北师大版九年级上册数学第四章 图形的相似 尖子生训练题
2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。
北师大版数学九年级上册第四章图形的相似单元综合练习含答案

北师大版数学九年级上册第四章图形的相似单元综合练习含答案1. 以下条件中,不能判定△ABC 与△A′B′C′相似的是( )A .∠A=45°,∠C=26°,∠A′=45°,∠B′=109°B .AB =2,AC =32,BC =2,A′B′=6,A′C′=9,B′C′=12 C .AB =1.5,AC =1514,∠A=36°,A′B′=2.1,A′C′=1.5,∠A′=36° D .AB =2,BC =1,∠C=90°,A′B′= 2,B′C′= 22,∠C′=90° 2. a b =52,那么以上等式中,不一定正确的选项是( ) A .2a =5b B.a 5=b 2 C .a +b =7 D.a +b b =723. 如图,在△ABC 中,点D 在边AB 上,BD =2AD ,DE ∥BC 交AC 于点E ,假定线段DE =5,那么线段BC 的长为( )A .7.5B .10C .15D .204. 如图,▱ABCD 中,G 是BC 延伸线上一点,AG 与BD 交于点E ,与DC 交于点F ,那么图中相似三角形共有( )A .3对B .4对C .5对D .6对5. 如图,△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,那么CF 等于( )A .1B .2C .3D .46. 如图,在△ABC 中,假设DE 与BC 不平行,那么以下条件中,不能判别△ADE ∽△ABC 的是( )A .∠ADE =∠CB .∠AED =∠B C.AD AB =DE BC D.AD AC =AE AB7. 小刚在打网球时,为使球恰恰能过网(网高为0.9 m),且落在对方区域离网5 m 的位置上,他击球的高度是2.25 m ,那么他应站在离网的( )A .15 m 处B .10 m 处C .8 m 处D .7.5 m 处8. 如图,D ,E 区分是△ABC 的边AB ,AC 上的一点,DE ∥BC ,AF ⊥BC 于点F ,交DE 于点G ,且AD ∶AB =5∶12,那么AG AF的值为( ) A.125 B.512 C.712 D.759. 两个相似三角形的相似比是1∶2,其中较小三角形的周长为6 cm ,那么较大的三角形的周长为( )A .3 cmB .6 cmC .9 cmD .12 cm10. 图中两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P11. 如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO 扩展到原来的2倍,失掉△A′B′O.假定点A 的坐标是(1,2),那么点A′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)12. 在比例尺为1∶2 000的地图上测得A ,B 两地间的图上距离为5 cm ,那么A ,B 两地间的实践距离为________m.13. 如图,直线AD ∥BE ∥CF ,BC =13AC ,DE =4,那么EF 的值是________. 14. 如图,在平行四边形ABCD 中,点E 是边BC 上的黄金联系点,且BE >CE ,AE 与BD 相交于点F ,那么BF ∶FD 的值为________.15. 如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,那么旗杆AB 的高为________m.16. △ABC ∽△DEF ,相似比为1∶2,且△ABC 的边AC 上的高为8,那么△DEF 的边DF 上的高为________.17. 如图,在△ABC 中,点D ,E 区分是AB ,AC 上的点,DE ∥BC ,且AD =AB ,△ADE 的周长为6 cm ,那么△ABC 的周长为________cm.18. 小华自制了一个简易的幻灯机,其任务状况如下图,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,那么屏幕上小树的高度是________cm.19. 如图,△OAB 与△OA ′B ′是相似比为1∶2的位似图形,点O 为位似中心,假定△OAB 内一点P (x ,y )与△OA ′B ′内一点P ′是一对对应点,那么点P ′的坐标是____________.20. x ∶y ∶z =2∶3∶4,求x +2y -z x -y +3z的值. 21. 如图,是小明设计用手电来测量古城墙高度的表示图,点P 处放一水平的平面镜,光线从点A 动身经平面镜反射后刚好射到古城墙CD 的顶端C 处,且测得AB =1.2 m ,BP =1.8 m ,PD =12 m ,求古城墙的高度CD.22. 如图,小明拿着一把厘米刻度尺,站在距电线杆约30 m 的中央,把手臂向前伸直,刻度尺竖直,刻度尺上18个刻度恰恰遮住电线杆,手臂长约60 cm ,小明能求出电线杆的高度吗?假定能,请你替小明写出求解进程.参考答案:1---11 BCCDB CDBDD C12. 10013. 214. 5-1215. 916. 1617. 1818. 6019. (-2x ,-2y)20. 解:设x =2k ,y =3k ,z =4k ,∴原式=2k +6k -4k 2k -3k +12k =4k 11k =411. 21. 解:由题意可得△PAB∽△PCD,∴PB PD =AB CD ,即1.812=1.2CD,解得CD =8,故古城墙的高度为8 m. 22. 解:可以求出电线杆的高度.过点A 作AN⊥EF 于N ,交BC 于M.∵BC∥EF,∴AM ⊥BC 于M ,∴△ABC ∽△AEF ,∴BC EF =AM AN,∵AM =0.6,AN =30,BC =0.18,∴EF =BC×AN AM =0.18×300.6=9 (m ).故电线杆的高度为9米.。
北师大版九年级数学上第四章图形的相似同步练习含答案解析

第四章图形的相似同步练习(45分钟100分)一、选择题(每小题4分,共28分)1.下面四组线段中,能成比例的是( )A.3,6,7,9B.3,6,9,18C.2,5,6,8D.1,2,3,4【解析】选B.3∶6=9∶18.2.如图,有两个形状相同的星形图案,则x的值为( )A.15cmB.12cmC.10cmD.8cm【解析】选D.根据对应边成比例得:=,解得x=8cm.3.如图,AB∥CD,=,则△AOB的周长与△DOC的周长比是( )A. B. C. D.【解析】选D.由AB∥CD可得△AOB∽△DOC,又=,△AOB的周长与△DOC的周长比是.4.如图,AB∥CD∥EF,则图中相似三角形的对数为( )A.4对B.3对C.2对D.1对【解析】选 B.∵AB∥CD∥EF,∴△ACD∽△AEF,△ECD∽△EAB,△ADB ∽△FDE.∴图中共有3对相似三角形.5.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的图形是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( )A.- aB.-(a+1)C.-(a-1)D.-(a+3)【解析】选D.过点B和点B′分别作x轴的垂线,垂足分别是点D和点E,∵点B′的横坐标是a,点C的坐标是(-1,0).∴EC=a+1,又∵△A′B′C的边长是△ABC的边长的2倍,∴DC=(a+1),∴DO=(a+3),∴B点的横坐标是-(a+3).6.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线交AD于E,点F是AB的中点,连接EF,则S△AEF∶S四边形BDEF为( )A.3∶4B.1∶2C.2∶3D.1∶3【解析】选D.