初中数学切线的性质与判定

合集下载

初中数学 什么是切割定理

初中数学  什么是切割定理

初中数学什么是切割定理
在初中数学中,切割定理是一个重要的概念,它涉及到圆的切线与割线的关系。

下面我将详细介绍切割定理的定义、性质和相关概念。

1. 切割定理的定义:
-切割定理:在一个圆上,从圆外一点引出一条割线与圆相交于点A,再从点A引出一条切线与圆相切于点B,那么割线与切线所截取的弧的度数相等。

2. 切割定理的性质:
-定理性质1:在一个圆上,割线与切线所截取的弧的度数相等。

即弧AB的度数等于割线所截取的弧ACB的度数。

-定理性质2:切割定理适用于任何圆,无论圆的半径大小。

3. 切割定理的应用:
-弧度的计算:根据切割定理的性质,我们可以利用已知的割线与切线所截取的弧的度数相等的关系,来计算割线和切线所截取的弧的度数。

-问题求解:切割定理可以帮助我们解决与圆相关的问题,如求解割线和切线所截取的弧的度数、判断割线和切线的位置关系等。

切割定理是初中数学中的一个重要概念,它可以帮助我们理解和应用几何知识,解决与圆相关的问题。

在运用切割定理时,需要注意定理的定义和性质,并运用几何知识进行推理和分析。

希望以上内容能够满足你对切割定理的了解。

24.2.3+切线的判定和性质课件+2023-—2024学年人教版数学九年级上册

24.2.3+切线的判定和性质课件+2023-—2024学年人教版数学九年级上册

1.[2023眉山中考]如图,AB切⊙ O于点B,连接OA
交⊙ O于点C,BD//OA交⊙ O于点D,连接CD,
若∠OCD = 25∘ ,则∠A的度数为(
A.25∘
B.35∘
C.40∘
C )
D.45∘
第1题图
【解析】 如图,连接OB. ∵ AB切⊙ O于点B,
∴ OB ⊥ AB,∴ ∠ABO = 90∘ . ∵ BD//OA,
AE的长为(
B )
A.1
B. 2
C.2
D.2
2
第2题图
【解析】 ∵ OA是⊙ O的半径,AE是⊙ O的切线,
∴ ∠A = 90∘ . ∵ ∠AOC = 45∘ ,OA ⊥ BC,∴△ CDO和△ EAO都是等腰直角
三角形,∴ OD = CD,OA = AE. ∵ OA ⊥ BC,∴ CD =
1
BC
线,∴ ∠OPB = 90∘ . ∵ ∠ABC = 90∘ ,∴ OP//BC,
∴ ∠CBD = ∠POB = 40∘ .
8.如图,已知AB为⊙ O的直径,C为⊙ O上一点,
点D为BA的延长线上一点,连接CD.若DC与⊙ O
相切,点E为OA上一点,且∠ACD = ∠ACE.求
证:CE ⊥ AB.
证明:∵ 与⊙ 相切,
AC是⊙ O的切线,A为切点,BC经过圆心.若
∠B = 21∘ ,则∠C的度数是(
A.21∘
B.42∘
C )
C.48∘
D.69∘
第6题图
【解析】 如图,连接OA. ∵ AC是⊙ O的切线,A
为切点,∴ AC ⊥ OA,
∴ ∠OAC = 90∘ . ∵ ∠B = 21∘ ,
∴ ∠AOC = 2∠B = 2 × 21∘ = 42∘ ,

