双勾函数的性质及应用
(完整版)对勾函数的一点思考对勾函数是数学中一种常见而又特殊的函数,又被

对勾函数的一点思考对勾函数是数学中一种常见而又特殊的函数,又被称为“双勾函数”,“勾函数”.不过由于数学教材中对对勾函数涉及较少,学生对相关知识的学习比较分散,也缺乏系统的归纳和提升.因此,学生应在适当的时候,及时加以总结、巩固和提高.对勾函数作为考试的内容时,主要考察单调性、极值、值域等.因此,理解对勾函数的知识,灵活运用这些知识点的技能,对掌握一些题目的做法大有裨益.所谓的对勾函数,是形如()bf x ax x=+ (0,0a b >>)的函数,由它的图像得名. 对勾函数的性质如下:(1)定义域为()(),00,-∞+∞U(2)值域为(),⎡-∞-+∞⎣U (3)奇偶性:在其定义域上是奇函数(4)单调性:单调增区间为⎛-∞ ⎝和⎫+∞⎪⎪⎭.单调减区间⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝. (5)渐进性:渐进线是y 轴和直线y x =方法一:利用单调性的定义进行证明:任意取()12,0,x x ∈+∞,且12x x <则()()12f x f x -1212b b ax ax x x =+--,()()211212b x x a x x x x -=-+()1212b x x a x x ⎛⎫=-- ⎪⎝⎭()121212a bx x x x x x -=-()*,要判定此式的正负只要确定12a bx x -的正负即可.这样,又需要判断12x x 与ba的大小,由于12,x x 的任意性,考虑到要将区间()0,+∞分为⎛ ⎝与⎫+∞⎪⎪⎭(1) 当12,x x ⎛∈ ⎝时,120b x x a <<,120x x -<.∴()*式小于0,即()()120f x f x ->,∴()()21f x f x <.∴()f x 在⎛ ⎝上是减函数(2) 当12,x x ⎫∈+∞⎪⎪⎭时12bx x a >,∴()*式大于0即()()120f x f x -<∴()()21f x f x >,∴()f x 在⎫+∞⎪⎪⎭上是增函数. 同理可得,(3)当x ⎛⎫∈ ⎪ ⎪⎝⎭时,()bf x ax x =+是减函数.(4)当,x ⎛∈-∞ ⎝时,()b f x ax x=+是增函数综上所述()b f x ax x =+在,⎛-∞ ⎝和⎫+∞⎪⎪⎭上是增函数,在⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝上是减函数 方法二:通过导数的知识来探究单调性.()bf x ax x=+,()222b ax bf x a x x -'=-=,令()0f x '=,1,2x =⎫⎪⎪⎭和⎛⎫ ⎪ ⎪⎝⎭.相应的极大值为-当,x ⎛∈-∞ ⎝,()0f x '>,此时()f x 单调递增当x ⎛⎫∈ ⎪ ⎪⎝⎭,()0f x '<,此时()f x 单调递减当x ⎛∈ ⎝,()0f x '<,此时()f x 单调递减当x ⎫∈+∞⎪⎪⎭,()0f x '>,此时()f x 单调递增一、对勾函数值域及其应用对勾函数的值域在高中数学中是一个重要的知识点.对于对勾函数,当其定义域为()(),00,-∞+∞U ,函数不存在最值,但存在极值.值域为(),⎡-∞-+∞⎣U ;当其定义域为(),0-∞或()0,+∞时,函数存在最值.利用对勾函数的这一性质,我们可以解决一类复杂的函数的值域问题. 例1求21log (2)y x x x ⎛⎫=+≥ ⎪⎝⎭的值域 分析:由已知先求出1x x+的范围,这是关键部分,然后再根据对数函数的单调性,求解. 解:令1u x x=+(2)x ≥ ∴ 55220u u u ⎧≥⎪⇒≥⎨⎪>⎩ ∴225log log 2y u =≥ ∴函数的值域为25log ,2⎡⎫+∞⎪⎢⎣⎭例2 若0,2x π⎛⎫∈ ⎪⎝⎭,则12tan tan x x+的最小值为 分析:根据x 的范围,求出tan x 的范围.再根据对勾函数的图像,求出最值. 解:令tan t x =()0t >∴11222y t t t t ⎛⎫ ⎪=+=+ ⎪⎪⎝⎭令()()120g t t t t=+>,由对勾函数的单调性及最值知识,()min g t =∴min y =例3(2006,上海高考)已知函数有ay xx=+如下性质:如果常数0a>,那么该函数在(上是减函数,在)+∞上是增函数.(1)如果函数()2by x xx=+>的值域为[)6,+∞,求b的值(2)研究函数22cy xx=+(常数0c>)在定义域内的单调性,并说明理由(3)对函数ay xx=+和22ay xx=+(常数0a>)作出推广,使它们都是你所推广的函数的特例,研究推广后的函数的单调性(只须写出结论,不必证明),并求函数()2211n nF x x xx x⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭(n是正整数)在区间上的最大值和在最小值(可利用你的研究结论)分析:根据题目已知,灵活使用对勾函数的性质,进而解决问题.