信息隐藏 实验十 LSB信息隐藏的卡方分析
lsb信息隐藏

LSB算法的信息隐藏实验单位:三系一队姓名:马波学号:3222008030LSB信息隐藏实验一、实验目的1.掌握LSB算法原理2.熟悉信息隐藏与提取的流程3.锻炼算法的程序实现能力二、实验原理1.信息隐藏用秘密信息比特替换载体中的最不重要部分,可以达到对信息隐藏的目的。
在数字图像中,每个字节的最低位对图像信息的影响最小,因此将数字图像的最低位用信息比特替换可以实现信息隐藏。
由于载体图像的每个字节只隐藏一个秘密信息比特,所以只有当载体图像的大小是秘密信息大小的8倍以上时才能完整的将秘密信息隐藏。
提取信息位并隐藏的示意图:2.信息提取在隐藏了秘密信息的数字图像中,每个字节的最低位就是秘密信息比特位,只需将这些信息比特提取出来并组合,就可以恢复出原来的秘密信息。
提取信息示意图:三、实验内容A.将秘密信息隐藏在载体的最低位,检验算法的鲁棒性(1)读入秘密信息(此实验中秘密信息为二值图像)(2)把秘密信息的比特位放入载体的最低位(3)给隐藏了秘密信息的图像加入大小为1的噪声加入噪声大小为1时:加入噪声为2时:B.将秘密信息隐藏在载体的最高位,检验算法的鲁棒性(1)读入秘密信息(此实验中秘密信息为二值图像)(2)把秘密信息的比特位隐藏在载体的最高位(3)分别给隐藏了秘密信息的图像加入大小为1和2的噪声C.将秘密信息隐藏在载体的第三位,检验算法的鲁棒性(1)同A中的(1)(2)把秘密信息比特位隐藏在载体的第三位(3)分别给隐藏了秘密信息的图片加入大小为1、2和3的噪声五、实验总结1.当秘密信息隐藏在最低位时,对载体的改变小,载体质量较高。
但鲁棒性较差,有噪声干扰时很容易发生信息丢失从而无法恢复出秘密信息2.当秘密信息隐藏在最高位时,图像的鲁棒性增强,受到较大噪声干扰时仍能恢复出秘密信息,但对图像的改变较大,隐藏的位数越高图像的质量越低。
3.当隐藏的信息位介于最低位和最高位时,选择合适的位置,既可以提高信息隐藏的鲁棒性,又对图像的质量影响不大,所以,进行信息隐藏时可以考虑LSB的改进。
信息隐藏实验(LSB隐写,随机LSB隐写,RS隐写分析)

信息隐藏实验二LSB隐写分析姓名:周伟康学号:班级:一:实验要求1、针对自己实现的隐写算法(嵌入、提取),计算隐蔽载体的PSNR值,通过PSNR值来评估隐写对图像质量的影响,并与主观感受做对比。
2、实现一种隐写分析方法,对隐蔽载体进行检测(卡方、RS……)二:实验步骤1、编写随机选点函数,完善顺序和随机两种LSB信息嵌入和提取。
%随机间隔选点函数%[row, col] = randinterval(test, 60, 1983);function [row, col] = randinterval(matrix, count, key)[m, n] = size(matrix);interval1 = floor(m * n / count) + 1;interval2 = interval1 - 2;if interval2 == 0error('载体太小,不能将秘密消息隐藏其内!');endrand('seed', key);a = rand(1, count);%initializerow = zeros([1 count]);col = zeros([1 count]);r = 1; c = 1;row(1,1) = r;col(1,1) = c;for i = 2 : countif a(i) >= 0.5c = c + interval1;elsec = c + interval2;endif c > nr = r + 1;if r > merror('载体太小,不能将秘密消息隐藏其内!');endc = mod(c, n);if c==0c = 1;endendrow(1, i) = r;col(1, i) = c;end选取8*8的矩阵测试2、对比原始图像和隐藏信息后图像,计算隐蔽载体的均方差(MSE)进而计算峰值信噪比(PSNR),评估隐写对图像质量的影响。
信息隐藏实验报告-信息隐藏技术