∵DC=AC,CE平分∠ACB,∴AE=DE(等腰三角形“三线合一”).∵点F是AB的中点,∴EF是△ABD的中位线,∴EF∥BD,EF=BD,∴△AFE∽△ABD,则S△AEF∶S△ADB===,∴S△AEF∶S四边形BDEF=1∶3.7.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( )A.(6,0)B.(6,3)C.(6,5)D.(4,2)【解析】选B.由题意得Rt△ABC的边AB=6,BC=3,AC=3,△CDE中CD=2,若CD的对应边为AB时C,D,E为顶点的三角形与△ABC相似,则点E的坐标是(6,0)或(6,2)或(4,0)或(4,2),不可能为(6,3);若CD的对应边为BC时,C,D,E为顶点的三角形与△ABC相似,则点E的坐标是(6,5)或(6,-3)或(4,5)或(4,-3);若CD的对应边为AC时C,D,E为顶点的三角形与△ABC相似;也可直接从网格上按上面的对应边来判断四个选项,易得点E的坐标不可能是(6,3),故选B.二、填空题(每小题5分,共25分)8.如图,直线A1A∥BB1∥CC1,若AB=8,BC=4,A1B1=6,则线段B1C1的长【解析】∵A1A∥BB1∥CC1,∴=.∵AB=8,BC=4,A1B1=6,∴B1C1=3.答案:39.如图,A,B两点被池塘隔开,在AB外任选一点C,连接AC,BC分别取【解析】∵M,N分别为AC,BC的三等分点,∴==,又∠C为公共角,∴△CMN∽△CAB,∴=,∴AB=3MN=114m.答案:11410.如图,P为平行四边形ABCD边AD上一点,E,F分别是PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2,若S=2,则【解析】由于E,F分别是PB,PC的中点,根据中位线性质EF∥BC,EF= BC,易得△PEF∽△PBC,面积的比是1∶4,由S=2,得△PBC的面积为8.又根据平行四边形的性质,把S1+S2看作整体,求得S1+S2=△PBC的面积=8.答案:811.已知点D是线段AB的黄金分割点,且线段AD的长为2厘米,则最【解析】当线段BD最短时,由题意得=,解得BD=-1.答案:-112.如图,已知直线l:y=x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l 于N1,过点N1作直线l的垂线交x轴于M2,……按此作法继续下去,则点M10的坐标为.【解析】根据题意可知N的坐标为(2,2),所以OM=2,MN=2,因为△OMN和△NMM1相似,所以=,所以MM1=6.所以OM1=2+6=8,因此M1的坐标为(8,0).同理,可求得M2(32,0),M3(128,0),……,由此可得M n的横坐标满足(22n+1,0),所以当n=10时,代入(22n+1,0)中,得M10的坐标为(221,0).答案:(221,0)三、解答题(共47分)13.(10分)如图,四边形ABCD各顶点的坐标分别为A(2,6),B(4,2),C(6,2),D(6,4),在第一象限内,画出以原点为位似中心,与原四边形ABCD相似比为的位似图形A1B1C1D1,并写出各点坐标.【解析】如图所示:各点的坐标分别为:A1(1,3),B1(2,1),C1(3,1),D1(3,2).14.(12分)(2013·徐州中考)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上的某一点D处,折痕为EF(点E,F分别在边AC,BC上).(1)若△CEF与△ABC相似,①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为.(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由. 【解析】(1)①;②1.8或2.5.(2)相似.连接CD,与EF交于点O,∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B.由折叠知,∠COF=∠DOF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A.又∵∠C=∠C,∴△CEF∽△CBA.15.(12分)(2014·宁波慈溪实验期中)如图,点E是矩形ABCD中CD 边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE.(2)若△BEF也与△ABF相似,请求出∠BEC的度数.【解析】(1)如图,∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°.∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠3+∠1=180°-∠BFE=90°.又∵∠3+∠2=90°,∴∠1=∠2,∴△ABF∽△DFE.(2)∵由(1)知,∠1+∠3=90°,∴△BEF与△ABF相似,分两种情况:△ABF∽△FBE;△ABF∽△FEB.①当△ABF∽△FBE时,∠2=∠4.∵∠4=∠5,∠2+∠4+∠5=90°,∴∠2=∠4=∠5=30°,∴∠BEC=90°-30°=60°.②当△ABF∽△FEB时,∠2=∠6,∵∠4+∠6=90°,∴∠4+∠2=90°,这与∠2+∠4+∠5=90°相矛盾,∴△ABF∽△FEB不成立.综上所述,∠BEC的度数是60°.16.(13分)(2013·永州中考)如图,已知AB⊥BD,CD⊥BD.(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由.(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?并求BP的长.(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似?并求BP的长.(4)若AB=m,CD=n,BD=l,请问在m,n,l满足什么关系时,存在以P,A,B 三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的一个P点?两个P点?三个P点?【解析】(1)存在P点满足题意.设BP=x,则DP=10-x, 如果是△ABP∽△CDP,则=,即=,解得x=.如果是△ABP∽△PDC,则=,即=,得方程:x2-10x+36=0,方程无解;所以BP=.(2)存在两个P点满足题意.设BP=x,则DP=12-x,如果是△ABP∽△CDP,则=,即=,解得x=.如果是△ABP∽△PDC,则=,即=,得方程:x2-12x+36=0,解得x=6;所以BP=6或.(3)存在三个P点满足题意.设BP=x,则DP=15-x,如果是△ABP∽△CDP,则=,即=,解得x=.如果是△ABP∽△PDC,则=,即=,得方程:x2-15x+36=0,解得x=3或12. 所以BP=,3或12.(4)设BP=x,则DP=x-x,如果是△ABP∽△CDP,则=,即=xx-l,解得x=mm n+l.如果是△ABP∽△PDC,则=,即mx-l=,得方程:x2-l x+mn=0,Δ=l2-4mn.当Δ=l2-4mn<0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的一个P点;当Δ=l2-4mn=0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的两个P点;当Δ=l2-4mn>0时,存在以P,A,B三点为顶点的三角形与以P,C,D三点为顶点的三角形相似的三个P点.。
北师大版九年级上册数学第四章 图形的相似含答案(必刷题)