解:(1)由题意得,2by xx=+在(上是减函数,在)+∞上是增函数,∴当x=,函数2by xx=+取得最小值6.6b=,∴2log9b=(2)设120x x<<,2221212221c cy y x xx x-=+--()222122121cx xx x⎛⎫=--⎪⎝⎭.12x x<<时,21y y>函数22cy xx=+在)+∞是增函数;当120x x<<< 21y y<.函数22cy xx=+在(上是减函数.又22cy xx=+是偶函数,于是,该函数在上(,-∞是减函数,在)⎡⎣上是增函数;(3)当n是奇数时,函数nnay xx=+在(0,上是减函数,在)⎡+∞⎣上是增函数,在(,-∞-上是增函数,在)⎡⎣上是减函数.当n是偶数时,函数nnay xx=+在(0,上是减函数,在)⎡+∞⎣上是增函数,在(,-∞-上是减函数,在)⎡⎣上是增函数;()2211n nF x x xx x⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭0212322311n nn nn nC x C xx x--⎛⎫⎛⎫=++++⎪ ⎪⎝⎭⎝⎭23231r n r n n r C x x --⎛⎫++ ⎪⎝⎭L 1n nn n C x x ⎛⎫+++ ⎪⎝⎭L 因此()F x 在1,12⎡⎤⎢⎥⎣⎦上是减函数,在[]1,2上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当1x =时,()F x 取得最小值12n +例4 求下列函数在(]1,2x ∈的值域 (1)21xy x =+ (2)232x x y x++=分析:对函数进行变形,进而根据x 的范围,求出1x x+的范围,求出值域. 解: (1)2111x y x x x==++ ∵(]1,2x ∈ ∴152,2x x ⎛⎤+∈ ⎥⎝⎦ ∴121,152x x⎡⎫∈⎪⎢⎣⎭+ ∴值域为21,52⎡⎫⎪⎢⎣⎭(2)解:23223x x y x x x++==++ ∵(]1,2x ∈∴2x x⎡⎤+∈⎣⎦∴值域为3,6⎡⎤⎣⎦ 例5(2008,江西高考) 若函数()y f x =的值域为1,32⎡⎤⎢⎥⎣⎦,则函数()()1()F x f x f x =+的值域是()A 1,32⎡⎤⎢⎥⎣⎦B 102,3⎡⎤⎢⎥⎣⎦C 510,23⎡⎤⎢⎥⎣⎦D 103,3⎡⎤⎢⎥⎣⎦解析:令()t f x =,则()1y F x t t ==+,其中1,32t ⎡⎤∈⎢⎥⎣⎦由()0b y x b x =+>的单调性知b y x x =+在1,12⎡⎤⎢⎥⎣⎦上是减函数,在(]1,3是增函数.又当12t =时,152y =; 当3t =时,210532y => 当3t =时max103y =; 当1t =时,min 2y =当1,32t ⎡⎤∈⎢⎥⎣⎦时,1102,3y t t ⎡⎤=+∈⎢⎥⎣⎦函数()()()1Fx f x f x =+的值域为102,3⎡⎤⎢⎥⎣⎦二、对勾函数的图像应用 例1解不等式44a a+> 解:方法一:(1)当0a <,显然不成立(2)当0a >时,244a a +>,∴()220a ->,∴0a >且2a ≠.方法二:把分式不等式化为整式不等式()220a a ⇔->,∴0a >且2a ≠(穿针引线法,奇穿偶不穿)方法三:根据函数4y x x=+的图像, 图像在()0,+∞上最小值是4,∴0a >且2a ≠例2 ()11f x x x =+-的图像关于()对称 A x 轴 B y 轴C 点()1,1D 直线1x =解析: ()1111f x x x =-++- 而()1f x x x=+是奇函数,所以图像关于()0,0对称. ∴()111g x x x =-+-的图像关于()1,0对称∴()1111f x x x =-++-图像关于()1,1对称. 例3 设()f x 的图像向左向上分别平移一个单位,得到()g x 的图像,又()g x 的图像关于1x =对称的是()1h x x x=+的图像,求()f x 的图像. 解: ()y h x =与()2y h x =-关于1x =对称.∴()()1222g x h x x x=-=-+- ∴()()()121121f x x x =--+---123x x=-++-本文就对勾函数性质的应用做了一个简单的介绍,充分认识到了对勾函数图像和性质在解决问题中的重要性.正确掌握这些知识,并灵活使用,有待同学们更深入的去研究,从而使我能进一步理解函数思想和函数方法,进而培养了学生从数学角度分析问题和运用数学知识解决实际问题的能力.。
对勾函数的性质及应用

