高三数学(理)测试题小题周周练 Word版含答案
高三数学理周练试卷答案

一、选择题1. 答案:C解析:根据三角函数的定义,cos(α + β) = cosαcosβ - sinαsinβ。
代入α = π/3,β = π/6,得cos(π/3 + π/6) = cos(π/2) = 0。
2. 答案:A解析:根据指数函数的性质,a^0 = 1,对于任何非零实数a。
3. 答案:B解析:由等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得a10 = 2 + (10 - 1)×3 = 29。
4. 答案:D解析:由等比数列的通项公式an = a1 r^(n - 1),代入a1 = 3,r = 2,n = 4,得a4 = 3 2^(4 - 1) = 48。
5. 答案:C解析:由复数的乘法运算,(a + bi)(c + di) = ac - bd + (ad + bc)i。
代入a= 1,b = 2,c = 3,d = 4,得(1 + 2i)(3 + 4i) = 13 - 24 + (14 + 23)i = -5 + 10i。
二、填空题6. 答案:-1/2解析:由一元二次方程的根的判别式Δ = b^2 - 4ac,代入a = 1,b = 3,c = -2,得Δ = 3^2 - 41(-2) = 9 + 8 = 17。
由求根公式x = (-b ± √Δ) / 2a,得x = (-3 ± √17) / 2。
因为题目要求的是负根,所以x = (-3 - √17) / 2,化简得x = -1/2。
7. 答案:π/2解析:由三角函数的性质,sin(π - α) = sinα。
代入α = π/3,得sin(π - π/3) = sin(2π/3) = √3/2。
8. 答案:3解析:由数列的求和公式S_n = n(a1 + an) / 2,代入a1 = 1,an = 2n - 1,n = 5,得S_5 = 5(1 + 25 - 1) / 2 = 5(1 + 9) / 2 = 5 5 / 2 = 25 / 2 = 3。
2021年高三周练(5)数学理试题 含答案

2021年高三周练(5)数学理试题含答案参考公式:圆锥的侧面积公式,其中是圆锥的底面半径,是圆锥的母线长.一、选择题1.设集合,,则().A. B. C. D.2.已知,则().A. B. C. D.3.设,则“”是“直线与直线平行”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为().A. B.C. D.5.在△ABC中,,,则△ABC的面积为().A.3B.4C.6D.6.函数的零点所在的一个区间是().A. B. C. D.7.若双曲线的渐近线与圆相切,则双曲线的离心率为().A. B. C.2 D.8.若过点的直线与曲线和都相切,则的值为( ). A.2或 B.3或 C.2 D.二、填空题(一)必做题(9~13题)9.若复数满足,则复数的实部是 . 10.的展开式中的常数项是 .(用数字作答) 11.执行如图所示的程序框图,则输出的S 的值是 . 12.已知实数满足,则的最大值是 .13.在区间上随机取一个数,在区间上随机取一个数, 则关于的方程有实根的概率是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图,AB 为⊙O 的直径,弦AC 、BD 相交于点P ,若, ,则的值为 .15.(坐标系与参数方程选做题)已知曲线C 的参数方程是(为参数),以直角坐标系的原点O 为极点,轴的正半轴为极轴,并取相同的长度单位建立极坐标系,则曲线C 的极坐标方程是 . 三、解答题16.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<,的最大值是1,最小正周期是,其图像经过点.(1)求的解析式; (2)设、、为△ABC 的三个内角,且,,求的值.17.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:一次购物量(件) 1≤n ≤34≤n ≤6 7≤n ≤9 10≤n ≤12n ≥13 顾客数(人)20105结算时间(分钟/人)0.5 1 1.5 2 2.5 已知这50位顾客中一次购物量少于10件的顾客占80%.(1)确定与的值;(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2分钟的概率.18.如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:平面;(2)求证:平面平面;(3)求二面角的余弦值.19.(本小题满分14分)已知函数.(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;(2)定义2111221()()()()n n i i n S f f f f n n n n-=-==++⋅⋅⋅+∑,其中,求; (3)在(2)的条件下,令,若不等式对且恒成立,求实数的取值范围.高三理科数学周练卷(5)答案 2013-09-14二、填空题9.1 10. 11. 12. 13. 14. 15. 三、解答题16.(1)依题意得.由,解得.所以.因为函数的图像经过点,所以,即. 因为,所以.所以. (2)由(1)得,所以,.因为,所以,.因为为△ABC 的三个内角,所以()cos cos[()]cos()f C C A B A B π==-+=-+ .17.(1)依题意得,,,解得,.(2)该超市所有顾客一次购物的结算时间组成一个总体,所以收集的50位顾客一次购物的结算时间可视为总体的一个容量为50的随机样本,将频率视为概率得, ,,, ,.所以的分布列为的数学期望为.(3)记“该顾客结算前的等候时间不超过2分钟”为事件A ,该顾客前面第位顾客的结算时间为,由于各顾客的结算相互独立,且的分布列都与的分布列相同,所以121212()(0.5(0.5)(0.5(1)(0.5( 1.5)P A P X P X P X P X P X P X ==⋅=+=⋅=+=⋅=)))121212(1(0.5)(1(1)( 1.5(0.5)P X P X P X P X P X P X +=⋅=+=⋅=+=⋅=)))0.20.20.20.40.20.20.40.20.40.40.20.20.44=⨯+⨯+⨯+⨯+⨯+⨯= 为所求.18.(1)因为O 为AC 的中点,M 为BC 的中点,所以.因为平面ABD ,平面ABD ,所以平面.(2)因为在菱形ABCD 中,,所以在三棱锥中,.在菱形ABCD 中,AB =AD =4,,所以BD =4.因为O 为BD 的中点, 所以.因为O 为AC 的中点,M 为BC 的中点,所以.因为,所以,即.因为平面ABC ,平面ABC ,,所以平面ABC . 因为平面DOM ,所以平面平面.(3)作于,连结DE .由(2)知,平面ABC ,所以AB .因为,所以平面ODE .因为平面ODE ,所以. 所以是二面角的平面角.在Rt △DOE 中,,,,所以.所以二面角的余弦值为.19.(1)假设存在点,使得函数的图像上任意一点P 关于点M 对称的点Q 也在函数的图像上,则函数图像的对称中心为. 由,得,即对恒成立,所以解得所以存在点,使得函数的图像上任意一点关于点M 对称的点也在函数的图像上. (2)由(1)得.令,则.因为1221()()(2)(2)n S f f f f n n nn=++⋅⋅⋅+-+-①, 所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得,所以.所以.(3)由(2)得,所以.因为当且时,2()121ln ln 2n amnmn n ma n n ⋅>⇔⋅>⇔>-. 所以当且时,不等式恒成立. 设,则. 当时,,在上单调递减; 当时,,在上单调递增. 因为,所以, 所以当且时,. 由,得,解得.所以实数的取值范围是.深圳市高级中学xx 届第一次月考数学(理)试题注:请将答案填在答题卷...........相应的位置.....上.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集,集合,则A. B. C. D.2. 如果函数上单调递减,则实数满足的条件是 A . B . C . D .3. 下列函数中,满足的是 A . B . C . D .4. 已知函数,下面结论错误..的是A .函数的最小正周期为B .函数是偶函数C .函数的图象关于直线对称D .函数在区间上是增函数 5. 给出如下四个命题:①若“且”为假命题,则、均为假命题; ②命题“若且,则”的否命题为“若且,则”; ③在中,“”是“”的充要条件。
2019-2020年高三周练 数学理(10.27) 含答案

2019-2020年高三周练 数学理(10.27) 含答案 班级 姓名 学号一、填空题(本大题共14小题,每小题5分,计70分)1. 满足条件的集合的个数是 .2. “|x |<2”是“”的 条件.(填“充要关系)3.已知的值是 .4. 如果执行如图所示的程序框图,那么输出的S= .5.等差数列中,,,则为 .6.若函数的图象不经过第四象限,则满足条件为 .7.已知函数的零点有且只有一个,则 .8.若函数(,)在一个周期内的图象如图所示,M 、N 分别是这段图象的最高点和最低点,且,则 .9.若关于的不等式的解集是,则关于的不等式的解集是 .10. 已知向量(,1),(2,2).,93x y a x b y a b ==-⊥+若则的最小值是 .11.两个正数、的等差中项是5,等比例中项是4,若,则双曲线的离心率等于 .12.已知是内的一点,且,若和 的面积分别为,则的最小值是 .13.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m =________.14 .设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =-1,a -c 与b -c 的夹角为60°,则|c |的最大值为 .二、解答题15.(本小题共14分) 已知)cos 2sin 7,cos sin 6(),cos ,(sin αααααα-+==b a ,设函数.(1)求函数的最大值;(2)在锐角三角形中,角、、的对边分别为、、,, 且的面积为,,求的值.第8题图16.(本小题共14分)已知函数f (x )=-1a +2x(x >0). (1)判断f (x )在(0,+∞)上的增减性,并证明你的结论;(2)解关于x 的不等式f (x )>0;(3)若f (x )+2x ≥0在(0,+∞)上恒成立,求a 的取值范围.17 .(本小题满分15分)某工厂拟建一座平面图形为矩形且面积为200m 2的三级污水处理池(平面图如图),如果外圈周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价.18 .(本小题满分15分)数列为正项等比数列,且满足;(1)求的通项公式;(2)设正项数列的前项和为,且,求证:当时,.19.(本小题满分16分)若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间.(1)已知是上的正函数,求的等域区间;(2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.20. (本小题满分16分)已知函数.(1)若函数在上是增函数,求实数的取值范围;(2)若函数在上的最小值为3,求实数的值.高三数学周末练习(理科)(xx.10.27)命题:盛冬山 审核: 李 斌 班级 姓名 学号一、填空题(本大题共14小题,每小题5分,计70分)1. 