实验目的隐写分析以及变换域隐写技术实验内容针对LSB隐写的卡方分析a)实现针对LSB隐写的卡方分析b)分析实验性能针对LSB隐写的RS分析a)实现针对LSB隐写的RS分析b)分析实验性能JPEG压缩算法a)分析JPEG压缩算法的主要流程Jsteg隐写算法a)实现Jsteg隐写算法b)分析实验性能F3隐写算法a)实现F3隐写算法b)分析实验性能实验工具及平台■Windows+Matlab□其它:(请注明)实验涉及到的相关算法1、与实验内容选择的项目对应;2、请使用流程图、伪代码、NS 图或文字方式描述,不要..贴代码 卡方隐写分析卡方隐写分析主要利用了LSB 隐写后图像的值对效应。
它需要LSB 隐写满足如下的条件:1. 嵌入信息中0、1的分布较为均匀,即各为50%左右。
由于信息嵌入到载体之前通常需要经过加密操作,因此这一点是容易满足的。
2. 图像需要有较多的像素点被嵌入信息。
当嵌入信息较少时,卡方分析的效果并不精确。
卡方分析的原理是:若设ℎj 表示图像载体中灰度值为j 的像素数量,如果载体图像没有使用LSB 隐写算法,那么ℎ2i 和ℎ2i+1的值通常相差较大,而LSB 隐写方法将秘密信息取代图像的最低位,由于秘密信息通常是加密过的,因此可以看成0、1分布均匀的比特流。
在嵌入过程中只存在2i →2i +1而不存在2i →2i −1的变换,因此使得ℎ2i 和ℎ2i+1的值趋于一致,我们能够借助改变的统计特性判断图像是否经过隐写。
我们首先定义ℎ2i ∗=ℎ2i +ℎ2i+12,由LSB 隐写算法的性质我们可以知道在嵌入前后该值是不变的。
由中心极限定理,我们有ℎ2i −ℎ2i+1√(2ℎ2i ∗)→N(0,1) 因此r = ∑(ℎ2i −ℎ2i ∗)2ℎ2i ∗k i=1服从卡方分布。
结合卡方分布的密度计算函数我们可以计算出载体被隐写的可能性为:p =1−12k−12T(k −12)∫exp (−t 2)t k−12−1dt r0 当p 的值接近于1时,我们可以推断出载体图像中含有秘密信息。
2021年信息隐藏实验报告

信息隐藏试验汇报试验题目【一】实现空域图像水印方法中LSB算法: 原始图像选择大小为512*512elain图像或者goldhill图像, 选择一个LSB水印算法以及合适水印序列; 利用选定水印嵌入算法将水印信息嵌入到原始图像中。
在嵌入水印以后图像中提取水印, 是否能够判定图像中含有水印, 同时计算含水印图像峰值信噪比。
将含有水印图像缩小为256*256以后, 再放大为512*512, 这时再提取水印, 是否能够判定图像中含有水印。
试验结果缩略图: lsb.fig试验程序% LSB 算法:clear;A=imread('elain.bmp');B=A;message='www`s homework';m=length(message);n=size(A);k=1;for i=1:n(1)for j=1:n(2)if k<=m %假如消息输入完成则为0h=bitget(double(message(k)),8:-1:1);elseh=[0,0,0,0,0,0,0,0];endc=bitget(A(i,j),8:-1:1);if mod(j,8) == 0p=8;elsep=mod(j,8);endv=0;for q=1:7v=xor(v,c(q));endv=xor(v, h(p) );B(i,j)=bitset(A(i,j),1,v);if mod(j,8) == 0k=k+1;endendend% 提取信息out=char;tmp=0 ;t=1;for i=1:n(1)for j=1:n(2)c=bitget(B(i,j),8:-1:1);v=0;for q=1:8v=xor(v,c(q));endif mod(j,8)==0p=1;elsep=9-mod(j,8);endtmp=bitset(tmp,p,v);if mod(j,8)==0out(t)=char(tmp);t=t+1;tmp=0;endendend%显示图像figure;subplot(1,2,1);image(A);axis('square');title('原始图像');subplot(1,2,2);imshow(B);axis('square');title('加入水印后图像');out试验题目【二】实现基于扩频图像水印算法: 原始图像选择大小为512*512elain图像或者goldhill图像, 水印图像选择为以XXX印或者XX之印(XXX为自己名字)为图案、合适大小二值黑白图像, 再选择一个基于扩频图像水印算法; 利用选定水印嵌入算法将水印信息嵌入到原始图像中。