对勾函数的性质及应用一、对勾函数by ax x=+)0,0(>>b a 的图像与性质:1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f 4. 图像在一、三象限, 当0x >时,by ax x=+≥ab 2(当且仅当b x a =取等号),即)(x f 在x=ab 时,取最小值ab 2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5. 单调性:增区间为(∞+,a b ),(a b -∞-,),减区间是(0,ab ),(a b -,0)二、对勾函数的变形形式 类型一:函数by axx=+)0,0(<<b a 的图像与性质 1.定义域:),0()0,(+∞⋃-∞ 2.值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x<0时,)(x f 在x=ab 时,取最小值ab 2;当0x >时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(0,a b ),(a b -,0)减区间是(∞+,ab ),(a b -∞-,),类型二:斜勾函数by ax x =+)0(<ab①0,0<>b a 作图如下1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-∞,0),(0,+∞).②0,0><b a 作图如下:1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:减区间为(-∞,0),(0,+∞).类型三:函数)0()(2>++=ac xc bx ax x f 。
双钩函数的性质及运用

双钩函数的性质及运用xx初等函数在中学数学中是非常重要的一部份知识,解决这一类问题,通常是要利用它们性质,结合图像分析、识别、记忆。
便能找到快捷的方法解答,能使问题变得简单、清晰、明了。
我们经常遇到一类函数,名为“双钩函数”。
在此,我想与大家共同探讨“双钩函数”的性质以及运用。
函数f(x)= ax +b/x,(a>0,b>0)叫做双钩函数。
定义域为x属于R。
该函数是奇函数,图象关于原点对称。
位于第一、三象限。
当x>0时,由基本不等式(均值不等式)可得:y ≥2√ab当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增同理:当x<0时,由基本不等式可得:y≤-2√ab当且仅当ax=b/x,即x=-√(b/a)时取等号。
故其顶点坐标为(-√(b/a),-2√ab),图象在(-∝,-√(b/a))上是单调递增,在(-√(b/a),0)上是单调递减的.当a<0,b<0时可转化为a>0,b>0的情况例如求f(x)=4x+3/x的单调性,并讨论在其定义域的最值。
解:如图根据“双钩函数”的性质,很快可画出图可知f(x)在(0,√】,【-√,0)为单调递减f(x)在【√,+∝),(-∝,-√】为单调递增当x>0时,f(x)有最小=4√3,f(x)无最大当x<0时f(x)有最大=-4√3,f(x)无最小当然函数f(x)= ax +b/x,(a>0,b>0)可用定义法来判定单调区间和最值。
如果你有兴趣,可以用定义法解上述例题,你定有一翻感叹。
1 对勾函数的性质及应用

1 对勾函数的性质及应用对勾函数是一种常见的数学函数形式,在不同领域中有着广泛的应用。
它的性质包括有界性、递增性、连续性和可导性等。
本文将详细介绍对勾函数的性质及其在各领域中的应用。
对勾函数的定义为:\[ f(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } 0 \leq x \leq 1 \\ 1, & \text{if } x > 1 \end{cases} \]首先,对勾函数具有有界性。
在定义域上,函数的取值范围被限定在0和1之间。
当输入小于0时,函数取值为0;当输入大于1时,函数取值为1。
这使得对勾函数在一定范围内有着固定的输出,这种特性在一些问题的建模中非常实用。
其次,对勾函数是递增的。
在定义域内,随着输入的增加,函数的值也会逐渐增加。
当输入从0到1时,函数的值从0逐渐增加到1。
由于递增性,对勾函数常常用来表示随着某个条件的改变,结果的增长或减少的情况。
第三,对勾函数是连续的。
在定义域内,对勾函数没有跳跃或断裂点,可以表示为一条连续的曲线。
这使得对勾函数在各种数学和统计分析中非常方便,例如用于求解连续函数的极值点、最小二乘法估计等。
最后,对勾函数是可导的。
在定义域内的大部分点上,对勾函数都是可导的。
只有在分界点0和1处可能不可导,因为函数在这些点的左右导数可能不相等。
然而,在实际问题中,由于对勾函数在这些点的函数值不连续,导数的存在与否并不会对问题的求解造成太大影响。
对勾函数具有广泛的应用。
下面将分别介绍对勾函数在数学、物理、经济和计算机科学等领域中的应用。
在数学中,对勾函数常用于分段函数的表示。
分段函数是一种函数形式,它在不同的定义域上有着不同的表达式。
由于对勾函数的定义形式简单,且具有可读性,因此常常用来表示分段函数。
例如,在微积分中,对勾函数常用于表示阶梯函数、指示函数等。
在物理学中,对勾函数常用于表示信号的限制和变换。
(完整版)“双勾函数”的性质及应用