北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为()A. B. C. D.2、如图,下列四个三角形中,与相似的是()A. B. C. D.3、如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C.D.4、小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.45、如图,点D是△ABC的边BC的中点,且∠CAD=∠B,若△ABC的周长为10,则△ACD的周长是()A.5B.5C.D.6、如图,△ABC 内接于⊙ O ,AD 是△ABC 边 BC 上的高,D 为垂足.若 BD = 1,AD = 3,BC = 7,则⊙O 的半径是()A. B. C. D.7、如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是( )A. B. C. D.8、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.49、如图,△ABC∽△ADE,则下列比例式正确的是()A. B. C. D.10、如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.11、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm12、在△ABC中,AB=12,BC=18,CA=24,另一个和它相似的△DEF最长的一边是36,则△DEF最短的一边是()A.72B.18C.12D.2013、如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是()A. B.1 C.2 D.314、如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1, S2, S3三部分,则S1:S2:S3=()A.1:2:3B.1:4:9C.1:3:5D.无法确定15、已知:如图,在中,,则下列等式成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2∥l3∥l4∥l5∥l6∥l7,且每相邻两条直线的距离相等.若直线l8分别与l1, l2, l5, l7相交于点A,B,C,D,则AB:BC:CD为________.17、在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=________.18、已知,则的值为________.19、把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为________.20、上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米21、如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:________.22、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.23、将矩形纸片ABCD按如下步骤进行操作:( 1 )如图1,先将纸片对折,使BC和AD重合,得到折痕EF;( 2 )如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是________.24、如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC =CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1, S2, S3,若S1+S3=20,则S1=________,S2=________.25、如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.三、解答题(共5题,共计25分)26、解方程.534%-2x=0.5627、李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.28、如图,两根电线杆相距Lm,分别在高10m的A处和15m的C处用钢索将两杆固定,求钢索AD与钢索BC的交点M离地面的高度MH.29、如图,在△PAB中,点C、D在AB上,PC=PD=CD,∠A =∠BPD,△APC 与△BPD相似吗?为什么?30、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?参考答案一、单选题(共15题,共计45分)1、B2、C4、D5、B6、C7、D8、D9、D10、B11、C12、B13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、。
北师大版九年级数学上册 第四章 图形的相似 单元测试试题(有答案)

北师大版九年级数学上册第四章图形的相似单元测试题一.选择题(共10小题)1.如图,△ABC中,DE∥BC分别交BA、CA的延长线于点E、D,则下列比例式正确的是()A.=B.=C.=D.=2.已知△ABC∽△DEF,若周长比为4:9,则AC:DF等于()A.4:9B.16:81C.3:5D.2:33.如果2a=5b,那么下列比例式中正确的是()A.=B.=C.=D.=4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是()A.14B.15C.16D.175.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形6.如图,在▱ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5B.2:3C.3:4D.3:27.我国古代数学著作中记载了一个问题:“今有邑方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”其大意是:一座正方形城池,西、北边正中各开一道门,从北门往正北方向走40步后刚好有一树木,若从西门往正西方向走810步后正好看到树木,则正方形城池的边长为()步.A.360B.270C.180D.908.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A.1:4B.1:2C.1:16D.1:89.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A’的坐标是()A.(1,﹣2)B.(2,1)C.(﹣2,﹣1)或(2,1)D.(﹣1,2)或(1,﹣2)10.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.二.填空题(共8小题)11.在比例尺为1:100000的地图上,相距3m的两地,它们的实际距离为km.12.如图所示,矩形ABCD中,点E、F分别在边AB、CD上,且AEFD是正方形,若矩形BCFE 和矩形ABCD相似,且AD=2,则AB的长为.13.如图,l1∥l2∥l3,直绒l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知=,则=.14.已知Rt△ABC∽Rt△A′B′C′,且∠C=∠C′=90°,若AC=3,BC=4,A′B′=10,则A′C′=.15.在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),D (0,6),已知矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,则点B1的坐标是.16.如图,△ABC中,DE∥BC交AB于点D,交AC于点E,BD=2,AB=6,AC=9,则AE的长为.17.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为米.18.