满足条件的集合的个数是___2 _.2. “|x |<2”是“”的 充分而不必要 条件.3.已知的值是 .4. 如果执行如图所示的程序框图,那么输出的S= .5.等差数列中,,,则为 23 .6.若函数的图象不经过第四象限,则满足 .7.已知函数的零点有且只有一个,则 .8.若函数(,)在一个周期内的图象如图所示,M 、N 分别是这段图象的最高点和最低点,且,则 .9.若关于的不等式的解集是,则关于的不等式的解集是 .10. 已知向量(,1),(2,2).,93x y a x b y a b ==-⊥+若则的最小值是6 .11.两个正数、的等差中项是5,等比例中项是4,若,则双曲线的离心率等于 .12.已知是内的一点,且,若和 的面积分别为,则的最小值是 18 .13.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m =________.解析 作出满足题设条件的可行域如图所示,设x +y =9,显然只有在x +y =9与直线2x -y -3=0的交点处满足要求.联立方程组⎩⎪⎨⎪⎧x +y =9,2x -y -3=0,解得⎩⎪⎨⎪⎧x =4,y =5. 即点A (4,5)在直线x -my +1=0上,∴4-5m +1=0,得m =1.14 .设向量a ,b ,c 满足|a |=1,|b |=2,a ·b =-1,a -c 与b -c 的夹角为60°,则|c |的最大值为 .二、解答题15.(本小题共14分)已知)cos 2sin 7,cos sin 6(),cos ,(sin αααααα-+==b a,设函数.(Ⅰ)求函数的最大值;(Ⅱ)在锐角三角形中,角、、的对边分别为、、,, 且的面积为,,求的值. 解 (Ⅰ))cos 2sin 7(cos )cos sin 6(sin )(ααααααα-++=⋅=b a f226sin 2cos 8sin cos 4(1cos2)4sin 22αααααα=-+=-+-(Ⅱ)由(Ⅰ)可得,因为,所以,,又222222cos ()22a b c bc A b c bc bc ∴=+-=+--22(232)122262102=+-⨯= 16.(本小题共14分)已知函数f (x )=-1a +2x(x >0). (1)判断f (x )在(0,+∞)上的增减性,并证明你的结论;(2)解关于x 的不等式f (x )>0;(3)若f (x )+2x ≥0在(0,+∞)上恒成立,求a 的取值范围.解 (1)任取x 1,x 2∈(0,+∞),且x 1<x 2.则f (x 1)-f (x 2)=-1a +2x 1+1a -2x 2=2(x 2-x 1)x 1x 2.因为x 1<x 2,x 1,x 2∈(0,+∞),所以x 2-x 1>0,从而x 2-x 1x 1x 2>0. 所以得到f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).故f (x )在(0,+∞)上单调递减.(2)由-1a +2x >0(x >0),即2a -x ax>0. 当a >0时,解得0<x <2a .当a <0时,解得x >0.故当a >0时,不等式的解集为{x |0<x <2a },当a <0时,不等式的解集为{x |x >0}.(3)∵f (x )+2x ≥0(x >0),即2x +2x ≥1a .此不等式恒成立只需⎝⎛⎭⎫2x +2x min 大于或等于1a即可, 而2x +2x ≥22x×2x =4,当且仅当x =1时取等号. 所以4≥1a ,解得a <0或a ≥14. 17 .(本小题满分15分)某工厂拟建一座平面图形为矩形且面积为200m 2的三级污水处理池(平面图如图),如果外圈周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价.答案:长为18m ,宽为m 时,总造价最低为44800元.18 .(本小题满分15分)数列为正项等比数列,且满足;(1)求的通项公式;(2)设正项数列的前n 项和为,且,求证:当时,.解:(1)设数列的公比为,由得所以由条件可知故由得所以所以,数列的通项公式为:;(2)又由得:当时,,111(2)()0,0,0,n n n n n n n b b b b b b b ---∴--+=>∴+>即数列为等差数列,且公差又,, 当时,1111111111222231n i n S n n n=∴<+-+-++-=-<-∑ 19.(本小题满分16分)若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间.(1)已知是上的正函数,求的等域区间;(2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.解:(1)因为是上的正函数,且在上单调递增,所以当时,即……………………………………………3分解得,故函数的“等域区间”为;………………………………5分(2)因为函数是上的减函数,所以当时,即…………………………………………7分两式相减得,即,………………………………………9分代入得,由,且得,…………………………………………11分故关于的方程在区间内有实数解,……………………13分记,则解得.……………16分20. (本小题满分16分)已知函数.(1)若函数在上是增函数,求实数的取值范围;(2)若函数在上的最小值为3,求实数的值.解:(1)∵,∴.………………………………1分∵在上是增函数,∴≥0在上恒成立,即≤在上恒成立.……………4分令,则≤.∵在上是增函数,∴.∴.所以实数的取值范围为.…………………………7分(2)由(1)得,.①若,则,即在上恒成立,此时在上是增函数.所以,解得(舍去).………………………………10分②若,令,得.当时,,所以在上是减函数,当时,,所以在上是增函数.所以,解得(舍去).…………………13分③若,则,即在上恒成立,此时在上是减函数.所以,所以.综上所述,.。
2021届高三上学期理科数学周测试卷1 Word版含答案

高三数学(理科)每周一测(1)一、选择题(共12小题。
每小题5分,共60分)。
1.已知集合{}{}2|20,|55A x x x B x x =->=-<<,则 ( )A.A ∩B=∅B.A ∪B=RC.B ⊆AD.A ⊆B2.若复数z 满足(34)|43|i z i -=+,则z 的虚部为 ( )A .4-B .45-C .4D .453.下列命题正确的是()A .2000,230x R x x ∃∈++=B .32,x N x x ∀∈>C .1x >是21x >的充分不必要条件D .若a b >,则22a b >4.为了解增城区的中小学生视力情况,拟从增城区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A .简单随机抽样B .按性别分层抽样 C.按学段分层抽样D.系统抽样5.已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为A.14y x =± B.13y x =± C.12y x =± D.y x =± 6.运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A.[3,4]-B .[5,2]- C.[4,3]- D.[2,5]- 7.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A .35003cm πB .38663cm π C.313723cm π D.320483cm π 8.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A .3B .4C.5D.6 9.设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( )A .5 B.6 C.7 D.810.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个二.填空题:本大题共四小题,每小题5分。
高三数学(理)第一轮总复习周周练(1-20周,含答案解析,83页)

学海导航·新课标高中总复习(第1轮)B·理科数学周 周 练 (一)班级:__________ 姓名:__________ 学号:__________一、选择题1.集合A ={x ||x +1|≤3},B ={y |y =x ,0≤x ≤4}.则下列关系正确的是( ) A .A ∪B =R B .A ⊆∁R B C .B ⊆∁R A D .∁R A ⊆∁R B2.集合A ={-1,0,1},B ={y |y =e x ,x ∈A },则A ∩B =( ) A .{0} B .{1}C .{0,1}D .{-1,0,1}3.在四边形ABCD 中,“AB →=DC →,且AC →·BD →=0”是“四边形ABCD 是菱形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知命题p :∃a ,b ∈(0,+∞),当a +b =1时,1a +1b=3;命题q :∀x ∈R ,x 2-x+1≥0恒成立,则下列命题是假命题的是( )A .(綈p )∨(綈q )B .(綈p )∧(綈q )C .(綈p )∨qD .(綈p )∧q5.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中恰有一个“孤立元素”的4元子集的个数是( )A .4B .5C .6D .7 二、填空题 6.命题“∃x 0∈R ,ln 2x 0<0”的否定是________________________________________________________________________________________.7.已知集合A ={}1,2,m ,B ={}3,4,A ∪B ={}1,2,3,4,则m =__________. 8.下列各小题中,p 是q 的充要条件的是__________. ①p :cos α=cos β;q :sin α=sin β;②p :f (-x )f (x )=-1;q :y =f (x )是奇函数;③p :A ∪B =B ;q :∁U B ⊆∁U A ;④p :m <2或m >6;q :y =x 2+mx +m +3有两个不同的零点.9.已知集合A ={-1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是______________.10.已知函数f (x )=4|a |x -2a +1.若命题:“∃x 0∈(0,1),使f (x 0)=0”是真命题,则实数a 的取值范围为__________.三、解答题11.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.12.已知a >0,设命题p :函数f (x )=x 2-2ax +1-2a 在区间[0,1]上与x 轴有两个不同的交点;命题q:g(x)=|x-a|-ax在区间(0,+∞)上有最小值.若(綈p)∧q是真命题,求实数a的取值范围.选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(二) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (二)班级:__________ 姓名:__________ 学号:__________一、选择题1.集合A ={x |y =x ln(1-x ),B ={y |y =e x -1,x ∈[1,2)},则集合A ∩B 为( ) A .[0,e) B .[0,1) C .[1,e) D .∅2.