“双勾函数”的性质及应用问题引入:求函数2y =的最小值.问题分析:将问题采用分离常数法处理得,2y ==,此时如果利用均值不等式,即2y =,等式成立的条件为==显然无实数解,所以“=”不成立,因而最小值不是2,遇到这种问题应如何处理呢?这种形式的函数又具有何特征呢?是否与我们所熟知的函数具有相似的性质呢?带着种种疑问,我们来探究一下这种特殊类型函数的相关性质.一、利用“二次函数”的性质研究“双勾函数”的性质 1.“双勾函数”的定义我们把形如()kf x x x=+(k 为常数,0k >)的函数称为“双勾函数”.因为函数()kf x x x=+(k 为常数,0k >)在第一象限的图像如“√”,而该函数为奇函数,其图像关于原点成中心对称,故此而得名.2.类比“二次函数”与“双勾函数”的图像3.类比“二次函数”的性质探究“双勾函数”的性质 (1)“二次函数”的性质①当0a >时,在对称轴的左侧,y 随着x 的增大而减小;在对称轴的右侧,y 随着x二次函数图像“双勾函数”图像的增大而增大;当2bx a=-时,函数y 有最小值244ac b a - .②当0a <时,在对称轴的左侧,y 随着x 的增大而增大;在对称轴的右侧,y 随着x的增大而减小.当2bx a=-时,函数y 有最大值244ac b a -.(2)“双勾函数”性质的探究 ①当0x >时,在x =y 随着x的增大而减小;在x =y 随着x的增大而增大;当x =y有最小值.②当0x <时,在x =y 随着x 的增大而增大;在x =y 随着x的增大而减小.当x =y有最大值-综上知,函数()f x在(,-∞和)+∞上单调递增,在[和上单调递减.下面对“双勾函数”的性质作一证明.证明:定义法.设12,x x ∈R ,且12x x <,则1212121212121212()()()()()(1)x x x x k a k k f x f x x x x x x xx x x x ---=+--==--.以下我们怎样找到增减区间的分界点呢?首先0x ≠,∴0x =就是一个分界点,另外我们用“相等分界法”,令120x x x ==,2010kx -=可得到x =因此又找到两个分界点.这样就把()f x 的定义域分为(,-∞,[,,)+∞四个区间,再讨论它的单调性.设120x x <<120x x -<,120x x >,120x x k <<, ∴120x x k -<. ∴121212121212()()()()0x x x x k k k f x f xx x x x x x ---=+--=>,即12()()f x f x >. ∴()f x 在上单调递减.同理可得,()f x 在)+∞上单调递增;在(,-∞上单调递增;在[上单调递减.故函数()f x在(,-∞和)+∞上单调递增,在[和上单调递减.性质启发:由函数()(0)kf x x k x=+>的单调性及()f x 在其单调区间的端点处取值的趋势,可作出函数()y f x =的图像,反过来利用图像可形象地记忆该函数的单调性及有关性质.此性质是求解函数最值的强有力工具,特别是利用均值不等式而等号不成立时,更彰显其单调性的强大功能.4.“二次函数”与“双勾函数”在处理区间最值问题上的类比 (1)“二次函数”的区间最值设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值. 分析:将f x ()配方,得对称轴方程x ba=-2, ①当a >0时,抛物线开口向上.若-∈ba m n 2[],必在顶点取得最小值,离对称轴较远端点处取得最大值; 若-∉b a m n 2[],,此时函数在[]m n ,上具有单调性,故在离对称轴x b a=-2较远端点处取得最大值,较近端点处取得最小值. ②当0a <时,抛物线开口向下.若-∈ba m n 2[],必在顶点取得最大值,离对称轴较远端点处取得最小值; 若-∉b a m n 2[],,此时函数在[]m n ,上具有单调性,故在离对称轴x b a=-2较远端点处取得最小值,较近端点处取得最大值. 以上,作图可得结论. ①当a >0时,max121()()()22()1()()()22b f m m n a f x b f n m n a ⎧-+⎪⎪=⎨⎪-<+⎪⎩如图如图,≥,;min345()()2()()()22()()2b f n n a b b f x f m n a a b f m m a ⎧->⎪⎪⎪=--⎨⎪⎪-<⎪⎩如图如图如图,,≤≤,.图1 图2 图3 图4 图5②当a <0时,max678()()2()()()22()()2b f n n a b b f x f m n a a b f m m a ⎧->⎪⎪⎪=--⎨⎪⎪-<⎪⎩如图如图如图,,≤≤,;min9101()()()22()1()()()22b f m m n a f x b f n m n a ⎧-+⎪⎪=⎨⎪-<+⎪⎩如图如图,≥,.(2)“双勾函数”的区间最值 设()(0)kf x x k x=+>,求f x ()在x m n ∈[],上的最大值与最小值. 分析:①当0x >时,其图像为第一象限部分.[]m n ,,则函数必在界点x =函数值;[]m n ,,此时函数在[]m n ,上具有单调性,故在离直线x =得最大值,较近端点处取得最小值.②当0x <时,其图像为第三象限部分.若[]m n ,,则函数必在界点x =最小值需比较两个端点处的函数值;若[]m n ,,此时函数在[]m n ,上具有单调性,故在离直线x =处取得最小值,较近端点处取得最大值.