如图,AD∥BC,∠D=90°,AD=2,BC=12,DC=10,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有个.三.解答题(共8小题)19.若x:y=3:5,y:z=2:3,求5x﹣2z的值.20.如图,已知:l1∥l2∥l3,AB=2,BC=4,DF=12.求DE的长.21.如图,已知在ABC中,AB=,AC=2,BC=3,点M为AB的中点,在线段AC上取点N,使△AMIN与△ABC相似,求线段MN的长.22.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?23.如图,AB与CD相交于点O,△OBD∽△OAC,=,OB=6,S=50,△AOC 求:(1)AO的长;(2)求S△BOD24.如图,在边长为1个单位长度的小正方形组成的10×10的网格中,给出了以格点(网格线的交点)为顶点的△ABC和点D.(1)过点D作△DEF,使得===,且点E、F均在格点上;(2)△ABC的面积是个平方单位,△DEF的面积是个平方单位.25.如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,1),B(2,3),C(4,2).(1)以点A(1,1)为位似中心画出△ABC的位似图形△A1B1C1,使得△A1B1C1与△ABC的位似比为2:1(2)点B1的坐标为;点C1的坐标为.26.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为m,DE=15,求△DEF的面积.参考答案与试题解析一.选择题(共10小题)1.解:∵DE∥BC,∴△ADE∽△ACB,∴,,则A,B,D不正确,故选:C.2.解:∵△ABC∽△DEF,∴==.故选:A.3.解:∵2a=5b,∴=或=或=.故选:C.4.解:∵a∥b∥c,AC=8,CE=12,BD=6,∴=,即=,解得BF=15.故选:B.5.解:两个直角三角形不一定相似;因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似;因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似;因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似;因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.6.解:∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.7.解:如图,设正方形城池的边长为x步,则AE=CE=x,∵AE∥CD,∴∠BEA=∠EDC,∴Rt△BEA∽Rt△EDC,∴,即,∴x=360,即正方形城池的边长为360步.故选:A.8.解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选:C.9.解:以原点O为位似中心,相似比为,把△ABO缩小,点A的坐标为(﹣2,4),则点A的对应点A′的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故选:D.10.解:A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;故选:B.二.填空题(共8小题)11.解:3÷=300000(m),300000m=300km;答:它们的实际距离为300km;故答案为:300.12.解:设EB=x,∵矩形BCFE和矩形ABCD相似,∴=,∵四边形AEFD是正方形,∴AD=BC=2,∴=,解得:x=﹣1±(负数不合题意舍去),∴BE=﹣1+,故AB=2﹣1+=1+,故答案为:1+.13.解:∵l1∥l2∥l3,∴AC∥BD,∴△ACE∽△BDE,∴=,故答案为:.14.解:∵AC=3,BC=4,∠C=90°,∴AB===5,∵Rt△ABC∽Rt△A′B′C′,∴∴A'C'==6,故答案为6.15.解:∵矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,∴点B1的坐标是:(4,3)或(﹣4,﹣3).故答案为:(4,3)或(﹣4,﹣3).16.解:∵DE∥BC,∴,即,即,解得:AE=6.故答案为:617.解:∵AB∥CD,∴△EBA∽△ECD,∴,即,∴AB=13.5(米).故答案为:13.518.解:∵AD∥BC,∠D=90°∴∠C=∠D=90°∵AD=2,BC=12,DC=10.设PD=x,则PC=10﹣x;①若PD:PC=AD:BC,则△PAD∽△PBC∴x:(10﹣x)=2:12,解得x=,即PD=;②若PD:BC=AD:PC,则△PAD∽△CBP∴x:12=2:(10﹣x),解得:x=4或x=6,即PD=4或PD=6.∴这样的点P存在的个数有3个.故答案为3.三.解答题(共8小题)19.解:∵x:y=3:5,y:z=2:3,∴x=y,z=y,∴5x﹣2z=5×y﹣2×y=3y﹣3y=0.20.解:∵l1∥l2∥l3,AB=2,BC=4,DF=12,∴=,即=,解得DE=4.21.解:当△AMN∽△ABC时,∵点M为AB的中点,AB=,AC=2,BC=3,∴,∴,即,解得MN=;当△ANM∽△ABC时,∵,即,解得MN=.22.解:(1)如图1中,在Rt△ABC中,AC=12cm,BC=16cm,∴AB==20cm.∵D、E分别是AC、AB的中点.AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=BC=8cm,①PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴,由题意得:PE=8﹣2t,QE=4t﹣10,即,解得t=;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴,∴,∴t=,∴当t为s或s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得(8﹣2t):(4t﹣10)=4:5,解得t =.如图6中,当点Q在线段AE上时,由PQ=EP,可得(4t﹣10):(8﹣2t)=4:5,解得t =.综上所述,t=1或3或或秒时,△PQE是等腰三角形.23.解:(1)∵△OBD∽△OAC,∴==,∵BO=6,∴AO=10;(2)∵△OBD∽△OAC,=,∴=,∵S=50,△AOC=18.∴S△BOD24.解:(1)如图所示,△DEF即为所求:(2)△ABC的面积==4个平方单位,△DEF的面积==8个平方单位,故答案为:4;825.解:(1)如图所示:△A1B1C1,即为所求;(2)点B1的坐标为(3,5);点C1的坐标为(7,3).故答案为:(3,5);(7,3).26.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.。
北师大版数学九年级上册第四章图形相似练习题(含答案)

图形相似练习题1. 在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A、22mB、20mC、18mD、16m2.如图1,在Rt△ABC中,∠ACB=90˚,D,E,F分别是AB,AC,AD的中点,若AB=8,则EF的长是()A.1 B.2 C.3 D.2图1 图23.如图2,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为( )A.94B.214C.4 D.64.如图3,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.6图3 图45.如图4所示是两棵小树在同一时刻的影子,可以断定这是________投影。