下列函数中,在(0,+∞)上单调递增的偶函数是( ) A .y =cos x B .y =x 3C .y =log 12x 2 D .y =e x +e -x3.设函数f (x )定义在R 上,且f (x )=⎩⎪⎨⎪⎧x -3 (x ≥1000)f [f (x +5)] (x <1000),则f (999)等于( )A .996B .997C .998D .9994.已知f (x )是定义在[-1,1]上的奇函数,且f (x )在[-1,1]上单调递减.若f (13)+f (1-2x )>0,则实数x 的取值范围是( )A .(23,+∞)B .(23,1]C .(13,23)D .[0,23)5.下列区间中,函数f (x )=|lg(2-x )|+3x ,在其上为增函数的是( )A .(-∞,1]B .[-1,43)C .[0,32) D .[1,2)二、填空题6.函数f (x )的图象是如图所示的折线段OAB ,点A 坐标为(1,2),点B 坐标为(3,0).定义函数g (x )=f (x )·(x -1).则函数g (x )的表达式是________________________________________________________________________.7.已知函数f (x )=ax 3+b sin x +1,若f (-1)=2014,则f (1)=__________.8.已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0)(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是______________.9.已知函数f (x )在实数集R 上具有下列性质: ①直线x =1是函数f (x )的一条对称轴; ②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0.则f (2012),f (2013),f (2014)的大小关系是__________________________________. 10.在R 上的偶函数f (x )满足:f (2-x )=-f (x ),且在[-1,0]上是增函数,下列关于f (x )的判断:①f (x )是周期函数;②f (5)=0;③f (x )在[1,2]上是减函数;④f (x )在[-2,-1]上是减函数.其中正确的是 (把你认为正确的判断都填上).三、解答题11.已知函数f (x )=ax1+x 2(a ≠0).(1)判断并证明函数的奇偶性;(2)当a =1时,用定义证明函数在[-1,1]上是增函数; (3)求函数在[-1,1]上的最值.12.已知真命题:“函数y =f (x )的图象关于点P (a ,b )成中心对称图形”的充要条件为“函数y =f (x +a )-b 是奇函数”.(1)将函数g (x )=x 3-3x 2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g (x )图象的对称中心的坐标;(2)求函数h (x )=log 22x4-x图象的对称中心的坐标;(3)已知命题:“函数y =f (x )的图象关于某直线成轴对称图形”的充要条件为“存在实数a 和b ,使得函数y =f (x +a )-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(三) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (三)班级:__________ 姓名:__________ 学号:__________一、选择题1.函数f (x )=ln(x -1)+2014的图象恒过定点( ) A .(0,2014) B .(0,-2014) C .(2,2014) D .(2,-2014)2.若函数f (x )=mx 2+x +5在[-2,+∞)上是增函数,则f (1)的取值范围是( )A .(0,14]B .[0,14]C .[6,254]D .(6,254]3.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0)2x (x ≤0),若f (a )=12,则实数a 的值为( )A .-1或 2 B. 2C .-1D .1或- 24.若函数f (x )=log a x (a >0,a ≠1)满足f (3a )>f (5a ),则f (1-1x)>1的解集是( )A .0<x <1aB .0<x <11-aC .1<x <1aD .1<x <11-a5.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),若∀x 1∈[-1,2],∃x 2∈[-1,2],使得f (x 1)=g (x 2),则实数a 的取值范围是( )A .(0,12]B .[12,3]C .(0,3]D .[3,+∞)二、填空题 6.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =______.7.若当x ∈(1,3)时,不等式a x <sin π6x (a >0且a ≠1)恒成立,则实数a 的取值范围是____________.8.已知函数f (x )=⎩⎪⎨⎪⎧3x (x ≥3)log 3x (0<x <3),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是____________.9.当x >0时,指数函数y =(a 2-3)x 的图象在指数函数y =(2a )x 的图象的上方,则a 的取值范围是 .10.函数f (m )=log m +1(m +2)(m ∈N *),定义:使f (1)·f (2)·…·f (k )为整数的数k (k ∈N *)叫企盼数,则在区间[1,100]内这样的企盼数共有__________个.三、解答题11.已知函数f (x )=ax 2+bx +1(a ,b 为实数),x ∈R ,F (x )=⎩⎪⎨⎪⎧f (x ) (x >0)-f (x ) (x <0).(1)若f (-1)=0,且函数f (x )的值域为[0,+∞),求f (x )的表达式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0且f (x )为偶函数,判断F (m )+F (n )能否大于零.12.已知函数f (x )=(12)x ,g (x )=x -2x +1.(1)求函数F (x )=f (2x )-f (x )在x ∈[0,2]上的值域;(2)试判断H (x )=f (-2x )+g (x )在(-1,+∞)上的单调性,并加以证明.选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(四) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (四)班级:__________ 姓名:__________ 学号:__________一、选择题1.函数f (x )=log 2x -1x的零点所在区间为( )A .(0,12)B .(12,1)C .(1,2)D .(2,3)2.记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n },最小数为min{x 1,x 2,…,x n },则max{min{x +1,x 2-x +1,-x +6}}=( )A.34B .1C .3 D.723.一批货物随17列连续开出的火车从A 市以v km/h 匀速直达B 市,已知两地铁路路线长400 km ,为了安全,两列货车间距离不得小于(v20)2 km(不计火车长度),那么这批货物全部到达B 市,最快需要的时间为( )A .6小时B .8小时C .10小时D .12小时4.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( )A .f (a )<f (1)<f (b )B .f (a )<f (b )<f (1)C .f (1)<f (a )<f (b )D .f (b )<f (1)<f (a )5.已知函数f (x )=1x -ln (x +1),则y =f (x )的图象大致为( )二、填空题6.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域是__________. 7.函数f (x )的定义域为D ,若对任意的x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为“非减函数”.设函数g (x )在[0,1]上为“非减函数”,且满足以下三个条件:(1)g (0)=0;(2)g (x 3)=12g (x );(3)g (1-x )=1-g (x ),则g (1)=______,g (512)= .8.若关于x 的方程x -1x+k =0在x ∈(0,1]内没有实数根,则k 的取值范围是____________.9.已知函数f (x )=lg(2x +22-x +m )的值域为R ,则实数m 的取值范围是____________.10.设函数f (x )=⎩⎨⎧2x(-2≤x <0)g (x )-log 5(x +5+x 2) (0<x ≤2),若f (x )是奇函数,则当x ∈(0,2)时,g (x )的最大值是__________.三、解答题11.已知定义域为R 的函数f (x )=-2x +a2x +1为奇函数.(1)求a 的值;(2)判断并证明该函数在R 上的单调性;(3)设关于x 的函数F (x )=f (4x -b )+f (-2x +1)有零点,求实数b 的取值范围.12.某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,1个单位的固体碱在水中逐渐溶化,水中的碱浓度f (x )与时间x (小时)的关系可近似地表示为:f (x )=⎩⎨⎧2-x 6-6x +3(0≤x <3)1-x6 (3≤x ≤6).只有当污染河道水中碱的浓度不低于13时,才能对污染产生有效的抑制作用.(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?(2)第一次投放1个单位的固体碱后,当污染河道水中的碱浓度减少到13时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为g (x ),求g (x )的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(五) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (五)班级:__________ 姓名:__________ 学号:__________一、选择题1.曲线f (x )=x ln x 在点x =1处的切线方程为( ) A .y =2x +2 B .y =2x -2 C .y =x -1 C .y =x +12.二项式(ax -36)3的展开式的第二项的系数为-32,则⎠⎛a -2x 2d x 的值为( )A .3B .73C .3或73D .3或-1033.设f ′(x)是函数f(x)的导函数,y =f ′(x)的图象如图,则y =f(x)的图象有可能是( )4.函数y =x +2cos x -3在区间[0,π2]上的最大值是( )A .π6B .π3C .36D .335.设函数f(x)满足x 2f ′(x)+2xf(x)=e x x ,f(2)=e 28,则x>0时,f(x)( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值 二、填空题6.