以上,作图可得结论. ①当0x >时,图7 图9图10max()(,()max{(),([,](,()(.f m n f x f m f n m n f n m ⎧>⎪⎪=⎨⎪<⎪⎩如图11)如图12)如图13)min()(,()[,](,()(.f n n f x f m n f m m ⎧>⎪⎪=⎨⎪<⎪⎩如图11)如图12)如图13)②当0x <时,max()(,()([,](,()(.f n n f x f m n f m m ⎧>⎪⎪=⎨⎪<⎪⎩,如图14)如图15),如图16)min()(,()min{(),()},[,](,()(.f m n f x f m f n m n f n m ⎧>⎪⎪=⎨⎪<⎪⎩,如图14)如图15),如图16)二、实践平台例1某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式近似地表示为230400010x y x =-+.问:(1)年产量为多少吨时,每吨的平均成本最低?并求出最低成本;图11 图12图13图14图15图16(2)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润.分析:将问题归结为“双勾函数”问题,利用“双勾函数”的性质,可使问题轻松获解.解:(1)由题意可知,每吨平均成本为yS x=万元. 即400014000030()301010y x S x x x x==+-=+-,因为函数在区间(0,200]上为减函数,在区间[200,)+∞上为增函数.所以当200x =时,函数400014000030()301010y x S x x x x==+-=+-有最小值为140000(200)301010200S =+-=最小(万元), 所以当年产量为200吨时,每吨的平均成本最低,最低成本为10万元.(2)设年获得总利润为Q 万元,则2211616304000(230)12901010x Q x y x x x =-=-+-=-+, 当230(150,250)x =∈,1290Q =最大,故当年产量为230吨时,可获得最大利润1290万元.评注:本题的关键是用年产量x 吨把每吨平均成本及利润表示出来,然后再求其最值,在求解最值时我们要用到“双勾函数”的单调性,记住这个结论可以简化计算过程.函数的单调性除一些理论上的应用外,它还可以灵活有效地解决现实生活中与之相关的实际问题.例2甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位),由可变部分和固定部分组成;可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元.(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域.(2)为了使全程运输成本最小,汽车应以多大的速度行驶. 分析:要计算全程的运输成本s bv vabv a v s y )()(2+=+=(v <0≤c ),而已知每小时的运输成本,只需计算全程的时间,由题意不难得到全程运输成本s bv v a bv a v s y )()(2+=+=(v <0≤c ),所要解决的问题是求bv va+何时取最小值,显然要对c 的大小进行讨论,讨论的标准也就是c 与ba的大小. 解:(1)依题意知:汽车从甲地匀速行驶到乙地所用时间为sv,因此全程运输成本为s bv vabv a v s y ⋅+=+⋅=)()(2,又据题意v <0≤c ,故所求函数及其定义域分别为: )(bv vas y +⋅=,],0(c v ∈.(2)设()()aab u f v bv b v v v==+=+,∴u 在],0(b a上是减函数,在)+∞上是增函数. ①若ba≤c ,结合“双勾函数”的性质知, 当bav =时运输成本y 最小. ②若c ba>,函数在],0(c 上单调递减,所以当c v =时,全程运输成本最小. 评注:解应用题时,首先要训练读题能力,成功地完成对数学文字语言、符号语言、图形语言的理解、接受和转换,继而对题中各元素的数量关系进行加工和提炼,分清主次,并建立数学模型解决实际问题.例3(2006安徽高考)已知函数()f x 在R 上有定义,对任意实数0a >和任意实数x ,都有()()f ax af x =.(Ⅰ)证明(0)0f =;(Ⅱ)证明0()0.kx x f x hx x ⎧=⎨<⎩,≥,,其中k 和h 均为常数;(Ⅲ)当(Ⅱ)中的0k >,设1()()(0)()g x f x x f x =+>,讨论()g x 在(0)+∞,内的单调性并求最值.分析:承接第(Ⅱ)问的结论,将问题归结为“双勾函数”的单调性与函数最值的求解问题.证明:(Ⅰ)令0x =,则()()00f af =,∵0a >,∴()00f =. (Ⅱ)①令x a =,∵0a >,∴0x >,则()()2f x xf x =.假设0x ≥时,()f x kx =(k ∈R ),则()22f x kx =,而()2xf x x kx kx =⋅=,∴()()2f x xf x =,即()f x kx =成立.