6.如图5,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是。
图5 图67.如图6,将一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于.8.如图7,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,若△ABC的面积为9,则△A′B′C′的面积为。
9.如图8,在△ABC中,∠C=90°,EF∥AB,∠1=30°,则∠A的度数为()。
图7 图810.如图9,勘探队员朝一座山行走,在前后A、B两处测量山顶的仰角分别是30°和45°,两个测量点之间的距离是100m,则此山的高度CD为m。
图9 图1011.如图10,平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于。
12.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为。
13.如图11,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= 。
第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册

第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册考生注意:本试卷共三道大题,23道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.在比例尺是1:8000的地图上,中山路的长度约为25cm,该路段实际长度约为()A.3200m B.3000m C.2400m D.2000m2.如图,用放大镜将贺兰山旅游图标放大,这两个图形之间属于以下哪种图形变换()A.相似B.平移C.轴对称D.旋转3.已知=,则下列式子中正确的是()A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)4.下列说法中,不正确的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正八边形都相似5.以下四组线段中,成比例的是()A.3,4,6,8B.2,3,4,5C.1,2,3,4D.5,6,7,8 6.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:27.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.8.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.D.(10,6)9.如图,在▱ABCD中,E是AB边的中点,则S△AEG:S平行四边形ABCD的值为()A.B.C.D.10.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.3二.填空题(6小题,每题3分,共18分)11.若,则=.12.如图,已知AC∥EF∥BD,如果AE:EB=2:3,CD=6,那么DF的长等于.13.如图,在▱ABCD中,AD=16,∠ABC的平分线交AD于点F,交CD的延长线于点E,若S△EDF:S四边形FBCD=9:55,则AB=.14.若,则k=.15.如图,△ABC∽△CBD,AB=9,BD=25,则BC=.16.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与△PDC相似,则AP=.第II卷第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.已知,求的值.18.如图,AB∥CD∥EF,BF=20.(1)若AC=3,CE=5,求DF的长;(2)若AC:CE=2:3,求DF的长.19.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.20.如图,在△ABC中,AD是角平分线,点E在边AC上,且AD2=AE•AB,连接DE.(1)求证:△ABD∽△ADE;(2)若CD=3,CE=2,求AE的长.21.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线,若∠ABE=∠C,=.(1)求证:△AEB∽△ADC.(2)求△BDE与△ABC的面积比.22.如图,在正方形ABCD中,点E在边AD上,过点D作DK⊥BE于K,且DK=.(1)若AE=ED,求正方形ABCD的周长;(2)若∠EDK=22.5°,求正方形ABCD的面积.23.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.24.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12.求的值.25.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.。
北师大版九年级上册数学第四章图形的相似专题练习及解析

北师大版九年级上册数学第四章图形的相似专题练习注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题AB =1,BC =3,EF =5,则△ABC 与△DEF 的面积比是( )A. 1∶9B. 1∶25C. 9∶25D. 3∶52.如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为( )A. 4:9B. 2:5C. 2:: 3.如果32a b = (0ab ≠),那么下列比例式中正确的是( )A. 32a b =B. 23b a =C. 23a b =D. 32a b = 4.如图,在△ABC 中,点D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,若AD =5,BD =10,AE =3,则CE 的长为( )A. 3B. 6C. 9D. 125.在下面的图形中,相似的一组是( )A. B. C. D. 6.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A. B. C. D.7.为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于( )A. 120mB. 67.5mC. 40mD. 30m第II卷(非选择题)二、解答题(题型注释)在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB 的相似比为2:1,并分别写出点A、B的对应点A1、B1的坐标.(2)画出将△OAB向左平移2个单位,再向上平移1个单位后的△O2A2B2,并写出点A、B的对应点A2、B2的坐标.(3)判断△OA1B1与△O2A2B2,能否是关于某一点M为位似中心的位似图形,若是,请在图中标出位似中心M,并写出点M的坐标.9.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB的长.10.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.(1)求证:△ABF∽△BGC;(2)若AB=2,G是CD的中点,求AF的长.11.如图,BD,CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA 的延长线于F,H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.12.