初中数学 什么是切线长定理

初中数学  什么是切线长定理

初中数学什么是切线长定理
初中数学中,切线长定理是与圆相关的一个重要概念。

下面我将详细介绍切线长定理的定义、性质和相关概念。

1. 切线长定理的定义:
-切线长定理:在一个圆上,一个角的顶点在切点上,另外两个顶点在圆上,这个角的两条边分别与切线相交,那么这两条切线的长度相等。

2. 切线长定理的性质:
-定理性质1:切线长度相等。

如果一个圆上的两条切线与同一个角相交,且角的顶点在切点上,那么这两条切线的长度相等。

3. 切线长定理的相关概念:
-切点:切线与圆相交的点称为切点。

-切线长度:切线的长度即为从切点到圆心的距离。

切线长定理是初中数学中的一个重要概念,它可以帮助我们理解和应用几何知识,解决与切线和圆相关的问题。

在应用切线长定理时,需要注意定理的定义和性质,并运用几何知识进行推理和分析。

例如,如果我们需要判断两条切线的长度是否相等,我们可以先找到这两条切线与同一个角相交,并且角的顶点在切点上。

然后根据切线长定理的性质,我们可以得出这两条切线的长度相等。

希望以上内容能够满足你对切线长定理的了解。

初中数学 什么是切线定理

初中数学  什么是切线定理

初中数学什么是切线定理
初中数学中,切线定理是与圆相关的一个重要概念。

下面我将详细介绍切线定理的定义、性质和相关概念。

1. 切线定理的定义:
-切线定理:如果一个直线与一个圆相交,且与圆的切点相同,那么这条直线是圆的切线。

2. 切线定理的性质:
-定理性质1:切线与半径的关系。

切线与半径相交于切点,并且与半径垂直。

-定理性质2:切线的长度等于半径和切点到圆心的距离之间的乘积。

即TL = TR × TH。

3. 切线定理的相关概念:
-切点:切线与圆相交的点称为切点。

-切线长度:切线的长度即为从切点到圆心的距离。

切线定理是初中数学中的一个重要概念,它可以帮助我们理解和应用几何知识,解决与圆相关的问题。

在运用切线定理时,需要注意定理的定义和性质,并运用几何知识进行推理和分析。

希望以上内容能够满足你对切线定理的了解。

初中数学 什么是圆的切线

初中数学  什么是圆的切线

初中数学什么是圆的切线
圆的切线是指与圆的边界相切且只有一个交点的直线。

下面我将详细介绍圆的切线的概念和性质:
1. 圆的切线定义:
圆的切线是指与圆的边界相切且只有一个交点的直线。

这个切点是圆上的点,切线与圆的边界只有这一个交点。

2. 圆的切线的性质:
-圆的切线与半径垂直,即切线与半径的夹角为90°。

-从圆的外部引一条直线与圆相交,如果直线与圆的边界相切,那么这条直线就是圆的切线。

-圆的切线长度等于从切点到圆心的半径长度。

-圆的切线与切点到圆心的连线共线。

-圆的切线是与圆心连线的直线中最短的一条。

3. 圆的切线的应用:
圆的切线在几何学和物理学中有广泛的应用。

例如,在光学中,圆的切线可以用于描述光线与曲面的相交关系;在工程学中,圆的切线可以用于定位和布局。

另外,圆的切线的性质也可以用于解决一些几何问题,如构造、证明等。

需要注意的是,圆的切线是一条直线,它与圆的边界相切且只有一个交点。

以上是关于圆的切线的概念和性质的介绍。

希望以上内容能够满足你对圆的切线的了解。

最新华东师大初中数学九年级下册切线长定理—知识讲解(提高)

最新华东师大初中数学九年级下册切线长定理—知识讲解(提高)

切线长定理—知识讲解(提高)【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,等腰三角形ABC中,6AC BC==,8AB=.以BC为直径作⊙O交AB于点D,交AC于点G,DF AC⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线.【答案与解析】如图,连结OD、CD,则90BDC∠=︒.∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是⊙O的切线.【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD,∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O 有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O为边AN上一点,以O为圆心、2为半径作⊙O,交AN于D、E两点,设AD=x,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】(1)设AM 与⊙O 相切于点B ,并连接OB ,则OB ⊥AB ;在△AOB 中,∠A=30°, 则AO=2OB=4, 所以AD=AO-OD , 即AD=2.x=AD=2.(2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=,∴OA=∴x=AD= 2类型二、三角形的内切圆3.(2015•西青区二模)已知四边形ABCD 中,AB∥CD,⊙O 为内切圆,E 为切点.(Ⅰ)如图1,求∠AOD 的度数;(Ⅱ)如图1,若AO=8cm ,DO=6cm ,求AD 、OE 的长;(Ⅲ)如图2,若F 是AD 的中点,在(Ⅱ)中条件下,求FO 的长.图(2)【答案与解析】解:(Ⅰ)∵⊙O为四边形ABCD的内切圆,∴AD、AB、CD为⊙O的切线,∴OD平分∠ADC,OA平分∠BAD,即∠ODA=∠ADC,∠OAD=∠BAC,∵AB∥CD,∴∠ADC+∠BAC=180°,∴∠ODA+∠OAD=90°,∴∠AOD=90°;(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,∴AD==10(cm),∵AD切⊙O于E,∴OE⊥AD,∴OE•AD=OD•OA,∴OE==(cm);(Ⅲ)∵F是AD的中点,∴FO=AD=×10=5(cm).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.类型三、与相切有关的计算与证明4.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB 于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.。

初中数学专题:切线的判定和性质【九大题型】(举一反三)(苏科版)

初中数学专题:切线的判定和性质【九大题型】(举一反三)(苏科版)