函数f(x)=ln (x +2)+1x的递增区间是________________________________________________________________________.7.已知函数f(x)=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m =______,n =______.8.抛物线y =x 2在A(1,1)处的切线与y 轴及该抛物线所围成的图形面积为________.9.若函数f(x)=-12x 2+b ln (x +2)在(-1,+∞)上是减函数,则实数b 的取值范围是______________.10.如图,在等腰梯形ABCD 中,AB ∥DC ,且AD =DC =2,则梯形ABCD 的面积的最大值是__________.三、解答题11.已知曲线f(x)=x 3+bx 2+cx 在点A(-1,f(-1)),B(3,f(3))处的切线互相平行,且函数f(x)的一个极值点为x =0.(1)求实数b ,c 的值;(2)若函数y =f(x)(x ∈[-12,3])的图象与直线y =m 恰有三个交点,求实数m 的取值范围.12.已知P(x ,y)为函数y =1+ln x 图象上一点,O 为坐标原点,记直线OP 的斜率k =f(x).(1)若函数f(x)在区间(m ,m +13)(m>0)上存在极值,求实数m 的取值范围;(2)当x ≥1时,不等式f(x)≥tx +1恒成立,求实数t 的取值范围.选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B·理科数学周周练(六) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (六)班级:__________ 姓名:__________ 学号:__________一、选择题1.已知点(a,2)在函数f (x )=log 3x 的图象上,则sin(-3πa)的值等于( )A .-32B .-12C.12D.322.已知tan(π-α)=-2,则1sin 2α-2cos 2α=( )A .2 B.25C .3 D.523.已知f (x )=3cos 2x +2sin x cos x ,则f (13π6)=( )A .- 3 B. 3 C.32 D .-324.log 32(2cos 15°-1)+log 32(2cos 15°+1)等于( )A .-1B .0C .1D .25.已知α∈R ,sin α+2cos α=102,则tan 2α=( )A.43B.34C .-34D .-43二、填空题6.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________________________________________________________________________.7.已知α为锐角,且cos(α+π4)=35,则sinα=________________________________________________________________________.8.已知cos α=15,-π2<α<0,则cos (π2+α)tan (α+π)cos (-α)tan α的值为__________.9.化简:1-2sin 380°cos 340°=________________________________________________________________________.10.设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ=__________.三、解答题11.已知函数f (x )=2sin(πx 6+π3)(0≤x ≤5),点A ,B 分别是函数y =f (x )图象上的最高点和最低点.(1)求点A 、B 的坐标;(2)设点A 、B 分别在角α,β的终边上,求tan(α-2β)的值.12.已知函数f (x )=2cos(x -π12),x ∈R .(1)求f (-π6)的值;(2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3).选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(七) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (七)班级:__________ 姓名:__________ 学号:__________一、选择题1.函数y =2sin(π2-2x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数2.△ABC 中,∠A =π3,BC =3,AB =6,则∠C =( )A.π6B.π4C.3π4D.π4或3π43.函数f (x )=sin(ωx +φ)(其中|φ|<π2)的图象如图所示,为了得到g (x )=sin ωx 的图象,则只要将f (x )的图象( )A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度4.已知函数y =sin x +cos x ,则下列结论正确的是( )A .此函数的图象关于直线x =-π4对称B .此函数的最大值为1C .此函数在区间(-π4,π4)上是增函数D .此函数的最小正周期为π5.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2=2b +4c -5且a 2=b 2+c 2-bc ,则△ABC 的面积为( )A. 3B.32C.22D. 2 二、填空题6.函数f (x )=3tan(2x -π6)的最小正周期是________________________________________________________________________.7.如图△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD=3则BD 的长为__________.8.已知函数f (x )=A sin(ωx +π6)(A >0,ω>0,x ∈(-∞,+∞))的最小正周期为π,且f (0)=3,则函数y =f (x )在[-π4,π4]上的最小值是__________.9.已知f (x )=cos 3x 2cos x 2-sin 3x 2sin x 2-2sin x cos x ,若x ∈[π2,π],则函数f (x )的零点是______________.10.一船自西向东航行,上午10时到达灯塔P 的南偏西75°,距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船航行的速度为__________海里/小时.三、解答题11.已知函数f (x )=sin(x -π6)+cos(x -π3),g (x )=2sin 2x2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.12.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(八) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (八)班级:__________ 姓名:__________ 学号:__________一、选择题1.若复数z 满足1+2iz=i(i 为虚数单位),则z 的虚部为( )A .2iB .2C .1D .-12.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( )A .2OA →-OB → B .-OA →+2OB → C.23OA →-13OB → D .-13OA →+23OB → 3.已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( ) A .-1 B .0 C.12 D.224.已知平面向量a ,b 的夹角为60°,a =(3,1),|b |=1,则|a +2b |=( ) A .2 B.7C .2 3D .275.向量a =(2,0),b =(x ,y ),若b 与b -a 的夹角等于π6,则|b |的最大值为( )A .4B .2 3C .2 D.433二、填空题6.若复数a +3i1-2i(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为______.7.已知向量a ,b 满足|a|=1,|b|=2,(a -b )⊥a ,向量a 与b 的夹角为________. 8.已知向量a =(-1,1),b =(3,m ),a ∥(a +b ),则m =________.9.设G 为△ABC 的重心,且sin AGA →+sin BGB →+sin CGC →=0,则B 的大小为 .10.在△ABC 中,E ,F 分别为AB ,AC 的中点.P 为EF 上任一点,实数x ,y 满足P A →+xPB →+yPC →=0.设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,S 1,S 2,S 3,记S 1S =λ1,S 2S=λ2,S 3S=λ3,则λ2·λ3取最大值时,2x +y 的值等于________.三、解答题11.已知a =(sin θ,cos θ),b =(3,1). (1)若a ∥b ,求tan θ的值;(2)若f (θ)=|a +b |,△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,且a =f (0),b =f (-π6),c =f (π3),求AB →·AC →.12.已知m =(2cos x +23sin x,1),n =(cos x ,-y ),满足m·n =0. (1)将y 表示为x 的函数f (x ),并求f (x )的最小正周期;(2)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 对应的边长,若f (A2)=3,且a =2,求b +c 的取值范围.选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(九) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (九)班级:__________ 姓名:__________ 学号:__________一、选择题1.等比数列{a n }中,已知a 2=2,a 6=8,则a 4=( ) A .±4 B .16 C .-4 D .42.等差数列{a n }中,已知a 3=5,a 2+a 5=12,a n =29,则n 为( ) A .13 B .14 C .15 D .163.已知等差数列{a n }满足a 1>0,5a 8=8a 13,则前n 项和S n 取最大值时,n 的值为( ) A .20 B .21 C .22 D .234.在等比数列{a n }中,a 1=1,公比|q |≠1,若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .125.已知各项均为正数的等比数列{a n },a 1a 2a 3=5,a 4a 5a 6=52,则a 7a 8a 9=( ) A .10 B .2 2 C .8 D. 2 二、填空题6.已知数列{a n }的前几项为:12,-2,92,-8,252,-18,…用观察法写出满足数列的一个通项公式a n =________________.7.