②令x a =-,∵0a >,∴0x <,()()2f xxf x -=-假设0x <时,()f x hx =()h R ∈,则()22f x hx -=-,而()2xf x x hx hx-=-⋅=-,∴()()2f xxf x -=-,即()f x hx =成立.∴(),0,0kx x f x hx x ≥⎧=⎨<⎩成立.(Ⅲ)当0x >时,()()()2111()k g x f x kx k x f x kx x=+=+=+, 由“双勾函数”性质知在1(0,]k 上为减函数,在1[,)k+∞上为增函数, 所以当1x k=时,min [()]2g x =. 评注:数学高考试题注重“考基础、考能力、考思想”.所以熟悉数学化归的思想,有意识地运用数学变换的方法去灵活解决有关的数学问题,将有利于强化在解决数学问题中的应变能力,有利于提高解决数学问题的思维能力和技能、技巧. 适当进行化归、转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分. 本题就是转化思想应用的一个典型,通过转化将本来抽象的问题归结到“双勾函数”区间最值的求解,让我们有一种豁然开朗的感觉.例4(2001广东高考)设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为(1)λλ<,画面的上、下各留8cm 空白,左、右各留5cm 空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求23[,]34λ∈,那么λ为何值时,能使宣传画所用纸张面积最小?分析:设定变元x ,寻找它们之间的内在联系(等量关系),选用恰当的代数式表示问题中的这种联系,建立函数模型,将问题归结为“双勾函数”区间最值问题,并运用“双勾函数”性质进行求解.解:设画面高为x cm ,宽为x λcm ,则24840x λ= 设纸张面积为S cm 2,则有2(16)(10)(1610)160S x x x x λλλ=++=+++,将2210x λ=代入上式得,58500035210(S λλ=+,(0)t t λ=>,则58()500035210()(0)S t t t t=++>,函数S 在5]8上为减函数,在5[,)8+∞上为增函数, 所以当58t =S 取最小值, 此时55(1)88λ=<,高:484088x λ==cm ,宽:588558x λ=⨯=cm .如果23[,]34λ∈,则)t ∈⊆+∞,所以函数S 在上为增函数,故当t =S 取最小值,此时23λ=. 评注:函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画. 要充分重视解题过程中的推理,注意运用推理来简化运算.充分利用题目给出的信息,抽象其数学特征,建立函数关系.很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,达到解决问题的目的.在高考中可以利用“双勾函数”考查均值不等式、函数的单调性、函数最值等问题,其应用相当广泛,应用效果相当明显.因此也是高考中的热点和难点,倍受命题者的青睐.但只要我们能熟知“双勾函数”的性质,便不难使此类问题获解.。
双勾函数的图像与性质课件

双勾函数的性质
总结词
双勾函数具有一些特殊的性质,如对 称性、周期性和最值等。
详细描述
双勾函数图像关于直线y=kx(k为常 数)对称,同时具有周期性,其最小 正周期为2π。此外,双勾函数在特定 点取得最大值和最小值。
双勾函数的图像
总结词
双勾函数的图像呈现双勾形状,具有特定的对称性和周期性 。
详细描述
连线
使用平滑的曲线将这些点 连接起来,形成双勾函数 的图像。
双勾函数图像的特性
对称性
双勾函数的图像关于直 线y=x对称。
形状
双勾函数的图像是一个 半圆弧形状,类似于两
个勾子相交的形状。
定义域和值域
双勾函数的定义域为[1,1],值域为[0,1]。
奇偶性
双勾函数是奇函数,即 f(-x)=-f(x)。
03
05
双勾函数与其他数学知 识的联系
与三角函数的联系
三角函数与双勾函数在图像上具有相似性,可以通过三角函数来理解双勾函数的图 像变化。
双勾函数的周期性与三角函数的周期性相呼应,可以通过三角函数的周期性来理解 双勾函数的周期性。
三角函数中的正弦、余弦函数与双勾函数中的f(x)=ax+b/x在特定条件下具有等价性 。
双勾函数的图像是一个类似于两个山峰和两个谷底的波形曲 线。图像关于直线y=kx(k为常数)对称,并且在特定点取 得最大值和最小值。通过调整参数a和b的值,可以改变双勾 函数的形状和大小。
02
双勾函数的图像绘制
使用数学软件绘制双勾函数图像
软件选择:选择合适的数学软件,如 GeoGebra、Desmos或Wolfram Alpha等,这些软件都支持双勾函数的 绘制。
在机械工程中,双勾函数可以用 于描述机械系统的振动和稳定性
双钩函数的性质及应用

双钩函数的性质及应用双钩函数是一种具有特殊性质和应用的函数。
在数学中,双钩函数通常用来描述Young图或Young表,并在许多领域中发挥着重要的作用。
下面我将详细介绍双钩函数的性质及其应用。