信息隐藏实验十LSB信息隐藏的卡方分析

信息隐藏实验十LSB信息隐藏的卡方分析信息隐藏是一种将秘密信息嵌入到载体数据中的技术。
嵌入信息的最广泛应用之一是最低有效位(LSB)信息隐藏。
在LSB信息隐藏中,秘密信息位嵌入到像素的最低有效位中,而保持其他位不受影响。
该技术在数字音频、图像和视频领域得到广泛应用。
卡方分析是一种统计方法,用于衡量统计数据的拟合程度。
在LSB信息隐藏中,卡方分析可以用于分析嵌入数据的随机性。
通过计算嵌入数据和原始数据之间的差异,可以评估嵌入信息与载体数据的一致性。
LSB信息隐藏的实验中,首先需要得到原始的载体数据。
这可以是一幅图像、一段音频或一段视频。
然后,选择一个合适的秘密信息进行嵌入。
秘密信息可以是一串文本、一张图像或一个视频片段。
接下来,将秘密信息的二进制表示按位进行嵌入到载体数据的最低有效位中。
此时,嵌入数据已准备好。
进行卡方分析的下一步是计算频数。
对于每个像素,统计其最低有效位(被嵌入数据所占据的位)出现1和0的频数。
同时,计算原始数据中最低有效位出现1和0的频数。
比较两组频数可以得到嵌入数据和原始数据之间的差异。
卡方分析可以用来评估嵌入数据的随机性。
根据卡方分布表,可以计算卡方值。
通过比较卡方值和临界值,可以判断嵌入数据的随机性是否达到了预期。
如果卡方值小于临界值,则表明嵌入数据的分布与原始数据的分布存在显著差异,嵌入数据不具备较好的随机性。
LSB信息隐藏的卡方分析还可以用于评估嵌入数据的容量。
通过计算嵌入数据和原始数据之间的差异,可以推断嵌入数据的容量。
如果嵌入数据的容量越大,则嵌入数据与原始数据的差异越大。
卡方分析可以帮助评估嵌入数据的最大容量,以便在实际应用中选择合适的嵌入容量。
LSB信息隐藏的卡方分析还可以用于检测嵌入数据的存在。
通过比较卡方值和临界值,可以判断嵌入数据是否存在于载体数据中。
如果卡方值大于临界值,则可以得出嵌入数据的存在性。
这在数字取证和数字水印领域具有重要意义。
LSB信息隐藏的卡方分析是一种有力的工具,用于评估嵌入数据的随机性、容量和存在性。
信息隐藏实验报告一图像的位平面,LSB和MSB

信息隐藏实验报告一实验名称:图像的位平面,LSB 和MSB一、实验目的图像的位平面,LSB 和MSBLSB(Least Significant Bits):最不重要位(或最低有效位) MSB(Most Significant Bits):最重要位。
二、实验内容⑴用“按位与”运算清image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;⑵用“按位与”运算取image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data12、 data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑶用“按位与”运算清image 的第1-2、1-3、1-4、1-5、1-6、1-7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果; ⑷用“按位与”运算取image 的第3-8、4-8、5-8、6-8、7-8位,结果分别保存在图像矩阵data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑸将彩色图像dsc.jpg 读入图像矩阵image ,重做上面的⑴-⑷项要求;⑹取彩色图像矩阵image 的某个分量(R 、G 、B 均可),重做上面的⑴-⑷项要求;三、实验环境matlab7.0四、基本原理(算法思想)时域是对应于变换域而言的,即不对信号做任何频率变换而得到的信号域就是时域。
对于图像载体,其信号空间也就是像素的取值空间。
