭代格式为
(1)
v (k ) =Au (k 1) ,m k =max(v (k ) ), u (k ) = v (k ) / m k
其中 max(v (k ) )表示向量 v (k ) 绝对值的最大分量。
2、对于幂法的定理
按式(1)计算出 m k 和 u (k ) 满足
lim
k
m
k
=
1 ,
lim u (k ) = x1
结束Βιβλιοθήκη 反幂法流程图收集于网络,如有侵权请联系管理员删除
精品文档
开始
输入 A;
[m ,u,index] =pow_inv(A,1e-6)
k=0;m1=0
v=invA*u [vmax,i]=max(abs(v))
m1=m;k=k+1
m=v(i);u=v/m
abs(m-m1)< 1e-6
index=1;break; 输出:m,u,index
相关文档
最新文档