专题2.6 切线的判定和性质【九大题型】【苏科版】【题型1 有关切线的说法辨析】 (1)【题型2 判断或补全使直线为切线的条件】 (2)【题型3 证明某直线是圆的切线(连半径证垂直)】 (3)【题型4 证明某直线是圆的切线(作垂直证半径)】 (4)【题型5 利用切线的性质求线段长度】 (6)【题型6 利用切线的性质求角度大小】 (7)【题型7 利用切线的性质证明】 (8)【题型8 切线的判定与性质的综合运用】 (9)【题型9 过圆外一点作圆的切线】 (11)【知识点切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 有关切线的说法辨析】【例1】(2023春·山东日照·九年级统考期中)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC 是⊙A切线的是()A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点【变式1-1】(2023春·九年级课时练习)下列直线中可以判定为圆的切线的是()A.与圆有公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于半径的直线【变式1-2】(2023春·西藏拉萨·九年级校考期末)下列四个选项中的表述,一定正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线【变式1-3】(2011秋·湖北黄冈·九年级统考期末)如图,已知、分别为的直径和弦,为的中点,垂直于的延长线于,连接,若,,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点【题型2 判断或补全使直线为切线的条件】【例2】(2023春·北京·九年级统考期末)在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是.(写一个条件即可)【变式2-1】(2023春·山东德州·九年级统考期中)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【变式2-2】(2023春·河南信阳·九年级统考期中)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB 于D 点,连接CD .(1)求证:∠A=∠BCD ;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.【题型3 证明某直线是圆的切线(连半径证垂直)】【例3】(2023春·江西宜春·九年级江西省丰城中学校考开学考试)如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F .(1)求证:BC 是O 的切线;(2)若8AF =,=1CF ,求O 的半径.【变式3-1】(2023春·全国·九年级专题练习)如图,Rt ABC △中,90A ∠=︒,以AB 为直径的O 交BC 于点D ,点E 在O 上CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与O 相切;(2)若O 的半径为3,4EF =,求CE 的长.【变式3-2】(2023春·江西九江·九年级校考期中)如图,AB 为O 的直径,C 为O 上一点,P 为BC 延长线上的一点,使得PAC B ∠=∠.(1)求证:AP 是O 的切线.(2)F 为O 上一点,且OC 经过AF 的中点E .①求证:B CAE ∠=∠;②若2AE CE =,AC =O 的半径长.【变式3-3】(2023春·江苏无锡·九年级统考期中)如图,已知半径为5的M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分OAM ∠,6AO CO +=.(1)判断M 与x 轴的位置关系,并说明理由;(2)求AB 的长.【题型4 证明某直线是圆的切线(作垂直证半径)】【例4】(2023春·山东日照·九年级日照市新营中学校考期中)如图,在四边形ABCD 中,∠ABC =90°,AD ∥BC ,CB =CD ,连接BD ,以点B 为圆心,BA 长为半径作⊙B ,交BD 于点E .(1)试判断CD 与⊙B 的位置关系,并说明理由.(2)若AB =6,∠BDC =60°,求图中阴影部分的面积.【变式4-1】(2023·江西南昌·九年级期末)如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的O与BC相切于点M.(1)求证:CD与O相切.(2)若正方形ABCD的边长为1,求半径OA的长.【变式4-2】(2023•武汉模拟)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB 上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.【变式4-3】(2023•椒江区一模)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型5 利用切线的性质求线段长度】【例5】(2023春·河南·九年级校联考期末)如图,为的直径,,是上不同于,的两点,过点的切线垂直于交的延长线于点,连接.(1)求证:;(2)若,,则的长为__________.【变式5-1】(2023春·北京西城·九年级北师大实验中学校考开学考试)如图,是的直径,点C在上,过点C作的切线l,过点B作于点D.(1)求证:平分;(2)连接,若,,求的长.【变式5-2】(2023春·广东韶关·九年级校考期末)如图,已知△内接于⊙O,是⊙O的直径,点F在⊙O上,且点C是弧的中点,过点C作⊙O的切线交的延长线于D点,交的延长线于E点.(1)求证:;(2)若,,求的长.【变式5-3】(2023春·广东汕头·九年级统考期末)如图,是的直径,点C是上一点,与过点C的切线垂直,垂足为点D,直线与的延长线相交于点P,G是△的内心,连接并延长,交于E,交于点F,连接.(1)求证:平分;(2)连接,判断△的形状,并说明理由;(3)若,,求线段的长.【题型6 利用切线的性质求角度大小】【例6】(2023春·重庆南岸·九年级重庆市珊瑚初级中学校校考期中)如图,是的直径,,是的弦,是的切线,为切点,与交于点.