我们选择了RGB 颜色空间下的像素作为分析对象。
在RGB 颜色空间中,每一个像素都有三个分量,即红(Red)、绿(Green)、蓝(Blue)分量。
五、实验结果与结论(主要的程序代码、运行结果)⑴用“按位与”运算清image 的第2、3、4、5、6、7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;教师签名2007.11实验时间成绩评 定信息隐藏 课程名称同组人姓 名 05软件工程班 级 计算机科学与技术系别⑵用“按位与”运算取image的第2、3、4、5、6、7位,结果分别保存在图像矩阵data12、data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑶用“按位与”运算清image的第1-2、1-3、1-4、1-5、1-6、1-7位,结果分别保存在图像矩阵data02、 data03、 data04、 data05、 data06、 data07中,并显示所得结果;⑷用“按位与”运算取image的第3-8、4-8、5-8、6-8、7-8位,结果分别保存在图像矩阵data13、 data14、 data15、 data16、 data17中,并显示所得结果;⑸将彩色图像dsc.jpg读入图像矩阵image,重做上面的⑴-⑷项要求;代码略清image的第2、3、4、5、6、7位取image的第2、3、4、5、6、7位清image的第1-2、1-3、1-4、1-5、1-6、1-7位⑹取彩色图像矩阵image的某个分量(R、G、B均可),重做上面的⑴-⑷项要求;代码image=imread('dsc.jpg');%将彩色图像读入图像矩阵image A=image(:,:,1);下略清image的第2、3、4、5、6、7位取image的第2、3、4、5、6、7位清image的第1-2、1-3、1-4、1-5、1-6、1-7位六、实验总结通过这次实验使我对图像的位平面有了一定的认识。
LSB图像信息隐藏实验

LSB图像信息隐藏实验【实验环境】ISES客户端注:请将信息隐藏测试载体放在指定目录下:C:\ISES【实验步骤】一、信息嵌入(一)选择载体图片注:载体图片有BMP、JPG、GIF、PNG四种格式,这里只以JPG格式图片为例。
(1)选择载体图片,进入该实验,点击“选择载体图片”按钮选择合适的要嵌入信息的载体图片,如图4.1.1-1所示。
图4.1.1-1选择载体图片(2)点击“二进制展示”按钮可以二进制形式查看图片,如图4.1.1-2所示。
图4.1.1-2以二进制查看图片(3)点击“计算”按钮,可查看图片信息,如图4.1.1-3所示。
图4.1.1-3查看图片信息(二)选择要隐藏文件(1)点击“选择要隐藏的文件”按钮选择要嵌入的信息文件,并点击“计算”按钮查看信息内容。
如图4.1.1-4所示。
需注意的是要嵌入的信息数据大小应小于载体容量,且最好为文本文件,以便对比观察原始信息与提取的信息。
图4.1.1-4选择要隐藏文件(2)点击“二进制转换”按钮,查看隐藏信息的二进制流,如图4.1.1-5所示。
图4.1.1-5以二进制流形式查看隐藏信息(三)嵌入信息(1)点击“嵌入”按钮,将隐藏信息嵌入到载体图片中,并另存为成新的带有隐藏信息的图片,如图4.1.1-6所示。
图4.1.1-6嵌入信息成功(2)点击“确定”按钮,弹出图片对比窗口,如图4.1.1-7所示。
图4.1.1-7图片对比窗口(3)可通过选项卡选择图片对比及细节对比,以对比原始载体图片和嵌入信息后的载体是否存在视觉上的可觉察的变化,并观察载体文件嵌入前后的细节变化。
(四)观察嵌入信息过程(1)点击“读取信息”及“读取水印”按钮,读取载体的一个字节信息及水印的一位信息,如图4.1.1-8所示。
图4.1.1-8读取信息(2)点击“嵌入1”按钮,执行嵌入操作,如图4.1.1-9所示。
图4.1.1-9嵌入信息(3)点击“嵌入”按钮,循环执行上述过程将全部信息嵌入到载体图片中,并保存、对比结果。
LSB图像信息隐藏实验