如图,一圆柱形油桶,高1.5 m,用一根2 m长的木棒从桶盖小口斜插桶内,至另一端的B处,抽出木棒后,量得上面没浸油的部分为1.2 m,求桶内油面高度.13.如图,操场上有一根旗杆AH,为测量它的高度,在点B和点D处各立一根高1.5米的标杆BC、DE,且BD=30米,测得视线AC与地面HG的交点为F,视线AE与地面HG的交点为G,且H 、B、F、D、G都在同一直线上,测得BF=3米,DG=5米,求旗杆AH的高度.14.如图1,把两块全等的含45°角的直角三角板ABC和DEF叠放在一起,使三角板DEF 的锐角顶点D与三角板ABC的斜边中点O重合.把三角板ABC固定不动,让三角板DEF 绕点D旋转,两边分别与线段AB,BC相交于点P,Q,易说明△APD∽△CDQ.根据以上内容,回答下列问题:(1)如图2,将含30°角的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰△ABC(其中∠ABC =120°)的底边中点O 重合,两边DF ,DE 分别与边AB ,BC 相交于点P ,Q .写出图中的相似三角形__ _ (直接填在横线上);(2)其他条件不变,将三角板DEF 旋转至两边DF ,DE 分别与边AB 的延长线、边BC 相交于点P ,Q .上述结论还成立吗?请你在图3上补全图形,并说明理由;(3)在(2)的条件下,连接PQ ,△APD 与△DPQ 是否相似?请说明理由;(4)根据(1)(2)的解答过程,你能否将两三角板改为更一般的三角形,使得(1)中的结论仍然成立?若能,请说明两个三角形应满足的条件;若不能,请简要说明理由.三、填空题15.如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥B C .如果ADDB =32,AC =10,那么EC =________.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处.已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_________米.17.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD ,OB=3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若 3.2CD cm ,则AB 的长为________cm .18.在平面直角坐标系xOy 中,以原点为位似中心,线段AB 与线段A′B′是位似图形,若A(﹣1,2),B(﹣1,0),A′(﹣2,4),则B′的坐标为__.参考答案1.C【解析】1.根据相似三角形的面积比等于相似比的平方进行求解即可得.∵△ABC ∽△DEF ,BC =3,EF =5,∴相似比为BC EF =35,∴△ABC 与△DEF 的面积比为32:52,即△ABC 与△DEF 的面积比为9:25,故选C .2.A【解析】2.∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,∴四边形ABCD ∽四边形A′B′C′D′, ∴2ABCD''''S OA =S 'A B C D OA ⎛⎫ ⎪⎝⎭四边形四边形 , ∵OA :OA′=2:3,∴ABCD ''''S 4=S 9A B C D 四边形四边形, 故选A.3.C【解析】3.∵3a=2b , ∴23a b =或32b a =或23a b =, 所以只有选项C 是正确的,故选C.4.B【解析】4.∵DE ∥BC ,∴AD BD =AE EC ,即510=3EC, 解得:EC=6.故选:B.5.D【解析】5.根据相似图形的定义,对选项进行一一分析,即可得答案.A 、两图形不是相似图形,故本选项错误;B 、六边形与五边形不可能是相似图形,故本选项错误;C 、直角梯形与等腰梯形不是相似图形,故本选项错误;D 、∵90°-40°=50°,∴两直角三角形相似,故本选项正确,故选D .6.B【解析】6.首先求得△ABC 三边的长,然后分别求得A ,B ,C ,D 各三角形的三边的长,然后根据三组对应边的比相等的两个三角形相似,即可求得答案.已知给出的三角形的各边AB 、CB 、AC 分别为√10、√2、2,A 选项中阴影部分的三角形的三边长分别为3、√5、√2,与△ABC 的三边不对应成比例,故不符合题意;B 选项中阴影部分的三角形的三边长分别为√5、1、√2,与△ABC 的三边对应成比例,故符合题意;C 选项中阴影部分的三角形的三边长分别为√13、2、√5,与△ABC 的三边不对应成比例,故不符合题意;D 选项中阴影部分的三角形的三边长分别为2√2、1、√5,与△ABC 的三边不对应成比例,故不符合题意,故选B.7.A【解析】7.∵∠ABE=∠DCE, ∠AEB=∠CED,∴△ABE ∽△DCE,∴AB CD =BE CE . ∵BE =90m ,EC =45m ,CD =60m ,∴AB =90×6045=120(m )故选A.8.(1)A 1(4,2),B 1(2,-4); (2)A 2(0,2),B 2(-1,-1);(3)△OA 1B 1与△O 2A 2B 2是关于点M (-4,2)为位似中心的位似图形.【解析】8.试题分析:(1)利用位似图形的性质得出对应点坐标,进而得出答案;(2)利用平移变换规律得出对应点坐标,进而得出答案;(3)利用位似图形的性质得出位似中心,进而得出答案.试题解析:(1)如图所示,A 1(4,2),B 1(2,-4) .(2)如图所示,A 2(0,2),B 2(-1,-1).(3)△OA 1B 1与△O 2A 2B 2是关于点M (-4,2),为位似中心的位似图形.9.(1)详见解析;(2)BE=32.【解析】9.(1)首先得出∠A =∠B =90°,再根据已知得到∠ADE=∠CEB ,利用两角对应相等的两个三角形相似即可得证;(2)利用相似三角形的性质得出BE 的长,进而得出答案即可.(1)∵AD ∥BC ,AB ⊥BC ,∴AB ⊥AD ,∠A =∠B =90°,∴∠ADE +∠AED =90°,∵∠DEC =90°,∴∠AED +∠BEC =90°,∴∠ADE =∠BEC ,∴△ADE ∽△BEC ;(2)∵△ADE ∽△BEC ,∴BE AD =BC AE ,∵AD =1,BC =3,AE =2,∴BE 1=32, ∴BE =32, ∴AB =AE +BE =72.10.(1)见解析;(2)4√55.【解析】10.(1)根据正方形的性质得出∠ABE=∠BCG=90°,进而得出∠BAE=∠CBG ,再利用相似三角形的判定证明即可;(2)根据(1)中的相似三角形,利用其性质解答即可.(1)∵在正方形ABCD 中,∴∠ABE=∠BCG=90°,∵∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG ,∴△ABF ∽△CBG ;(2)∵△ABF ∽△CBG ,∴AB AF =BG BC ,∵AB=2,G 是CD 的中点,正方形ABCD ,∴BC=2,CG=1,∴BG=√BC 2+CG 2=√5 , ∴2AF =√52 ,解得:AF=√5=4√55 . 11.【小题1】 证明:∵BD ⊥AC ,DG ⊥BC ,∴∠BDC =∠DGC =90∘,∠DBC +∠DCG =∠GDC +∠DCG ,∴∠GDC =∠DBC ,∴△BDG ∽△DCG ,∴BG :DG =DG :CG ,即DG 2=BG ⋅CG.【小题2】 同(1)中的方法,同理可证:△BGH ∽△FGC ,∴BG :GF =GH :CG ,∴BG ⋅CG =GF ⋅GH .【解析】11.(1)根据题意结合图形,证明△BDG∽△DCG ,列出比例式,化为等积式即可解决问题. (2)方法同(1)中的解法,证明△BGH ∽△FGC ,列出比例式,化为等积式即可解决问题. 