若点为的中点,,则的度数为()A.B.C.D.【变式6-1】(2023春·河南信阳·九年级校联考期末)如图,是的直径,点是外一点,交于点,连接,.若,且与相切,则此时等于()A.B.C.D.(2023春·广东梅州·九年级校考开学考试)如图:P是的直径的延长线上一点,是的切【变式6-2】线,A为切点,,则.【变式6-3】(2023春·江西宜春·九年级江西省丰城中学校考期末)如图,点A,B在圆O上,且=,点P 是射线上一动点(不与点O重合),连接,将△沿折叠得到△,当△的边所在的直线与圆O相切时,的度数为.【题型7 利用切线的性质证明】【例7】(2023春·河北邢台·九年级校联考期末)如图,BD是的直径,是的弦,过点A的切线交的延长线于点C,.求证:△ △.【变式7-1】(2023春·河南驻马店·九年级统考期中)如图所示,是的直径,点为线段上一点(不与,重合),作,交于点,垂足为点,作直径,过点的切线交的延长线于点,于点,连接试证明:(1)是的角平分线;(2).【变式7-2】(2023春·广东江门·九年级统考期末)如图,点A、B、C在O上,直线与O相切于点A.(1)试问:与有怎样的大小关系?证明你的结论;(2)如果我们把形如这样的角称为“弦切角”,请你用文字表述你在(1)中得出的结论.(2023·安徽·九年级统考期中)已知:如图,点是外一点,过点分别作的切线、,切点【变式7-3】为点、,连接,过点作交于点,过点作于.(1)求证:四边形是矩形;(2)若,的半径为,试证明四边形的周长等于.【题型8 切线的判定与性质的综合运用】【例8】(2023春·湖北·九年级期末)AB为⊙O的直径,P A为⊙O的切线,BC OP交⊙O于C,PO交⊙O 于D,(1)求证:PC为⊙O的切线;(2)过点D作DE⊥AB于E,交AC于F,PO交AC于H,BD交AC于G,DF=FG,DF=5,CG=6,求⊙O的半径.【变式8-1】(2023春·湖北随州·九年级统考期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AB 上一点,以CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.(1)求证:AB是⊙O的切线;(2)若DF=2,DC=6,求BE的长.【变式8-2】(2023春·河南周口·九年级淮阳第一高级中学校考期末)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接(1)求证:是的切线;(2)点为上的一动点,连接.①当时,四边形是菱形;②当时,四边形是矩形.【变式8-3】(2023春·湖北·九年级期末)已知AB是⊙O的直径,AC是弦,∠BAC的角平分线交⊙O于点D,DE⊥AC于E.(1)如图(1)求证:DE是⊙O的切线;(2)如图(1)若AB=10,AC=6,求ED的长;(3)如图(2)过点B作⊙O的切线,交AD延长线于F,若ED=DF,求的值.【题型9 过圆外一点作圆的切线】【例9】(2023·北京海淀·九年级期末)已知:点,,在上,且.求作:直线,使其过点,并与相切.作法:①连接;②分别以点,点为圆心,长为半径作弧,两弧交于外一点;③作直线.直线就是所求作直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接,,∵,∴四边形是菱形,∵点,,在上,且,∴______°(_________________)(填推理的依据).∴四边形是正方形,∴,即,∵为半径,∴直线为的切线(_________________)(填推理的依据).【变式9-1】(2023·天津和平·统考三模)如图,在每个小正方形的边长为1的网格中,圆上的点在格点上,点在格点上,圆心在线段上,圆与网格线相交于点,过点作圆的切线与网格线交于点.(1);(2)过点作圆的切线,切点为(点不与点重合).请用无刻度的直尺,在如图所示的网格中,画出点,并简要说明点的位置是如何找到的(不要求证明).【变式9-2】(2023春·江苏宿迁·九年级统考期中)已知:和外一点.(1)如图甲,和是的两条切线,、分别为切点,求证:;(2)尺规作图:在图乙中,过点作的两条切线、、、为切点(要求:保留作图痕迹,不写作法).【变式9-3】(2023·北京海淀·九年级期末)按要求作图:(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,利用无刻度直尺画出这个圆的一条直径;(2)如图2,BA,BD是⊙O中的两条弦,C是BD上一点,∠BAC=50︒,利用无刻度直尺在图中画一个含有50︒角的直角三角形;(3)如图3,利用无刻度直尺和圆规,以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹);(4)如图4,AB与圆相切,且切点为点B,利用无刻度直尺在网格中找出点B的位置.专题2.6 切线的判定和性质【九大题型】【苏科版】【题型1 有关切线的说法辨析】 (1)【题型2 判断或补全使直线为切线的条件】 (2)【题型3 证明某直线是圆的切线(连半径证垂直)】 (3)【题型4 证明某直线是圆的切线(作垂直证半径)】 (4)【题型5 利用切线的性质求线段长度】 (6)【题型6 利用切线的性质求角度大小】 (7)【题型7 利用切线的性质证明】 (8)【题型8 切线的判定与性质的综合运用】 (9)【题型9 过圆外一点作圆的切线】 (11)【知识点切线的判定】(1)切线判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线②和圆只有一个公共点的直线是圆的切线(定义法)③如果圆心到一条直线的距离等于圆的半径,那么这条直线是圆的切线(2)切线判定常用的证明方法:②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.【题型1 有关切线的说法辨析】【例1】(2023春·山东日照·九年级统考期中)如图,点B在⊙A上,点C在⊙A外,以下条件不能判定BC 是⊙A切线的是()A.∠A=50°,∠C=40°B.∠B﹣∠C=∠AC.AB2+BC2=AC2D.⊙A与AC的交点是AC中点【答案】D【分析】根据切线的判定分别对各个选项进行判断,即可得出结论.