一、双钩函数的性质1. 定义:双钩函数是一种形式类似于多项式的函数。
设λ为一组非增的正整数,双钩函数Kλ(x)是通过在矩形栅格中的每个格子上放置一个包含λ个钩的钩子而定义的函数。
2. 条件:双钩函数Kλ(x)的定义需要满足一定的条件,即每个钩所占据的格子必须处于标准Young图内部的格点上。
3. 表示:双钩函数可以表示为一组特定的Schur函数之和,即Kλ(x) = ∑sμ(x)v μ*,其中μ为标准Young图的形状参数,vμ*为对应的反对称Schur函数。
4. 对称性:双钩函数具有一定的对称性质,即对于任意的正整数k,有Kλ(x1, x2, ..., xk) = Kλ(xk, ..., x2, x1)。
5. 归一化:双钩函数归一化后可以得到规范化的双钩函数,满足∫Kλ(x)Kμ(x)d μ= δλμ,其中δλμ是Kronecker符号。
二、双钩函数的应用1. 集合分割:双钩函数可以应用于集合分割问题。
通过对集合元素进行不同的分组,可以得到不同形状的标准Young图。
通过计算双钩函数,可以精确描述每个分割的权重,从而帮助解决集合分割问题。
2. 模式识别:双钩函数也可以应用于模式识别领域。
通过在多维空间中表示特定的模式,可以使用双钩函数对这些模式进行编码和表示。
双钩函数可以根据模式的形状参数来计算不同的权重,并进行模式匹配和识别。
3. 量子力学:双钩函数在量子力学中也有重要的应用。
在描述多粒子态时,可以使用双钩函数来计算粒子之间的关联性。
双钩函数可以帮助解决多粒子系统的对称性问题,并且可以应用于多粒子波函数的计算和分析。
4. 组合数学:双钩函数也在组合数学中发挥着重要的作用。
通过对标准Young 图进行计数和组合,可以使用双钩函数来计算不同形状的图形的数量。
完整版对勾函数详细解析总结计划

对勾函数的性质及应用一、对勾函数y ax b(a 0,b 0)的图像与性x质:1.定义域: ( ,0) (0, )2.值域: ( , 2 ab ] [ 2 ab , )3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即 f (x) f ( x)04. 图像在一、三象限,当 xb2 ab (当且仅当xb取等号),0 时,y axx a即 f ( x) 在x= b 时,取最小值2 aba由奇函数性质知:当 x<0 时,f (x)在 x=b时,取最大值2 ab a5. 单调性:增区间为(b,),(,b), 减区间是( 0,b),(b,0 )a a a a二、对勾函数的变形形式种类一:函数y ax b(a0, b 0) 的图像与性x质1. 定义域:(,0) (0, )2. 值域:(, 2 ab ] [ 2 ab , )3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状 .4. 图像在二、四象限 , 当 x<0 时, f ( x) 在 x= b时,取最小值 2ab ;当 x 0 时,af ( x) 在 x=b时,取最大值 2 aba5. 单调性:增区间为( 0, b),(b ,0 )减区间是( b, ),(,b),aaaa种类二: 斜勾函数 yaxb( ab 0)x① a 0,b 0 作图以下1. 定义域: (,0) (0,) 2. 值域: R3. 奇偶性:奇函数4. 图像在二、四象限,无最大值也无最小值 .5. 单调性:增区间为( - ,0),(0,+ ).② a 0,b 0 作图以下:1. 定义域: (,0) (0,) 2. 值域: R3. 奇偶性:奇函数4. 图像在二、四象限,无最大值也无最小值.5. 单调性:减区间为( - ,0),(0,+ ).种类三: 函数 f ( x)ax2bx c(ac 0) 。
x此类函数可变形为 f ( x)axc c 上下平移获取b ,可由对勾函数 y axxx练习 1. 函数 f ( x)x2x 1的对称中心为x种类四: 函数 f (x ) xa (a 0, k 0)xk此类函数可变形为 f (x)( x ka ) k ,则 f ( x) 可由对勾函数 yxa左右平移,x kx上下平移获取练习 1. 作函数 f ( x)x1与 f ( x)x 3x xx 的草图222. 求函数 f (x)x1 在 (2, ) 上的最低点坐标2x 43. 求函数 f (x)xx 的单调区间及对称中心x1种类五 :函数 f (x)ax (a 0,b 0) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 定义域 2.奇偶性
(-∞,0) ∪(0 ,+∞) 奇函数 f(-x)=-f(x)
确定函数
a f x x (a>0)的单调区间 x
⑴. 当x∈ (0 ,+∞)时,确定某单调区间
任取x1 ,x2 (0, ), x1 <x2 . a a 则 f x2 f x1 x2 ( x1 ) x2 x1 a( x1 x2 ) ( x1 x2 a ) ( x2 x1 ) ( x2 x1 ) x1 x2 x1 x2
上式中x2 x1 0,为使上式符号确定,
对任意x1x2 , x1 x2 a或x1 x2 <a都成立.