证明:(1)∵BD ⊥AC ,DG ⊥BC ,∴∠BDC =∠DGC =90∘,∠DBC +∠DCG =∠GDC +∠DCG ,∴∠GDC =∠DBC ,∴△BDG ∽△DCG ,∴BG :DG =DG :CG ,即DG 2=BG ⋅CG.(2)同(1)中的方法,同理可证:△BGH ∽△FGC ,∴BG :GF =GH :CG ,∴BG ⋅CG =GF ⋅GH .12.油面高0.6 m.【解析】12.由于DE ∥BC ,可知△ADE ∽△ABC ,再再根据相似三角形的对应边成比例即可解答. ∵DE ∥BC ,∴△ADE ∽△ABC ,∴AE AC=AD AB , 即AE 1.5=1.22,解得AE =0.9 m ,∴EC =1.5-0.9=0.6(m),即油面高0.6 m. 13.24m【解析】13.试题分析:首先设AH=x ,BH=y ,根据△AHF ∽△CBF ,△AHG ∽△EDG ,得出BF GB HF HG =, DG DE HG AH =,然后将各数字代入求出x 的值. 试题解析:由题意知,设AH=x ,BH=y ,△AHF ∽△CBF ,△AHG ∽△EDG , ∴BF GB HF HG =, DG DE HG AH=, ∴3x=1.5×(y+3),5x=1.5×(y+30+5) 解得x=24m . 答:旗杆AH 的高度为24m .14.(1)△APD ∽△CDQ ; (2)成立,图见解析,理由见解析;(3)△APD ∽△DPQ ,理由见解析;(4)△DEF 满足∠EDF =α,△ABC 满足顶角为(180°-2α)的等腰三角形即可,理由见解析.【解析】14.(1)通过角的转化得出∠APD=∠CDQ ,进而可得出△APD ∽△CQD ;(2)由已知可得∠BAC =∠BCA ,再根据已知可推导得出∠APD =∠CDQ ,继而可得出△APD ∽△CQD ;(3)△APD ∽△DPQ ,理由如下:由△APD ∽△CDQ ,可得AP CD =DP DQ ,再根据点D 为AC 的中点,继而可得出AP DP =AD DQ ,再根据∠PAD =∠PDQ =30°,即可证明△APD ∽△DPQ ;(4)△DEF 满足∠EDF =α,△ABC 满足顶角为(180°-2α)的等腰三角形即可.(1)∵∠ABC=120°,∴∠A=∠C=30°,∵∠ADP+∠APD=150°,∠ADP+∠QDC=150°,∴∠APD=∠CDQ ,∴△APD ∽△CDQ ,故答案为:△APD ∽△CDQ ;(2)成立,如图,理由如下:∵AB =BC ,∴∠BAC =∠BCA ,∵∠ABC =120°,∴∠BAC =∠BCA =30°,∴∠ADP +∠APD =180°-30°=150°,∵∠EDF =30°,∴∠ADP +∠CDQ =150°,∴∠APD =∠CDQ ,∴△APD ∽△CDQ ;(3)△APD ∽△DPQ ,理由如下:如图,∵△APD ∽△CDQ ,∴AP CD =DP DQ ,∵点D 为AC 的中点,∴CD =AD ,∴AP AD =DP DQ ,即AP DP =AD DQ ,又∵∠PAD =∠PDQ =30°, ∴△APD ∽△DPQ ;(4)△DEF 满足∠EDF =α,△ABC 满足顶角为(180°-2α)的等腰三角形即可,理由:∵∠ABC =180°-2α, ∴∠A =∠C =α,∵∠ADP +∠APD =180°-α,∠ADP +∠QDC =180°-α, ∴∠APD =∠CDQ ,又∵∠A =∠C ,∴△APD ∽△CDQ.15.4【解析】15.由DE ∥BC ,推出AD DB =AE EC =32 , 可得EC=25AC , 由此即可解决问题.解:∵DE ∥BC ,∴AD DB =AE EC =32, ∵AC=10,∴EC=25AC =25×10=4,故答案为4.16.10【解析】16.首先证明△ABP ∽△CDP ,可得AB BP =CD PD ,再代入相应数据可得答案. 如图,由题意可得:∠APE=∠CPE ,∴∠APB=∠CPD ,∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP=90°,∴△ABP ∽△CDP ,∴AB BP =CD PD, ∵AB=2米,BP=3米,PD=15米,∴23=CD 15,解得:CD=10米.故答案为:10.17.9.6【解析】17.试题分析:∵OA =3OD ,OB =3CO ,∴OA :OD =BO :CO =3:1,∠AOB =∠DOC ,∴△AOB ∽△DOC , ∴13AO AB OD CD ==, ∴AB =3CD ,∵CD =3.2cm ,∴AB =9.6cm ,故答案为9.6.18.(-2,0)【解析】18.设B ′的坐标为()x y ,,∵线段AB 与线段A′B′是位似图形,且A (﹣1,2),A′(﹣2,4), ∴位似比k=221-=-, ∵点B 的坐标是(-1,0),∴点B′的坐标为(-2,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章图形的相似尖子生训练题一.选择题1.下列各组线段能成比例的是()A.0.2cm,0.1m,0.4cm,0.2cmB.1cm,2cm,3cm,4cmC.4cm,6cm,8cm,3cmD.cm,cm,cm,cm2.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:13.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.3:2 B.3:1 C.1:1 D.1:24.如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止.记PA=x,点D到直线PA的距离为y,则y关于x的函数解析式是()A.y=12x B.C.D.5.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=1,BD=2,则的值为()A.B.C.D.6.如图,在正△ABC中,D、E分别在AC、AB上,且,AE=BE,则有()A.△AED∽△ABC B.△ADB∽△BED C.△BCD∽△ABC D.△AED∽△CBD 7.如图,A、B两点被池塘隔开,在AB外取一点C,连结AC、BC,在AC上取点E,使AE=3EC,作EF∥AB交BC于点F,量得EF=6m,则AB的长为()A.30m B.24m C.18m D.12m8.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是()A.B.C.D.9.如图,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,则下列各式正确的是()①AD2=BD•DC;②CD2=CF•CA;③DE2=AE•AB;④AE•AB=AF•AC.A.①②B.①③C.②④D.③④10.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个二.填空题11.已知△ADE∽△ABC,且相似比为,若DE=4cm,则BC的长为.12.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于.13.在平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,3),△AB′O′是△ABO关于点A的位似图形,且点O′的坐标为(﹣1,0),则点B′的坐标为.14.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.15.如图,在△ABC中,DE∥FG∥BC,GI∥EF∥AB,若△ADE、△EFG、△GIC的面积分别为8cm2、32cm2、18cm2,则△ABC的面积为cm2.三.解答题16.在等腰三角形ABC中,AB=AC,AD⊥BC于点D,CF∥AB,P为AD上一点,连结并延长BP交AC于点E,交CF于点F,求证:(1)△ABP≌△ACP;(2)BP2=PE•PF.17.