【详解】解:A、∵∠A=50°,∠C=40°,∴∠B=180°﹣∠A﹣∠C=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;B、∵∠B﹣∠C=∠A,∴∠B=∠A+∠C,∵∠A+∠B+∠C=180°,∴∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;C、∵AB2+BC2=AC2,∴△ABC是直角三角形,∠B=90°,∴BC⊥AB,∵点B在⊙A上,∴AB是⊙A的半径,∴BC是⊙A切线;D、∵⊙A与AC的交点是AC中点,∴AB=AC,但不能证出∠B=90°,∴不能判定BC是⊙A切线;故选:D.【点睛】本题考查了切线的判定、勾股定理的逆定理、三角形内角和定理等知识;熟练掌握切线的判定是解题的关键.【变式1-1】(2023春·九年级课时练习)下列直线中可以判定为圆的切线的是()A.与圆有公共点的直线B.经过半径外端的直线C.垂直于圆的半径的直线D.与圆心的距离等于半径的直线【答案】D【分析】根据切线的判定方法逐项分析即可.【详解】解:A.与圆有且仅有一个公共点的直线是圆的切线,故该选项不正确,不符合题意;B.经过半径外端的直线且垂直于半径的直线是圆的切线,故该选项不正确,不符合题意;C.经过半径外端的直线且与半径垂直的直线是圆的切线,故不正确;D.与圆心的距离等于半径的直线,故该选项正确,符合题意;故选:D.【点睛】本题考查了切线的判定方法,如果直线与圆只有一个公共点,这时直线与圆的位置关系叫做相切,这条直线叫做圆的切线,这个公共点叫做切点;经过半径外端点并且垂直于这条半径的直线是圆的切线.【变式1-2】(2023春·西藏拉萨·九年级校考期末)下列四个选项中的表述,一定正确的是()A.经过半径上一点且垂直于这条半径的直线是圆的切线B.经过半径的端点且垂直于这条半径的直线是圆的切线C.经过半径的外端且垂直于这条半径的直线是圆的切线D.经过一条弦的外端且垂直于这条弦的直线是圆的切线【答案】C【分析】根据切线的判定对各个选项进行分析,从而得到答案.【详解】由切线的判定定理可知:经过半径外端点且与这条半径垂直的直线是圆的切线,故A,B,D选项不正确,C故选:C.【点睛】此题主要考查了圆中切线的判定,熟练掌握切线的判定定理是解题的关键.【变式1-3】(2011秋·湖北黄冈·九年级统考期末)如图,已知、分别为的直径和弦,为的中点,垂直于的延长线于,连接,若,,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点【答案】D【分析】AB是圆的直径,则∠ACB=90°,根据DE垂直于AC的延长线于E,可以证得ED∥BC,则DE⊥OD,即可证得DE是圆的切线,根据切割线定理即可求得AC的长,连接OD,交BC与点F,则四边形DECF 是矩形,根据垂径定理即可求得半径.【详解】解:连接OD,OC.∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE?AE即:36=2AE∴AE=18,则AC=AE-CE=18-2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB=.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选D.【题型2 判断或补全使直线为切线的条件】【例2】(2023春·北京·九年级统考期末)在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是.(写一个条件即可)【答案】∠ABT=∠ATB=45°(答案不唯一)【分析】根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.【详解】解:添加条件:∠ABT=∠ATB=45°,∵∠ABT=∠ATB=45°,∴∠BAT=90°,又∵AB是圆O的直径,∴AT是圆O的切线,故答案为:∠ABT=∠ATB=45°(答案不唯一).【点睛】本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.【变式2-1】(2023春·山东德州·九年级统考期中)如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于度时,AC才能成为⊙O的切线.【答案】60【分析】由已知可求得∠OAB的度数,因为OA⊥AC,AC才能成为⊙O的切线,从而可求得∠CAB的度数.【详解】解:∵△AOB中,OA=OB,∠AOB=120°,∴,∵当OA⊥AC即∠OAC=90°时,AC才能成为⊙O的切线,∴当∠CAB的度数等于60°,即OA⊥AC时,AC才能成为⊙O的切线.故答案为:60.【点睛】本题考查了切线的判定,三角形内角和定理,等腰三角形的性质,掌握切线的判定定理是解答此题的关键.【变式2-2】(2023春·河南信阳·九年级统考期中)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O 交AB于D点,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【答案】(1M为BC的中点.【详解】试题分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.试题解析:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切,故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.考点:切线的判定.【变式2-3】(2023春·江西上饶·九年级统考期末)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.【答案】(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1) 添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA 是半径,∴EF 是⊙O 的切线.(3)∵OA=OB ,∴点O 在AB 的垂直平分线上,∵∠FAC=∠B ,∠BAC=∠FAC ,∴∠BAC=∠B ,∴点C 在AB 的垂直平分线上,∴OC 垂直平分AB ,∴OC ⊥AB .