当x1 x2 >a时,由x1 ,x2是任意的,知x1 ,x2可 无限接近.而x1 ,x2在同一个区间取值, 知x1 ,x2 ( a,+)时,x1 x2 >a都成立. 此时,f(x2 )>f ( x1 ). 所以x ( a,+)时,f(x)是增函数. 同时可知,x (0, a )时,f(x)是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
a 4.函数 f x x (a>0)的大致图像 x
y
2 a a
0
a 2 a
x
a 5.函数 f x x (a>0)的值域 x
2 a , , 2 a最低,为520a元.
5.甲乙两地相距100公里,汽车从甲地到乙 地匀速行驶,速度为x公里/小时,不得超过 C(C为常数).已知汽车每小时运输成本为 可变成本x2与固定成本3600之和.为使全程 运输成本y最小,问汽车以多大速度行驶?
100 2 解:由已知可得,函数关系式为y ( x 3600) x 3600 即y 100( x ), x C x 3600 令t=x , 此函数在x (0,60)减,在x 60, 增 x
7 1.已知函数 f x x x
(1).x 1, 2 , 求f x 的值域.
(2).x 2, 4 , 求f x 的最小值.
(3).x 7, 3 , 求f x 的值域.
7 解:函数f (x) x 在 0, 7 , 7,0 递减 x 递增 在 7 , , , 7 (1).在x 1, 2 是减函数 f (2) f ( x) f (1)
f ( x)在x 2,4 最小值为2 7
2.已知函数 f x 2 ,求f(x)的最小值,并 x 4 求此时的x值.
解:原函数化为f x
2
x 5
2
2
x 4 1 x 4
2
x 4
2
1 x 4
2
1 令t x 4 y=t+ ,(t 2) 此函数在 1,+ 递增 t 1 5 2 y min 2 , 此时t 2 2 x 4 x 0 2 2 5 即f x 时, x 0 2
0
答:C<60时,汽车以C速度行驶,
C 60
C
x
C 60时,汽车以60速度行驶,运输成本最低.
⑵. 当x∈ (-∞,0)时,确定某单调区间
由f x 是奇函数,图像关于原点对称. 所以f x 在( ,- a )是增函数, 在(- a ,0)是减函数. a 综上,函数 f x x (a>0)的单调 x
区间是 f x 在(- a ,0),(0, a )是减函数.
2
200 总造价y 100 2a (2 x ) 8 a x 100 200a 16a( x ) ( x 0) x
100 函数t ( x ) 在 0,10 是减函数, x 在 10,+ 是增函数 在x=10时,t最小值为20 y min 520a (元)
60 (1).C<60时,函数t=x 在x 0,C 递减 x 60 100(C 2 60) x C时,ymin 100(C ) C C
y
60 (2).C 60时,函数t=x ,对于x C包含最 x 1200 3600 小点,x 60时,y min 100(60 ) 12000 60
2 2
1 1 2ab 2 原式=ab =ab -2 ab ab ab 1 1 2 1 (2). (a )(b ) ab 2 令t =ab 0<t a b ab 4 2 2 原式=t+ 2 函数y=t+ 在 0, 2 递减 t t 1 25 25 当t= 时,y min 即原式最小值为 4 4 4
1 3.已知实数a, b R , a +b=1, ab 4 1 1 (1).试用a, b表示(a )(b ) a b 1 1 (2).求(a )(b )的最小值. a b
解: 1 1 b a 1 1 a b (1).(a )(b ) ab ab a b a b ab ab ab 2 2 2 2 a+b=1, a b +2ab=1 a b =1-2ab代入上式
4.建筑一个容积为800米3,深8米的长方体 水池(无盖).池壁,池底造价分别为a元/米2 和2a元/ 米2.底面一边长为x米,总造价为y. 写出y与x的函数式,问底面边长x为何值时 总造价y最低,是多少?
解:长方体底面积S=100米 , 100 底面另一边长为 x 200 池壁总面积为8 (2 x )米2 x
1 即 f ( x) 8 2 1 值域为 , 8 2
(2).分析知x 7 2,4 , f ( x)的最小值为f ( 7)
(3).在x 7, 3 是增函数 f (7) f ( x) f (3) 16 16 即-8 f ( x) x 7, 3 值域为 8, - 3 3