如图,在平面直角坐标系中,已知△ABC的三顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)请画出△ABC向右平移3个单位长度后得到的△A1B1 C1(2)以原点O为位似中心,相似比为2:1,在第四象限内,画出△ABC放大后的△A2B2C2.18.小亮和小颖想用下面的方法测量学校教学楼的高度:如图,小亮蹲在地上,小颖站在小亮和教学楼之间,两人适当调整自己的位置,当楼的顶部M、小颖的头部B及小亮的眼睛A恰好在一条直线上时,两人分别标定自己的位置C、D,然后测出两人之间的距离CD=2m,小颖与教学楼之间的距离DN=38m,(C、D、M在同一直线上),小颖的身高BD=1.6m,小亮蹲地观测时眼睛到底面的距离AC=1m.请你根据以上测量数据帮助他们求出教学楼的高度.19.在Rt△ABC中,A=90°,AB=8,AC=6,若动点D从点B出发,沿线段BA运动到点A 为止,速度是每秒2个单位;动点E从点A出发,沿线段AC运动,每秒1个单位,两点同时出发,运动多长时间,△ADE与△ABC相似?20.在△ADB和△AEC中,AD=AE,∠DAE=α,∠AEC=∠ADB=90°,BD=kCE,延长ED 交BC于点F.(1)如图1,当k=1时,是否存在与BF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由.(2)如图2,当k≠1时,猜想并证明EC,ED,EF的数量关系(用含k,α的式子表示).参考答案一.选择1.解:A、因为0.2×0.2=0.1×0.4,所以0.2cm,0.1m,0.4cm,0.2cm成比例,所以A 选项正确;B、因为1×4≠2×4,所以1cm,2cm,3cm,4cm不成比例,所以B选项错误;C、因为4×6≠8×3,所以4cm,6cm,8cm,3cm不成比例,所以C选项错误;D、因为×≠×,所以cm,cm,cm,cm不成比例,所以D选项错误.故选:A.2.解:∵两个相似三角形的面积之比为1:4,∴它们的相似比为1:2,∴它们的周长之比为1:2.故选:A.3.解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.4.解:矩形ABCD中,AD∥BC,∴∠DAE=∠APB,∵∠B=∠AED=90°,∴△ABP∽△DEA,∴=,∴=,故选:B.5.解:∵AD=1,DB=2,∴AB=AD+BD=1+2=3,∵DE∥BC,∴△ADE∽△ABC,∴==.故选:B.6.解:∵△ABC是等边三角形,=,∴AB=BC=AC,∠A=∠C,设AD=x,AC=3x,则BC=3x,CD=2x,∵AE=BE=x,∴,,∴,∴△AED∽△CBD;故选:D.7.解:∵EF∥AB,∴△CEF∽△CAB,∴==,∴AB=4EF=24m,故选:B.8.解:∵△ABC为等边三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∵AB=BC=3,BP=1,∴PC=2,∴=,∴CD=.故选:C.9.解:∵△ADB与△CDA不能确定相似,∴不能确定=,故①错误;∵∠ACD=∠DCF,∠ADC=∠DFC=90°,∴△ADC∽△DFC,∴=,∴CD2=CA•CF,故②正确;∵∠BDE+∠ADE=∠B+∠BDE=90°,∴∠B=∠ADE,∵∠BED=∠DEA=90°,∴△BED∽△DEA,∴=,∴DE2=AE•BE,故③错误;∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△ABD∽△ADE,∴=,∴AD2=AE•AB,同理可证AD2=AF•AC,∴AE•AB=AF•AC,故④正确.故选:C.10.解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,故③正确;在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二.填空题(共5小题)11.解:∵△ADE∽△ABC,且相似比为,DE=4cm,∴,即.解得,BC=10,故答案为:10cm.12.解:∵DE∥BC,∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∵EF∥AB,∴CF:CB=CE:CA=5:8.故答案为5:8.13.解:过点B作BE⊥OA与点E,过点B′作B′E′⊥OA于点E′,∵△AB′O′是△ABO关于点A的位似图形,∴△OAB∽△AB′O′,∴==,解得:B′E′=4,由题意可得:△OBE∽△O′B′E′,则=,故=,解得:O′E′=,∴OE′=,∴点B′的坐标为:(,4).故答案为:(,4).14.解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.15.解:∵DE∥FG∥BC,∴∠AED=∠EGF=∠GCI,∵GI∥EF∥AB,∴∠A=∠FEG=∠IGC,∴△ADE∽△EFG∽△GIC∽△ABC,∵△ADE、△EFG、△GIC的面积分别为8cm2、32cm2、18cm2,∴AE:EG:GC=2:4:3,∴AE:AC=2:9,∴S△ABC =•S△ADE=×8=162.故答案为:162.三.解答题(共5小题)16.解:(1)证明:∵AB=AC,AD⊥BC,∴AD是△ABC的对称轴.∴PC=PB,∠PCE=∠ABP.在△ABP和△ACP中,,∴△ABP和≌△ACP,(2)∵CF∥AB,∴∠PFC=∠ABP(两直线平行,内错角相等),∴∠PCE =∠PFC .又∵∠CPE =∠EPC ,∴△EPC ∽△CPF .∴(相似三角形的对应边成比例).∴PC 2=PE •PF .∵PC =BP∴BP 2=PE •PF .17.解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作.18.解:过A 作CN 的平行线交BD 于E ,交MN 于F .由已知可得FN =ED =AC =1m ,AE =CD =2m ,EF =DN =38m , ∠AEB =∠AFM =90°.又∵∠BAE =∠MAF ,∴△ABE ∽△AMF .∴=,即=,解得MF =12m .∴MN =MF +FN =12+1=13(m ).∴教学楼的高度为13m .19.解:∵△ADE与△ABC相似,∴=或=.设运动的时间是t秒,则AE=t,AD=8﹣2t∴=或=,解得t=或.∴经过t=12/5或32/11秒两个三角形相似.20.解:(1)结论:BF=FC.理由如下,如图1中,作CM⊥EF于M,BN⊥EF于N.∵AE=AD,∴∠AED=∠ADE,∵∠ADB=∠AEC=90°,∴∠ADE+∠BDN=90°,∠CEM+∠AED=90°,∴∠CEM=∠BDN,∵k=1,BD=kEC,∴BD=EC,∵BN⊥EF,CM⊥EF,∴∠N=∠CME=90°,NB∥CM,在△BDN和△CEM中,,∴△BDN≌△CEM,∴BN=CM,在△CFM和△BFN中,,∴△CFM≌△BFN,∴BF=CF.(2)结论:2EC•cosα+ED=(k+1)EF.如图2中,作AH⊥EF于H,CM⊥EF于M,BN⊥EF于N.由(1)可知∠BDN=∠MEC,∵∠EMC=∠BND,∴△BDN∽△CEM,∴==k,∵CM∥BN,∴==k,∴MF=MN,∵AE=AD,AH⊥ED,∴∠HAE=∠HAD=α,∵∠EAH+∠AEH=90°,∠AEH+∠CEM=90°,∴∠BDN=∠CEM=α,∴EM=EC•cosα,DN=BD•cosα,∴EN=ED+DN=ED+BD•cosα,∴MN=EN﹣EM=ED+k•EC•cosα﹣EC•cosα,∴FM=•(ED+k•EC•cosα﹣EC•cosα),∴EF=EM+FM=EC•cosα+(ED+k•EC•cosα﹣EC•cosα),∴EF=•EC•cosα+•ED,∴2kEC•cosα+ED=(k+1)EF.。