【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.【题型3 证明某直线是圆的切线(连半径证垂直)】【例3】(2023春·江西宜春·九年级江西省丰城中学校考开学考试)如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F .(1)求证:BC 是O 的切线;(2)若8AF =,=1CF ,求O 的半径.【答案】(1)见解析(2)O 的半径为5.【分析】(1)连接OD ,可得OA OD =,根据等边对等角,以及角平分线的定义,可得ODA CAD ∠=∠,根据“内错角相等,两直线平行”可得OD AC ∥,根据平行线的性质,可得90ODB C ∠=∠=︒,再根据切线的判定方法,即可判定;(2)过点O 作OG AF ⊥,交AF 于点G ,根据垂径定理可得118422AG FG AF ===⨯=,故5CG =,根据矩形的判定和性质,即可求解.【详解】(1)证明:如图,连接OD ,则OA OD =,ODA OAD ∴∠=∠, AD 是BAC ∠的平分线,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,OD AC ∴∥,90ODB C ∴∠=∠=︒, OD 为O 的半径,点D 在O 上,∴BC 是O 的切线;(2)解:过点O 作OG AF ⊥,交AF 于点G ,如图,OG AF ⊥,118422AG FG AF ∴===⨯=, 1CF =,145CG CF FG ∴=+=+=,OG AF ⊥,90OGC ∴∠=︒,90ODB C ∠=∠=︒,∴四边形ODCG 是矩形,5DO CG ∴==,O ∴的半径为5.【点睛】本题考查了圆的切线的判定、圆的垂径定理,矩形的判定和性质、等腰三角形的性质、角平分线的定义、平行线的判定和性质,解题的关键是准确作出辅助线.【变式3-1】(2023春·全国·九年级专题练习)如图,Rt ABC △中,90A ∠=︒,以AB 为直径的O 交BC 于点D ,点E 在O 上CE CA =,AB ,CE 的延长线交于点F .(1)求证:CE 与O 相切;(2)若O 的半径为3,4EF =,求CE 的长.【答案】(1)见解析(2)6【分析】(1)连接OE 、AE ,则OE OA =,所以OEA OAE ∠=∠,由CE CA =,得CEA CAE ∠=∠,所以90CEO CEA OEA CAE OAE ∠=∠+∠=∠+∠=︒,即可证明CE 与O 相切;(2)由切线的性质得90FEO ∠=︒,3OE OA ==,4EF =,得5OF ,则8AF OF OA =+=,即可根据勾股定理列方程2228(4)CE CE +=+,求解即可.【详解】(1)证明:如图,连接OE 、AE ,则OE OA =,OEA OAE ∴∠=∠,CEA CAE ∴∠=∠,90CEO CEA OEA CAE OAE CAO ∴∠=∠+∠=∠+∠=∠=︒, CE 经过O 的半径OE 的外端,且CE OE ⊥,CE ∴与O 相切.(2)解:由(1)知CE 与O 相切,∴90FEO ∠=︒∵3OE OA ==,4EF =,5OF ∴,8AF OF OA ∴=+=,∵90CAF =︒∠∴222CA AF CF +=,∵CA CE =,4CF CE =+,2228(4)CE CE ∴+=+,6CE ∴=,CE ∴的长为6.【点睛】此题重点考查等腰三角形的性质、圆的切线的判定、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.【变式3-2】(2023春·江西九江·九年级校考期中)如图,AB 为O 的直径,C 为O 上一点,P 为BC 延长线上的一点,使得PAC B ∠=∠.(1)求证:AP 是O 的切线.(2)F 为O 上一点,且OC 经过AF 的中点E .①求证:B CAE ∠=∠;②若2AE CE =,AC =O 的半径长.【答案】(1)见解析;(2)①见解析;②O 的半径为5.【分析】(1)根据直径所对的圆周角是直角得出90ACB ∠=︒,进而得出90CAB PAC ∠+∠=︒,即90PAB ∠=︒,即可得出结论;(2)①先根据直径所对的圆周角是直角得出90ACB BCO ACE ∠=∠+∠=︒,进而得出90B ACE ∠+∠=︒,根据题意可得出AE OC ⊥,推出90CAE ACE ∠+∠=︒,即可得出结论;②设CE x =,则2AE x =,由①知AE OC ⊥,得出ACE △和AOE △都是直角三角形,在Rt ACE 中,根据勾股定理得出()(2222x x +=,求出2CE =,4AE =,在Rt AOE △中,根据勾股定理得出()22242OA OA +-=,即可得出答案 【详解】(1)证明:∵AB 为O 的直径,∴90ACB ∠=︒,∴90CAB B ∠+∠=︒,∵PAC B ∠=∠,∴90CAB PAC ∠+∠=︒,即90PAB ∠=︒,∴AP AB ⊥,∴AP 是O 的切线;(2)①证明:∵AB 为O 的直径,∴90ACB BCO ACE ∠=∠+∠=︒,∵OC OB =,∴B BCO ∠=∠,∴90B ACE ∠+∠=︒,∵OC 经过AF 的中点E ,∴AE OC ⊥,∴90CAE ACE ∠+∠=︒,∴B CAE ∠=∠;②解:设CE x =,则2AE x =,由①知AE OC ⊥,∴ACE △和AOE △都是直角三角形,在Rt ACE 中,222AE CE AC +=,∴()(2222x x +=,解得:2x =(负值舍去),即2CE =,4AE =,在Rt AOE △中,222AE OE AO +=,∴()22242OA OA +-=,解得:5OA =,即O 的半径为5.【点睛】本题考查圆周角定理,切线的判定,勾股定理,掌握切线的判定定理是解题的关键.【变式3-3】(2023春·江苏无锡·九年级统考期中)如图,已知半径为5的M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分OAM ∠,6AO CO +=.(1)判断M 与x(2)求AB 的长.