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为__________.8.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n =____________________________________.9.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________.10.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则等比数列{a n }的公比为________.三、解答题11.设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列. (1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.12.在等差数列{a n }中,a 3+a 4+a 5=42,a 8=30. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(3)a n +2+λ(λ∈R ),则是否存在这样的实数λ使得{b n }为等比数列;(3)数列{c n }满足c n =⎩⎪⎨⎪⎧2n -1 (n 为奇数)12a n -1(n 为偶数),T n 为数列{c n }的前n 项和,求T 2n .选择题答 题区 域 答 案 题 号 1 2 3 4 5学海导航·新课标高中总复习(第1轮)B ·理科数学周周练(十) ·新课标高中总复习(第1轮)B·理科数学 周 周 练 (十)班级:__________ 姓名:__________ 学号:__________一、选择题1.下图是某算法的程序框图,则程序运行后输出的结果是( )A .6B .27C .124D .1682.正项等比数列{a n }满足a 3=1,S 3=13,b n =log 3a n ,则数列{b n }的通项公式是( ) A .n -3 B .n -1 C .3-n D .1-n3.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( ) A .130 B .65 C .70 D .754.在正项等比数列{a n }中,a 2和a 18为方程x 2-10x +16=0的两根,则sin πa 10等于( )A .-22 B .0C.12D.225.在等差数列{a n }中,a 1=-2012,其前n 项和为S n ,若S 1212-S 1010=2,则S 2014的值等于( )A .-2014B .-2013C .2013D .2014二、填空题6.如图所给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是________________________________________________________________________.7.已知等差数列{a n }的首项a 1=4且公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是__________.8.数列{b n }的前n 项和为S n ,b 1=23且3S n =S n -1+2(n ≥2,n ∈N ),则{b n }的通项公式是______________.9.等比数列{a n }中a 1=512,公比q =-12,记Πn =a 1×a 2×…×a n (即Πn 表示数列{a n }的前n 项之积),Π8,Π9,Π10,Π11中值为正数的个数是________.10.设f (x )是定义在(0,1)上的函数,对任意的y >x >1都有f (y -x xy -1)=f (1x )-f (1y ),记a n =f (1n 2+5n +5)(n ∈N *),则∑i =18a i =f (________). 三、解答题11.某产品在不做广告宣传且每千克获利a 元的前提下,可卖出b 千克.若做广告宣传,广告费为n 千元时比广告费为(n -1)千元时多卖出b2n 千克(n ∈N *).(1)当广告费分别为1千元和2千元时,用b 表示销售量s ; (2)试写出销售量s 与n 的函数关系式;(3)当a =50,b =200时厂家应生产多少千克这种产品,做几千元广告,才能获利最大?12.已知程序如下:INPUT xPRINT x k =2 n =1 DOx =2]2∧k k =k +1 PRINT x n =n +1LOOP UNTIL n>2014 END如果按上述程序运算输出的一串数,按先后顺序排列为a 1,a 2,a 3,…,a 2014. (1)写出该数列的递推关系式(即a n +1与a n 的关系式); (2)当输入x =1时,求出通项公式a n ;(3)令b n =a n(n -12)2,求b n 的最小值.选择题答题区域答案题号1 2 3 4 5学海导航·新课标高中总复习(第1轮)B·理科数学参考答案周 周 练周周练(一)1.D A ={x |-4≤x ≤2},B ={y |0≤y ≤2},则∁R A ={x |x <-4或x >2},∁R B ={y |y <0或y >2},所以∁R A ⊆∁R B .2.B B ={1e,1,e},所以A ∩B ={1}.3.C4.B p 是假命题,q 是真命题,所以(綈p )∧(綈q ).5.C 由定义可知,若0为孤立元素,则满足条件的子集有{0,2,3,4},{0,3,4,5}2个;若1为孤立元素,则有{1,3,4,5}1个;若2为孤立元素,则无满足条件的子集.同样,若3为孤立元素,无满足条件的子集;若4为孤立元素,满足条件的有1个;若5为孤立元素,满足条件的子集有2个,故共有6个,选C.6.∀x ∈R ,ln 2x ≥0 7.3或4 8.③9.{-1,0,2} 因为A ∩B =B ,所以B ⊆A .当m =0时,B =∅,B ⊆A ;当m ≠0时,由B⊆A 可得1m =-1或1m =12,所以m =-1或m =2,故实数m 组成的集合是{-1,0,2}.10.a >12由“∃x 0∈(0,1),使f (x 0)=0”是真命题,得f (0)·f (1)<0⇒(1-2a )(4|a |-2a +1)<0⇒{ a ≥(2a +1)(2a -1)>0或{ a(6a -1)(2a -1)<0 ⇒a >12.11.解析:(1)A ={x |-1<x ≤5}. 当m =3时,B ={x |-1<x <3}, 则∁R B ={x |x ≤-1或x ≥3}, 所以A ∩(∁R B )={x |3≤x ≤5}.(2)因为A ={x |-1<x ≤5},A ∩B ={x |-1<x <4}, 所以有-42+2×4+m =0,解得m =8. 此时,B ={x |-2<x <4},符合题意.12.解析:要使函数f (x )=x 2-2ax +1-2a 在区间[0,1]上与x 轴有两个不同的交点,必须{ f (0)≥f (1)≥a Δ>0,即{ 1-2a ≥-4a ≥a (-2a )2-4(1-2a )>0. 解得2-1<a ≤12.所以当2-1<a ≤12时,函数f (x )=x 2-2ax +1-2a 在区间[0,1]上与x 轴有两个不同的交点.下面求g (x )=|x -a |-ax 在(0,+∞)上有最小值时a 的取值范围: (方法一)因为g (x )={ (1-a )x -a (x ≥a )-(1+a )x +a (x <a ), ①当a >1时,g (x )在(0,a )和[a ,+∞)上单调递减, 所以g (x )在(0,+∞)上无最小值;②当a =1时,g (x )={ -1 (x ≥1)-2x +1 (x <1),g (x )在(0,+∞)上有最小值-1;③当a <1时,g (x )在(0,a )上单调递减,在[a ,+∞)上单调递增, g (x )在(0,+∞)上有最小值g (a )=-a 2,所以当0<a ≤1时,函数g (x )在(0,+∞)上有最小值.(方法二)因为g (x )={ (1-a )x -a (x ≥a )-(1+a )x +a (x <a ),因为a >0,所以-(1+a )<0.所以函数y 1=-(1+a )x +a (0<x <a )是单调递减的,要使g (x )在(0,+∞)上有最小值,必须使y 2=(1-a )x -a 在[a ,+∞)上单调递增或为常数,即1-a ≥0,得a ≤1,所以当0<a ≤1时,函数g (x )在(0,+∞)上有最小值.若(綈p )∧q 是真命题,则綈p 是真命题且q 是真命题,即p 是假命题且q 是真命题,所以⎩⎨⎧0<a ≤2-1,或a >12a ≤1, 解得0<a ≤2-1或12<a ≤1,故实数a 的取值范围为(0,2-1]∪(12,1].周周练(二)1.D A ={x |0≤x <1},B ={y |1≤y <e},所以A ∩B =∅. 2.D3.C f (999)=f [f (1004)]=f (1001)=998,故选C.4.B 因为f (x )是奇函数,所以f (13)+f (1-2x )>0⇔f (13)>f (2x -1),又f (x )在[-1,1]上单调递减,所以2x -1>13且-1≤2x -1≤1,解得23<x ≤1.5.D 由题意可得当2-x ≥1,即x ≤1时,y 1=|lg(2-x )|=lg(2-x ),此时函数y 1在(-∞,1)上是减函数;当0<2-x ≤1,即1≤x <2时,y 1=|lg(2-x )|=-lg(2-x ),此时函数y 1在[1,2)上是增函数,又因为y 2=3x 是增函数,所以f (x )=|lg(2-x )|+3x 在[1,2)上是增函数,故选D.6.g (x )={ 2x 2-2x (0≤x <1)-x 2+4x -3 (1≤x ≤3) 由图知当0≤x <1时,f (x )=2x , 当1≤x ≤3时,f (x )=-x +3.故g (x )=f (x )(x -1)={ 2x 2-2x (0≤x <1)-x 2+4x -3 (1≤x ≤3). 7.-2012 因为f (-1)=-a -b sin 1+1=2014, 所以a +b sin 1=-2013,故f (1)=a +b sin 1+1=-2013+1=-2012.8.(0,14] 由条件知,函数f (x )是R 上的减函数,所以{ 0<aa -a ≤1,解得0<a ≤14. 9.f (2013)>f (2012)=f (2014)由条件知,函数f (x )是周期为4的周期函数,且在区间(1,3)上为减函数,在区间(-1,1)上是增函数,所以f (2012)=f (0),f (2013)=f (1),f (2014)=f (2). 因为f (1)>f (0)=f (2),所以f (2013)>f (2012)=f (2014). 10.①②③ 因为f (2-x )=-f (x ), 所以f (x )有对称中心为(1,0),周期为4.又因为f (x )为偶函数,且在[-1,0]上是增函数, 故f (x )图象可如图所示,从图可知①②③正确.11.解析:(1)由题意,函数f (x )的定义域为R .对任意x ∈R 都有f (-x )=-ax 1+(-x )2=-ax1+x 2=-f (x ), 故f (x )在R 上为奇函数.