学号:姓名:专业年级班级:实验室:组别:实验日期:message=fopen('Message.txt','r');[msg,msg_len]=fread(message,'ubit1') %按位以二进制形式读取文本内容与长度[m,n]=size(image1) %读取行和列p=1; %p为秘密信息的位计数器[row,col]=randinterval(image1,msg_len,1996);for i=1:msg_lenimage1(row(i),col(i))=image1(row(i),col(i))-mod(image1(row(i),co l(i)),2)+msg(p,1);if p==msg_lenbreak;end ;p=p+1;end%还原图像Hide_image(:,:,1)=image1;Hide_image=uint8(Hide_image);imwrite(Hide_image,'Hide_image.tif');%输出隐藏信息的图像subplot(121);imshow(image);title('未嵌入信息的图片');subplot(122);imshow(Hide_image);title('嵌入信息的图片');else ['the photo is not a rgb style']fclose('all');end实验算法2:读取LSB 隐藏的信息1.读取已经隐藏信息的图像。
如果为RGB 图像,则读取图像的一层(该层为嵌入信息的那层)。
2.用与LSB 算法中相同的随机数种子产生相同的一串随机数。
随机数串的长度由LSB 中获得(长度不得大于图像大小)。
用同一个伪随机生成算法,相同的种子,来产生像素点位置,可以确保隐藏时和提取1.读取已经隐藏信息的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十 LSB 信息隐藏的卡方分析
一,实验目的:
了解什么是隐写分析,隐写分析与信息隐藏和数字水印的关系。
掌握基于图像的LSB 隐写的分析方法,设计并实现一种基于图像的LSB 卡方隐写分析方法。
二,实验环境
1, Windows XP 操作系统 2, Matlab 软件 3, BMP 格式图片文件 三,实验原理
隐写术和隐写分析技术是互相矛盾又是相互促进的,隐写分析是指对可疑的载体信息进行攻击以达到检测、破坏,甚至提取秘密信息的技术,它的主要目标是为了揭示媒体中隐蔽信息的存在性,甚至只是指出媒体中存在秘密信息的可疑性。
图像LSB 信息隐藏的方法是用嵌入的秘密信息取代载体图像的最低比特位,原来图像的7个高位平面与代表秘密信息的最低位平面组成含隐蔽信息的新图像。
虽然LSB 隐写在隐藏大量信息的情况下依然保持良好的视觉隐蔽性,但使用有效的统计分析工具可判断一幅载体图像中是否含有秘密信息。
目前对于图像LSB 信息隐藏主要分析方法有卡方分析、信息量估算法、RS 分析法和GPC 分析法等。
卡方分析的步骤是:设图像中灰度值为j 的象素数为hj ,其中0≤j ≤255。
如果载体图像未经隐写,h2i 和h2i+1的值会相差很大。
秘密信息在嵌入之前往往经过加密,可以看作是0、1 随机分布的比特流,而且值为0与1的可能性都是1/2。
如果秘密信息完全替代载体图像的最低位,那么h2i 和h2i+1的值会比较接近,可以根据这个性质判断图像是否经过隐写。
定量分析载体图像最低位完全嵌入秘密信息的情况:嵌入信息会改变直方图的分布,由差别很大变得近似相等,但是却不会改变h2i+h2i+1的值,因为样值要么不改变,要么就在h2i 和h2i+1之间改变。
令 显然这个值在隐写前后是不会变的。
如果某个样值为2i ,那么它对参数q 的贡献为1/2;如果样值为2i+1 ,对
221
*22i i i h h h ++=
221
2
i i h h q +-=
参数q 的贡献为-1/2。
载体音频中共有 2h2i*个样点的值为2i 或2i+1,若所有样点都包含1比特的秘密信息,那么每个样点为2i 或2i+1的概率就是0.5。
当2h2i*较大时,根据中心极限定理,下式成立:
其中->N(0,1)表示近似服从正态分布 所以
服从卡方分布。
上式中,k 等于h2i 和h2i+1所组成数字对的数量, h2i*为0的情况不计在内。
r 越小表示载体含有秘密信息的可能性越大。