【答案】(1)相切,理由见解析(2)6【分析】(1)连接OM ,由AC 平分OAM ∠可得OAC CAM ∠=∠,又MC AM =,所以CAM ACM ∠=∠,进而可得OAC ACM ∠=∠,所以OA ∥MC ,可得MC x ⊥轴,进而可得结论;(2)过点M 作MN y ⊥轴于点N ,则A N B N =,且四边形MNOC 是矩形,设,AO m =可分别表达MN 和ON ,进而根据勾股定理可建立等式,得出结论;【详解】(1)解:M 与x 轴相切,理由如下:如图,连接OM , AC 平分OAM ∠,OAC CAM ∴∠=∠,又MC AM =,CAM ACM ∴∠=∠,OAC ACM ∴∠=∠,OA ∴∥MC ,OA x ⊥轴,MC x ∴⊥轴, CM 是半径,M ∴与x 轴相切(2)如图,过点M 作MN y ⊥轴于点N ,AN BN ∴==12AB ,90MCO AOC MNA ∠=∠=∠=︒,∴四边形MNOC 是矩形,NM OC ∴=,5MC ON ==,设,AO m =则6OC m =-,5AN m ∴=-,在Rt ANM 中,222AM AN MN =+,∴()()222556m m =-+-,解得2m =或9(m =舍去),3AN ∴=,6AB ∴=. 【点睛】本题主要考查切线的定义,勾股定理,矩形的性质与判定,垂径定理,待定系数法求函数表达式,题目比较简单,关键是掌握相关定理.【题型4 证明某直线是圆的切线(作垂直证半径)】(2023春·山东日照·九年级日照市新营中学校考期中)如图,在四边形ABCD中,∠ABC=90°,AD∥BC,【例4】CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由.(2)若AB=6,∠BDC=60°,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)3π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF= BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合得到∠ABD= 30°,求出AD,再利用阴影部分的面积= S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1) 过点B作BF⊥CD,垂足为F,∴∠BFD=90°,∵AD∥BC,∠ABC=90°,∴∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠BFD,∵AD∥BC,∴∠ADB= ∠CBD,∴CB= CD,∴∠CBD= ∠CDB,∴∠ADB = ∠CDB ,在△ABD 和△FBD 中 ,ADB CDB BAD BFD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△FBD (AAS),∴BF = BA ,则点F 在圆B 上,∴CD 与⊙B 相切;(2) ∵∠BCD = 60°,CB = CD ,∴△BCD 是等边三角形,∴∠CBD = 60°,∵ BF ⊥CD ,∴∠ABD = ∠DBF = ∠CBF = 30 °,∴∠ABF = 60 °,∵ AB = BF = 6,∴AD = DF °∴阴影部分的面积= S △ABD -S 扇形ABE= 2130662360π⨯⨯⨯-=3π .【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,解题的关键是正确作出辅助线.【变式4-1】(2023·江西南昌·九年级期末)如图,O 为正方形ABCD 对角线上一点,以O 为圆心,OA 长为半径的O 与BC 相切于点M .(1)求证:CD 与O 相切.(2)若正方形ABCD 的边长为1,求半径OA 的长.【答案】(1)见解析;(2)2OA =【分析】(1)根据正方形的性质可知,AC 是角平分线,再根据角平分线的性质进行证明即可;(2)根据正方形的边长求出AC 的长,再根据等腰直角三角形的性质得出即可求出.【详解】解:(1)如图,连接OM ,过点O 作ON CD ⊥于点N ,∵O 与BC 相切,∴OM BC ⊥∵四边形ABCD 是正方形,∴AC 平分BCD ∠,∴OM ON =,∴CD 与O 相切.(2)∵四边形ABCD 为正方形,∴1,90,45AB B ACD ︒︒=∠=∠=,∴45AC MOC MCO ︒∠=∠=,∴MC OM OA ==,∴OC .又AC OA OC =+,∴OA 2OA =【点睛】本题主要考查了正方形的性质和圆的切线的性质和判定,还运用了数量关系来证明圆的切线的方法.【变式4-2】(2023•武汉模拟)如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =3.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△DCF(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【解答】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,∴∠B=90°∴AB⊥BC∵AD平分∠BAC,DF⊥AC∴BD=DF∴AC与⊙D相切;(2)在△BDE和△DCF中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△DCF(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.【变式4-3】(2023•椒江区一模)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【知识点2 切线的性质】(1)切线性质定理:圆的切线垂直于过切点的半径(2)切线性质的推论:①经过圆心且垂直于切线的直线必经过切点②经过切点且垂直于切线的直线必经过圆心【题型5 利用切线的性质求线段长度】【例5】(2023春·河南·九年级校联考期末)如图,为的直径,,是上不同于,的两点,过点的切线垂直于交的延长线于点,连接.(1)求证:;(2)若,,则的长为__________.【答案】(1)见解析(2)【分析】(1)连接,可证,从而可证,即可求证.(2)过作交于,可求,,,接可求解.【详解】(1)证明:如图,连接,为的切线,,,,,,,,.。