(2)证明:任取x 1,x 2∈[-1,1]且x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22), 因为x 1,x 2∈[-1,1]且x 1<x 2,所以x 1-x 2<0,x 1x 2<1,1+x 21>0,1+x 22>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 故f (x )在[-1,1]上为增函数. (3)由(1)(2)可知:①当a >0时,f (x )在[-1,1]上为增函数,故f (x )在[-1,1]上的最大值为f (1)=a 2,最小值为f (-1)=-a2;②当a <0时,f (x )在[-1,1]上为减函数,故f (x )在[-1,1]上的最大值为f (-1)=-a 2,最小值为f (1)=a2.12.解析:(1)平移后图象对应的函数解析式为 y =(x +1)3-3(x +1)2+2, 整理得y =x 3-3x ,由于函数y =x 3-3x 是奇函数,由题设真命题知,函数g (x )图象的对称中心的坐标是(1,-2).(2)设h (x )=log 22x4-x的对称中心为P (a ,b ),由题设知函数h (x +a )-b 是奇函数. 设f (x )=h (x +a )-b ,则f (x )=log 22(x +a )4-(x +a )-b ,即f (x )=log 22x +2a4-a -x -b .由不等式2x +2a4-a -x>0的解集关于原点对称,得a =2.此时f (x )=log 22(x +2)2-x-b ,x ∈(-2,2).任取x ∈(-2,2),由f (-x )+f (x )=0,得b =1,所以函数h (x )=log 22x4-x图象的对称中心的坐标是(2,1).(3)此命题是假命题. 举反例说明:函数f (x )=x 的图象关于直线y =-x 成轴对称图形,但是对任意实数a 和b ,函数y =f (x +a )-b ,即y =x +a -b 总不是偶函数.修改后的真命题:“函数y =f (x )的图象关于直线x =a 成轴对称图形”的充要条件是“函数y =f (x +a )是偶函数”.周周练(三) 1.C2.C m =0时,函数在给定区间上是增函数, m ≠0时,函数是二次函数,由题知m >0,对称轴为x =-12m≤-2,所以0<m ≤14,综上,0≤m ≤14.故f (1)=m +6∈[6,254].3.A 当a >0时,log 2a =12,解得a =2;当a ≤0时,2a =12,解得a =-1.4.D 因为3a <5a ,f (3a )>f (5a),所以0<a <1,于是f (1-1x )>1⇔log a (1-1x )>1⇔⎩⎨⎧1-1x <a -1x >0,解得1<x <11-a.5.D 函数f (x )的值域是[-1,3],函数g (x )的值域是[-a +2,2a +2], 因为对∀x 1∈[-1,2],∃x 2∈[-1,2], 使得f (x 1)=g (x 2),所以[-1,3]⊆[-a +2,2a +2],所以{ -a +2≤-a +2≥3,解得a ≥3. 6.2 依题意{b ·a b +b ·a 2=b =1⇒a =2. 7.(0,12] 若a >1,则x ∈(1,3)时,a x >a >1,而sin πx6<1,不成立.若0<a <1,则y =a x 在(1,3)上递减,而y =sin π6x 在(1,3)上递增,y =a x <a ,y =sin π6x >sin π6=12, 所以0<a ≤12.8.(0,1) 作出函数f (x )的大致图象如下,所以0<k <1.9.(3,+∞) 由图象关系知①{ a 2-a a 2-3>2a 或②{ 0<a 2-2a a 2-3>2a 或③{ a 2-a <1, 解①得a >3,②、③无解, 故a 的取值范围是(3,+∞).10.5 设k (1≤k ≤100且k ∈N *)为企盼数,则由题设log 23·log 34·log 45·…·log k +1(k +2)=lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg (k +2)lg (k +1)=log 2(k +2)=m ∈Z ,得k +2=2m ,又3≤k +2≤102,所以m =2,3,4,5,6,即k =22-2=2或23-2=6或24-2=14或25-2=30或26-2=62, 故在[1,100]内这样的企盼数共有5个.11.解析:(1)因为f (-1)=0,所以a -b +1=0,又x ∈R ,f (x )≥0恒成立,所以{ aΔ=b 2-4a ≤0, 所以b 2-4(b -1)≤0,所以b =2,a =1. 所以f (x )=x 2+2x +1=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2+(2-k )x +1=(x +2-k 2)2+1-(2-k )24,当k -22≥2或k -22≤-2时,即k ≥6或k ≤-2时,g (x )是单调函数. (3)因为f (x )是偶函数,所以f (x )=ax 2+1,F (x )={ ax 2+1 (x >0)-ax 2-1 (x <0), 因为mn <0,设m >n ,则n <0.又m +n >0,m >-n >0,所以|m |>|-n |,F (m )+F (n )=f (m )-f (n )=(am 2+1)-an 2-1=a (m 2-n 2)>0, 所以F (m )+F (n )能大于零.12.解析:(1)因为F (x )=f (2x )-f (x ) =(12)2x -(12)x ,x ∈[0,2], 令(12)x =t ,则t ∈[14,1], 所以y =t 2-t =(t -12)2-14,t ∈[14,1],所以y ∈[-14,0],即函数F (x )在x ∈[0,2]上的值域为[-14,0].(2)H (x )=(12)-2x +x -2x +1=4x -3x +1+1,H (x )在(-1,+∞)上是增函数. 证明:设-1<x 1<x 2,则H (x 1)-H (x 2)=4x 1-3x 1+1-4x 2+3x 2+1=(4x 1-4x 2)+3(x 1-x 2)(x 1+1)(x 2+1).因为-1<x 1<x 2,所以4x 1-4x 2<0,x 1-x 2<0,而x 1+1>0,x 2+1>0,所以3(x 1-x 2)(x 1+1)(x 2+1)<0,所以H (x 1)-H (x 2)<0,即H (x 1)<H (x 2), 故H (x )在(-1,+∞)上是增函数. 周周练(四)1.C 因为f (1)=log 21-11=-1<0,f (2)=log 22-12=12>0,所以函数的零点所在的区间是(1,2).2.D3.B 设将这批货物全部运到需要t 小时.依题意,t =400v +16×(v 20)2v =400v +16v400≥216=8,当且仅当400v =16v400,即v =100(km/h)时等号成立,此时t =8,因此最快需要8小时,故应选B.4.A 由条件知,0<a <1,b >1,又函数f (x )是R 上的增函数,所以f (a )<f (1)<f (b ).5.A 令g (x )=x -ln(x +1),则g ′(x )=1-1x +1=xx +1,由g ′(x )>0,得x >0,即函数g (x )在(0,+∞)上单调递增, 由g ′(x )<0,得-1<x <0,即函数g (x )在(-1,0)上单调递减, 所以当x =0时,函数g (x )有最小值,g (x )min =g (0)=0.于是对任意的x ∈(-1,0)∪(0,+∞),有g (x )≥0,故排除B 、D ,因为函数g (x )在(-1,0)上单调递减,则函数f (x )在(-1,0)上递增,故排除C ,所以答案选A.6.[1,9] 因为f (x )=3x -b 的图象过点(2,1),则f (2)=32-b =1,所以b =2,则f (x )=3x -2.又2≤x ≤4,所以0≤x -2≤2,则1≤3x -2≤9, 故f (x )的值域为[1,9].7.1 12在(3)中令x =0,得g (1)=1-g (0)=1,在(2)中令x =1,得g (13)=12g (1)=12,在(3)中令x =12,得g (12)=1-g (12),故g (12)=12,因为13<512<12,所以g (13)≤g (512)≤g (12),故g (512)=12.8.(-∞,0) 由x -1x +k =0,得k =1x-x ,函数f (x )=1x-x 在(0,1]上为减函数,其值域为[0,+∞),因方程无实根,所以k <0,即k 的取值范围是(-∞,0).9.(-∞,-4] 函数值域为R ,则y =2x +22-x +m 取尽所有正数,而y =2x +42x +m ≥22x ·42x +m =4+m ,所以4+m ≤0,故m ≤-4, 故m 的取值范围是(-∞,-4]. 10.34因为f (x )是奇函数,所以f (-x )=-f (x ). 当x ∈(0,2]时,-x ∈[-2,0),所以f (-x )=2-x =-[g (x )-log 5(x +5+x 2)],所以g (x )=log 5(x +5+x 2)-2-x ,x ∈(0,2], 显然函数g (x )在(0,2]上递增,故g (x )的最大值为g (2)=34.11.解析:(1)因为f (x )是奇函数,所以f (-x )+f (x )=0恒成立,解得a =1.(2)因为f (x )=-2x +12x +1=-1+22x +1,所以f (x )在R 上是减函数.证明:设x 1<x 2,则0<2x 1+1<2x 2+1,所以22x 1+1>22x 2+1,所以-1+22x 1+1>-1+22x 2+1,即f (x 1)>f (x 2),所以f (x )在R 上是减函数.(3)由零点意义可知,f (4x -b )+f (-2x +1)=0有解, 又f (x )是奇函数,所以f (4x -b )=-f (-2x +1)=f (2x +1)有解,即(2x )2-2·2x =b 有解, 而b =(2x -1)2-1≥-1,所以b 的取值范围是[-1,+∞). 12.解析:(1)由题意知⎩⎨⎧0≤x <-x 6-6x +3≥13或⎩⎨⎧3≤x ≤-x 6≥13, 解得1≤x <3或3≤x ≤4,即1≤x ≤4.所以能够维持有效的抑制作用的时间:4-1=3小时. (2)由(1)知,x =4时第二次投入1个单位的固体碱, 显然g (x )的定义域为4≤x ≤10.当4≤x ≤6时,第一次投放1个单位的固体碱还有残留,故g (x )=(1-x 6)+(2-x -46-6x -4+3)=113-x 3-6x -1. 当6<x ≤10时,第一次投放1个单位的固体碱已无残留, 故当6<x ≤7时,g (x )=2-x -46-6x -4+3=83-x 6-6x -1;当7<x ≤10时,g (x )=1-x -46=53-x6.所以g (x )=⎩⎨⎧113-x3-6x -1 (4≤x ≤6)83-x 6-6x -1 (6<x ≤7)53-x 6 (7<x ≤10).当4≤x ≤6时,g (x )=113-x 3-6x -1=103-(x -13+6x -1)≤103-22, 当且仅当x -13=6x -1时取“=”,即x =1+32;当6<x ≤7时,g ′(x )=6(x -1)2-16=(x +5)(7-x )6(x -1)2≥0, 所以g (x )为增函数;当7<x ≤10时,g (x )为减函数;故g (x )max =g (7)=12,又103-22-12=289-2886>0, 所以当x =1+32时,水中碱浓度的最大值为103-2 2.答:第一次投放1个单位的固体碱能够维持有效的抑制作用的时间为3小时;第一次投放1+32小时后,水中碱浓度达到最大值为103-2 2.周周练(五)1.C 切点(1,0),f ′(x )=ln x +1,所以切线的斜率k =f ′(1)=1,故切线方程是y =x -1.2.C 二项式(ax -36)3的展开式的第二项为-32a 2x 2,所以-32a 2=-32,解得a =±1.