结合卡方分布的密度计算函数计算载体被隐写的可能性为:
如果p 接近于1,则说明载体图像中含有秘密信息。
四,实验结果 1,原图像
2,直方图
由于所有的数据画出的直方图过于密集,所以选取80:99这之间的像素值。
*
221
22*
*
222(0,1)
2i i i i i
i
N h h +=→*2
22*1
2()k
i i i i h h r h =-=∑
112
10
21
1exp()21
2()2
r
k k t p t dt k ---=---Γ⎰
80828486889092949698100
原图80:99
80828486889092949698100
隐写后80:99
3,不同隐写率下的图像
隐写率0.3
隐写率0.5
隐写率0.7
4,P值分析
由所有的P值可以看出,当隐写率为0.3的时候,P[1]—P[40]的值都接近1;当隐写率为0.5的时候,P[1]—P[64]的值都接近1;当隐写率为0.7的时候,P[1]—P[91]的值都接近1。
五,实验结果
完成实验之后,可以得出如下结论:
依据卡方分析函数,可以判定载体图像中是否含有秘密信息。
但是这要求秘密信息必须嵌满所有像素。
六,代码附录
1,hist_change.m
[fn,pn]=uigetfile({'*.jpg','JPEG files(*.jpg)';'*.bmp','BMP files(*.bmp)'},'select file to haide'); name=strcat(pn,fn);
I=rgb2gray(imread(name));
sz=size(I);
rt=1;
row=round(sz(1)*rt);
col=round(sz(2)*rt);
msg=randsrc(row,col,[0 1;0.5 0.5]);
stg=I;
stg(1:row,1:col)=bitset(stg(1:row,1:col),1,msg);
nI=sum(hist(I,[0:255]),2)';
nS=sum(hist(stg,[0:255]),2)';
x=[80:99];
figure;
stem(x,nI(81:100));
figure;
stem(x,nS(81:100));
2,Stgprb.m
function p=StgPrb(x)
n=sum(hist(x,[0:255]),2);
h2i=n([3:2:255]);
h2is=(h2i+n([4:2:256]))/2;
filter=(h2is~=0);
k=sum(filter);
idx=zeros(1,k);
for i=1:127
if filter(i)==1
idx(sum(filter(1:i)))=i;
end
end
r=sum(((h2i(idx)-h2is(idx)).^2)./(h2is(idx)));
p=1-chi2cdf(r,k-1);
3,test.m
clear all;
[fn,pn]=uigetfile({'*.jpg','JPEG files(*.jpg)';'*.bmp','BMP files(*.bmp)'},'select file to haide'); name=strcat(pn,fn);
t=imread(name);
I=t(1:512,1:512);
sz=size(I);
for k=1:3
rt=0.3+0.2*(k-1);
row=round(sz(1)*rt);
col=round(sz(2)*rt);
msg=randsrc(row,col,[0 1;0.5 0.5]);
stg=I;
stg(1:row,1:col)=bitset(stg(1:row,1:col),1,msg);
imwrite(stg,strcat(pn,strcat(sprintf('stg_% d_',floor(100*rt)),fn)),'bmp');
i=1;
for rto=0.1:0.01:1
row=round(sz(1)*rto);
col=round(sz(2)*rto);
p(k,i)=StgPrb(stg(1:row,1:col));
i=i+1;
end
end。