故⎪⎪⎪⎠⎛-2-1x 2d x =13x 3-1-2=73或⎪⎪⎠⎛1-2x 2d x =13x 31-2=3. 3.C 由y =f ′(x)图象可知:f ′(0)=0,f ′(2)=0.当x<0时,f ′(x)>0,f(x)递增; 当0<x<2时,f ′(x)<0,f(x)递减;当x>2时,f ′(x)>0,f(x)递增,且f(0)为极大值,f(2)为极小值,故选C .4.A y ′=1-2sin x ,由y ′>0,得0<x<π6;由y ′<0,得π6<x<π2,所以y max =π6+2cos π6-3=π6.5.D x 2f ′(x)+2xf(x)=[x 2·f(x)]′=e x x,所以当x>0时,[x 2·f(x)]′=ex x>0,令函数g(x)=x 2·f(x),所以g(x)在x>0时递增.由f(2)=e 28,得g(2)=e 22.又f(x)=g (x )x2,所以f ′(x)=g ′(x )·x 2-g (x )·(2x )x4=x·g ′(x )-2g (x )x 3=e x -2g (x )x 3,x>0.令h(x)=e x -2g(x),则h ′(x)=e x (1-2x),故当x ∈(0,2)时,h ′(x)<0;当x ∈(2,+∞)时,h ′(x)>0, 故h(x)在(0,+∞)上的最小值为h(2)=e 2-2g(2)=0.所以f ′(x)=e x -2g (x )x 3≥0,故f(x)在(0,+∞)单调递增.所以当x ∈(0,+∞)时,f(x)既无极大值也无极小值.选D .6.(-2,-1),(2,+∞) 函数f(x)的定义域是(-2,0)∪(0,+∞),又f ′(x)=1x +2-1x 2=x 2-x -2x 2(x +2),令f ′(x)>0,解得-2<x<-1或x>2,所以函数的递增区间是(-2,-1),(2,+∞). 7.2 9 f ′(x)=3x 2+6mx +n ,由题意,f ′(-1)=3-6m +n =0且f(-1)=-1+3m -n +m 2=0, 解得m =1,n =3或m =2,n =9,但m =1,n =3时,f ′(x)=3x 2+6x +3≥0恒成立, 即x =-1不是f(x)的极值点,故m =2,n =9.8.13切线为y =2x -1,由定积分的几何意义得所求图形的面积为 S =⎠⎛01[x 2-(2x -1)]d x=⎪⎪(13x 3-x 2+x )10 =13. 9.(-∞,-1] f ′(x)=-x +b x +2≤0(x>-1)恒成立,即b ≤x(x +2)恒成立,又x(x +2)=(x +1)2-1>-1,所以b ≤-1.10.33 设∠BAD =θ(0<θ<π且θ≠π2).由AD =DC =2,则AB =2+2×2cos θ=2+4cos θ,梯形高h =2sin θ, 因此梯形面积S(θ)=(2+4cos θ+2)·2sin θ2=4sin θ+4sin θ·cos θ.又S ′(θ)=4cos θ+4cos 2θ-4sin 2θ =4(2cos 2θ+cos θ-1)=4(2cos θ-1)(cos θ+1)(0<θ<π且θ≠π2),令S ′(θ)=0,得cos θ=12,所以θ=π3,故可知,当∠BAD =π3时,梯形面积最大,其最大面积为3 3.11.解析:(1)f ′(x)=3x 2+2bx +c ,依题意有{ f ′(-1)=f ′(3)′(0)=0,即{ 3-2b +c =27+6b +=0, 所以b =-3,c =0.(2)由(1)知f(x)=x 3-3x 2,f ′(x)=3x 2-6x , 由f ′(x)>0,得x<0或x>2, 由f ′(x)<0,得0<x<2,所以函数f(x)在区间[-12,0),(2,3]上递增,在区间(0,2)上递减,且f(-12)=-78,f(0)=0,f(2)=-4,f(3)=0.因为函数f(x)的图象与直线y =m 恰有三个交点,所以-78≤m<0,所以实数m 的取值范围为[-78,0).12.解析:(1)由题意k =f(x)=1+ln xx,x>0,所以f ′(x)=(1+ln x x )′=-ln xx2,当0<x<1时,f ′(x)>0; 当x>1时,f ′(x)<0.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减. 故f(x)在x =1处取得极大值.因为函数f(x)在区间(m ,m +13)(其中m>0)上存在极值,。
2021年高三上学期数学周练试卷(理科实验班12.29) 含答案

2021年高三上学期数学周练试卷(理科实验班12.29)含答案一.选择题(本大题共12小题,每小题5分,共60分)1.三条直线l1:x-y=0;l2:x+y-2=0;l3:5x-ky-15=0围成一个三角形,则k的取值范围()A.k≠±5且k≠1 B.k≠±5且k≠-10 C.k≠±1且k≠0 D.k≠±5 2.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[-,0] B.(-∞,-]∪[0,+∞)C.[-,] D.[-,0]3.若直线与圆相切,且为锐角,则这条直线的斜率是( )A. B. C. D.4.已知圆和两点,,若圆上存在点,使得,则的最大值为()A. B. C. D.5.已知圆:上到直线的距离等于1的点至少有2个,则的取值范围为()A. B. C. D.6.设点是函数图象上的任意一点,点是直线上的任意一点,则的最小值为()A. B. C. D.以上答案都不对7.已知函数()的导函数为,若存在使得成立,则实数的取值范围为()A.B.C.D.8.由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则为()A. B. C. D.9.已知实数变量满足且目标函数的最大值为8,则实数的值为( )A. B. C.2 D.110.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.2 D.11.已知圆和圆,动圆M与圆,圆都相切,动圆的圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为,(),则的最小值是()A. B. C. D.12. 已知,函数,若关于的方程有6个解,则的取值范围为()A.B.C.D.二.填空题(本大题共4小题,每小题5分,共20分)13.若点在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程_____.14. ∆ABC 中,|CB →|cos ∠ACB =|BA →|cos ∠CAB =3,且AB →·BC →=0,则AB 长为 . 15. 正实数满足,则的最小值为 .16. 四棱锥底面是一个棱长为2的菱形,且∠DAB=60º,各侧面和底面所成角均为60º,则此棱锥内切球体积为 .丰城中学xx 学年上学期高三周练试卷 数学答题卡(理科尖子、重点班)班级 姓名 学号 得分一、选择题(本大题共10个小题,每小题5分,共60分)13. 14. 15. 16. 三、解答题:(10分*2=20分)17. 已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M 、N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.18.如图, 已知四边形和均为直角梯形,∥,∥,且,平面⊥平面,(Ⅰ)证明:AG平面BDE;(Ⅱ)求平面和平面所成锐二面角的余弦值.参考答案1-6:BAABAB 7-12:CBDDAD 13.14..15.9 16.15.16.17.(1)∵直线l过点A(0,1)且方向向量a=(1,k),∴直线l的方程为y=kx+1.由|2k -3+1|k 2+1<1,得4-73<k <4+73.(2)设M (x 1,y 1)、N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1, 得(1+k 2)x 2-4(1+k )x +7=0, ∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1.∴4k (1+k )1+k 2+8=12,∴4k (1+k )1+k 2=4,解得k =1.18. 【解析】由平面,平面,平面BCEG , .………2分根据题意建立如图所示的空间直角坐标系,可得(0,2,0(20,0(002(2,1,0)(0,2,1)B D E A G ),,),,,),………….3分(Ⅰ)设平面BDE 的法向量为,则 即 , ,平面BDE 的一个法向量为………………………………………………..5分 ,,,∴AG ∥平面BDE . ……………………………………………….7分 (Ⅱ)设平面的法向量为,平面和平面所成锐二面角为……….8分 因为,,由得,……….10分平面的一个法向量为,.故平面和平面所成锐二面角的余弦值为……….12分 25977 6579 敹40350 9D9E 鶞35800 8BD8 诘B31335 7A67 穧31420 7ABC窼>36693 8F55 轕22490 57DA 埚25615 640F 搏32844 804C 职21150 529E 办,。
2021年高三周练 数学理(11.3) 含答案

2021年高三周练 数学理(11.3) 含答案命题:张小波 尹震霞 审核:徐瑢班级 姓名 学号一、填空题(本大题共14小题,每小题5分,计70分) 1.若2{|13},{|log 1}A x R x B x R x =∈≤≤=∈>,则= . 2.如果复数是实数,则实数 . 3.已知则的值为 . 4.在等差数列则公差 .5.已知向量若,则= .6.从内任意取两个实数,这两个数的平方和小于1的概率为 . 7.已知变量满足,则的最大值是 . 8.在中,,,为斜边的中点,则的值为 . 9.已知数列满足,则数列的前项的和是 .10.已知正项等比数列满足:,若存在两项使得,则的最小值为 . 11.已知函数,若,则实数的取值范围是 .12.设,若对于任意的,都有满足方程,这时所有取值构成的集合为 .13.点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于,若是钝角三角形,则椭圆离心率的取值范围是 . 14.已知等差数列的前n 项和为,若,,则下列四个命题中真命题的序号为 . ①; ②; ③; ④ 二、解答题15.(本小题满分14分) 已知函数.(1)设,且,求的值;(2)在中,,,且的面积为,求的值.16.(本小题满分14分)如图,在四棱锥中,四边形为平行四边形,,,为上一点,且平面.(1)求证:;(2)如果点为线段的中点,求证:∥平面.17.(本小题满分14分)如图,在半径为的圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.(1)写出体积V关于的函数关系式;(2)当为何值时,才能使做出的圆柱形罐子体积V最大?18.(本小题满分16分)已知抛物线与椭圆有公共焦点F,且椭圆过点D.(1)求椭圆方程;(2)点A、B是椭圆的上下顶点,点C为右顶点,记过点A、B、C的圆为⊙M,过点D作⊙M的切线l,求直线l的方程;(3)过点A作互相垂直的两条直线分别交椭圆于点P、Q,则直线PQ是否经过定点,若是,求出该点坐标,若不经过,说明理由.19.(本小题满分 16分)设,已知函数的图象与轴交于两点. (1)求函数的单调区间;(2)设函数在点处的切线的斜率为,当时,恒成立,求的最大值;(3)有一条平行于轴的直线恰好..与函数的图象有两个不同的交点,若四边形为菱形,求的值.20.(本小题满分 16分) 设函数,数列满足. (1)求数列的通项公式;(2)设()11223344511n n n n T a a a a a a a a a a -+=-+-+⋅⋅⋅+-,若对恒成立,求实数的取值范围;(3)是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由.数学附加题部分班级 姓名 学号21.[选做题] 在A 、B 、C 、D 四小题中只能选做2题,A .选修4—1:如图,CP 是圆O 的切线,P 为切点,直线CO 交圆O 于A ,B 两点,AD ⊥CP ,垂足为D .求证:∠DAP =∠BAP .B .选修4—2: 设a >0,b >0,若矩阵A =⎣⎢⎡⎦⎥⎤a 00 b 把圆C :x 2+y 2=1变换为椭圆E :x 24+y 23=1.(1)求a ,b 的值;(2)求矩阵A 的逆矩阵A -1.C .选修4—4:在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin(θ-π6)=a 截得的弦长为23,求实数a 的值.D .选修4—5:已知a ,b 是正数,求证:a 2+4b 2+1—ab ≥4.【必做题】第22题、第23题22.如图,PA ⊥平面ABCD ,AD//BC ,∠ABC =90°,AB =BC =PA =1,AD =3,E 是PB 的中点. (1)求证:AE ⊥平面PBC ; (2)求二面角B -PC -D 的余弦值.ABD CPO· (第21A 题)PABC DE23.在一个盒子中有大小一样的7个球,球上分别标有数字1,1, 2,2,2,3,3.现从盒子中同时摸出3个球,设随机变量X 为摸出的3个球上的数字和. (1)求概率P (X ≥7);(2)求X 的概率分布列,并求其数学期望E (X ).A .选修4—1:几何证明选讲证明:因为CP 与圆O 相切,所以∠DPA =∠PBA . 因为AB 为圆O 直径,所以∠APB =90°,所以∠BAP =90°-∠PBA . 因为AD ⊥CP ,所以∠DAP =90°-∠DPA ,所以∠DAP =∠BAP . B .选修4—2:矩阵与变换 解(1):设点P (x ,y )为圆C :x 2+y 2=1上任意一点,经过矩阵A 变换后对应点为P ′(x ′,y ′)则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax by =⎣⎢⎡⎦⎥⎤x ′y ′,所以⎩⎨⎧x ′=ax ,y ′=by ..因为点P ′(x ′,y ′)在椭圆E :x 24+y 23=1上,所以a 2x 24+b 2y 23=1,这个方程即为圆C 方程.所以⎩⎨⎧a 2=4,b 2=3.,因为a >0,b >0,所以a =2,b =3.ABD CP O·(第21A 题)(2)由(1)得A =⎣⎢⎡⎦⎥⎤2 00 3,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 33. C .选修4—4:坐标系与参数方程解:因为圆C 的直角坐标方程为(x -2) 2+y 2=4,直线l 的直角坐标方程为x -3y +2a =0.所以圆心C 到直线l 的距离d =|2+2a |2 =|1+a |. 因为圆C 被直线l 截得的弦长为23,所以r 2-d 2=3.即4-(1+a )2=3.解得a =0,或a =-2.D .选修4—5:不等式选讲已知a ,b 是正数,求证:a 2+4b 2+1—ab≥4.证明:因为a ,b 是正数,所以a 2+4b 2≥4ab .所以a 2+4b 2+1—ab ≥4ab +1—ab ≥24ab ×1—ab =4.即a 2+4b 2+1—ab≥4.22.(1)根据题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,3,0),P (0,0,1),E (12,0,12),→AE =(12,0,12),→BC =(0,1,0),→BP =(-1,因为→AE ·→BC =0,→AE ·→BP =0,所以→AE ⊥→BC ,→AE ⊥→BP .所以AE ⊥BC ,AE ⊥因为BC ,BP ⊂平面PBC ,且BC ∩BP =B , (2)设平面PCD 的法向量为n =(x ,y ,z ),则n ·→CD =0,n ·→PD =0.因为→CD =(-1,2,0),→PD =(0,3,-1),所以-x +2y =0,3y -z =0. 令x =2,则y =1,z =3.所以n =(2,1,3)是平面PCD 的一个法向量.因为AE ⊥平面PBC ,所以→AE 是平面PBC 的法向量.所以cos<→AE ,n >=→AE ·n |→AE |·|n |=5714.由此可知,→AE 与n 的夹角的余弦值为5714.根据图形可知,二面角B -PC -D 的余弦值为-5714. 23.解(1)P (X =7)=C 23C 12 + C 22C 12C 37=835,P (X =8)=C 22C 13C 37=335.所以P (X ≥7)=1135. ………………………4分 (2)P (X =6)=C 12C 13C 12 + C 33C 37=1335,P (X =5)=C 22C 12 + C 23C 12C 37=835,P (X =4)=C 22C 13C 37=335. 所以随机变量X 的概率分布列为X 4 5 6 7 8 P3358351335835335所以E (X )=4×335+5×835+6×1335+7×835+8×335=6.高三数学周末练习(理科)(xx .11.3)命题:张小波 尹震霞 审核:徐瑢班级 姓名 学号一、填空题(本大题共14小题,每小题5分,计70分)1. 若2{|13},{|log 1}A x R x B x R x =∈≤≤=∈>,则= . 2.如果复数是实数,则实数 . 3.已知则的值为 . 4.在等差数列则公差 . 5.已知向量若,则= .6.从内任意取两个实数,这两个数的平方和小于1的概率为 . 7.已知变量满足,则的最大值是 9 . 8.在中,,,为斜边的中点,则的值为 18 . 9.已知数列满足,则数列的前项的和是 .10.已知正项等比数列满足:,若存在两项使得,则的最小值为 . 11.已知函数,若,则实数的取值范围是 .12.设,若对于任意的,都有满足方程,这时所有取值构成的集合为 .13.点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于,若是钝角三角形,则椭圆离心率的取值范围是 . 14.已知等差数列的前n 项和为,若,,则下列四个命题中真命题的序号为 . ①; ②; ③; ④二、解答题15.(本小题满分14分)已知函数.(1)设,且,求的值;(2)在中,,,且的面积为,求的值.1)==,得,于是,因为,所以.(2)因为,由(1)知.因为△ABC的面积为,所以,于是. ①在△ABC中,设内角A、B的对边分别是a,b.由余弦定理得,所以.②由①②可得或于是.由正弦定理得,所以.16.(本小题满分14分)如图,在四棱锥中,四边形为平行四边形,,,为上一点,且平面.(1)求证:;(2)如果点为线段的中点,求证:∥平面.17.(本小题满分14分)如图,在半径为的圆形(O为圆心)铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A、C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.(1)写出体积V关于的函数关系式;(2)当为何值时,才能使做出的圆柱形罐子体积V最大?解:(1)连结OB,∵,∴,设圆柱底面半径为,则,即,所以其中(2)由,得因此在(0,)上是增函数,在(,30)上是减函数。
2021届高三上学期理科数学周测试卷13 Word版含答案

高三数学(理科)每周一测(13)一.选择题:本大题共12小题,每小题5分。
1.若集合{}2112,03x A x x B x x ⎧+⎫=-<<=<⎨⎬-⎩⎭,则B A ⋂是( )A.{}32<<x x B.⎭⎬⎫⎩⎨⎧<<-221x x C.⎭⎬⎫⎩⎨⎧-<<-211x xD.⎭⎬⎫⎩⎨⎧<<<<-32211x x x 或2.如果(3+i )z =10i (其中21i =-),则复数z 的共轭复数为( ) A.-1+3i B.1-3i C.1+3i D.-1-3i3.设向量()2,1-=a ,向量()4,3-=b ,向量()2,3=c ,则向量()=⋅+c b a 2( ) A .-15 B.0C. -11D. -34.已知{}n a 为等比数列,下面结论中正确的是( )A.1322a a a +≥B.若31a a >,则42a a >C.若13a a =,则12a a =D.2221322a a a +≥5.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P , 若5PF =,则双曲线的渐近线方程为( )输入x开始否是A .30x y ±=B .30x y ±=C .20x y ±=D .20x y ±=6.43(1)(1)x x --的展开式2x 的系数是( )A.-6B.-3C.0D.3 7.如图所示的程序框图的输入值[]1,3x ∈-,则输 出值y 的取值范围为( )A .[]1,2B .[]0,2C .[]0,1D .[]1,2-8.假如某天我校有3男2女五位同学均获某年北大、清华、复旦三大名校的保送资格,那么恰有2男1女三位同学保送北大的概率是( )A .6125B .281C .24125 D . 8819.四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD BCD ∆,是边长为3的等边三角形,若2AB =,则球O 的表面积为( )A .4πB .12πC .16πD .32π10.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )输出y结束12-=-x y()1log 2+=x y11.已知点G F E 、、分别是正方1111ABCD A B C D -的棱111DD CC AA 、、的中点,点P Q N M 、、、分别在线段11B C BE AG DF 、、、上. 以P Q N M 、、、为顶点的三棱锥P MNQ -的俯视图不可能是( )12.已知函数21()ln,(),22x x f x g x e -=+=对于(),0,a R b ∀∈∃∈+∞使得()()g a f b =成立,则b a -的最小值为( )A. 2lnB. 2ln -C. 32-eD. 32-e二.填空题:本大题共4小题,每小题5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学(理科)小题周周练
.已知集合,若,则等于()...或.或
.已知角的终边经过点且,则等于()
....
.已知函数,则曲线在点处切线的斜率为()....
.为得到函数的图象,可将函数的图象().向左移个单位.向左移个单位.向右移个单位.向右移个单位
.“”是“函数是在上的单调函数”的()
.充分不必要条件.必要不充分条件
.充要条件.既不充分也不必要条件
.的大小关系为()
..
..
.已知命题对任意,命题存在,使得,则下列命题为真命题的是()
....
.函数的图象大致是()
....
.若函数的图象关于直线对称,且当
时,,则等于()
....
.等于()
....
.设函数,若对任意,都存在,使得,则实数的最大值为()
....
.若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是()
....
二、填空题(本大题共小题,每题分,满分分.)
.命题“若,则”的否命题为.
.已知集合,则的元素个数是.
.若,则.
.设函数对任意实数满足,且当时,,若关于的方程有个不同的实数根,则的取值范围是.。