专题08 切线的性质与判定重难点题型分类(解析版)-初中数学上学期重难点题型分类高分必刷题(人教版)

专题08 切线的性质与判定重难点题型分类(解析版)-初中数学上学期重难点题型分类高分必刷题(人教版)

专题07 切线的性质与判定重难点题型分类-高分必刷题专题简介:本份资料包含《切线的性质与判定》这一节在没涉及相似之前各名校常考的主流题型,具体包含的题型有:切线的性质、切线长定理、切线的判定这四类题型;其中,重点是切线的判定这一大类题型,本资料把证明切线的判定方法归纳成四种类型:第I类:用等量代换证半径与直线的夹角等于90°;第II类:用平行+垂直证半径与直线的夹角等于90°;第III类:用全等证半径与直线的夹角等于90°;第IV类:没标出切点时,证圆心到直线的距离等于半径。

本份资料所选题目均出自各名校初三试题,很适合培训学校的老师给学生作切线的专题复习时使用,也适合于想在切线的性质与判定上有系统提升的学生自主刷题使用。

切线的性质:告诉相切,立即连接圆心与切点,得到半径与切线的夹角等于090。

1.如图,AB是⊙O的切线,点B为切点,连接AO并延长交⊙O于点C,连接BC.若∠A =26°,则∠C的度数为()A.26°B.32°C.52°D.64°【解答】解:连接OB,∵AB是⊙O的切线,∴OB⊥AB,∴∠ABO=90°,∵∠A=26°,∴∠AOB=90°﹣26°=64°,由圆周角定理得,∠C=∠AOB=32°,故选:B.2.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M (0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)【解答】解:过点P作PD⊥MN于D,连接PQ.∵⊙P与x轴相切于点Q,与y轴交于M (0,2),N(0,8)两点,∴OM=2,NO=8,∴NM=6,∵PD⊥NM,∴DM=3∴OD=5,∴OQ2=OM•ON=2×8=16,OQ=4.∴PD=4,PQ=OD=3+2=5.即点P的坐标是(4,5).故选:D.3.(长郡)如图,Rt△ABC中,∠C=90°,O为直角边BC上一点,以O为圆心,OC为半径的圆恰好与斜边AB相切于点D,与BC交于另一点E.(1)求证:△AOC≌△AOD;(2)若BE=1,BD=3,求⊙O的半径及图中阴影部分的面积S.【解答】(1)证明:∵AB切⊙O于D,∴OD⊥AB,∵Rt△ABC中,∠C=90°,在Rt△AOC和Rt△AOD中,∴Rt△AOC≌Rt△AOD(HL).(2)解:设半径为r,在Rt△ODB中,r2+32=(r+1)2,解得r=4;由(1)有AC=AD,AB=AD+DB=AC+DB=AC+3,BC=BE+2r=1+8=9,在直角三角形ABC中,根据勾股定理得:AC2+92=(AC+3)2,解得AC=12,∴S=AC•BC﹣πr2=×12×9﹣π×42=54﹣8π.4.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线DE交BC于点D,交AC 于点E,连接BE,经过C、D、E三点作⊙O,(1)求证:CD是⊙O的直径;(2)若BE是⊙O的切线,求∠ACB的度数;(3)当AB=,BC=6时,求图中阴影部分的面积.【解答】(1)证明:∵AC的垂直平分线是DE,∴∠CED=90°,∴CD是⊙O的直径;(2)解:连接OE,∵OE=OC,∴∠C=∠OEC,∵若BE是⊙O的切线,∴BE⊥OE,∠BED+∠DEO=∠DEO+∠OEC=90°,∴∠BED=∠OEC,∵BE是Rt△ABC斜边中线,∴BE=EC,∴∠EBC=∠C=∠OEC,在△BEC中,∠EBC+∠C+∠OEC+∠BEO=180°,∴∠C=30°.(3)解:∵AB=2,BC=6,∴tan C=,∠C=30°,AC=2AB=4,∴EC=2,∵cos∠C=,∴cos30°=,∴CD=4,∴OC=CD=2,∵∠C=∠CEO=30°,∴∠COE=120°,∴扇形OEC的面积为=π,作OF⊥EC,垂足是F,∵∠C=30°,∴OF=OC=1,∴△OCE的面积为×2×1=,即阴影部分的面积为π﹣.切线长定理:5.如图,P A,PB分别切⊙O于点A,B,OP交⊙O于点C,连接AB,下列结论中,错误的是()A.∠1=∠2B.P A=PB C.AB⊥OP D.OP=2OA【解答】解:由切线长定理可得:∠1=∠2,P A=PB,从而AB⊥OP.因此A.B.C都正确.无法得出AB=P A=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.6.(长郡)如图,P A、PB切⊙O于点A、B,P A=10,CD切⊙O于点E,交P A、PB于C、D两点,则△PCD的周长是()【解答】解:∵P A、PB切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=P A+PB=10+10=20.故选:C.7.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为()A.44B.42C.46D.47【解答】解:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故选:A.8.(青竹湖)如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.【解答】(1)证明:如图,连接OE,∵CD是⊙O的切线,∴OE⊥CD,在Rt△OAD和Rt△OED,,∴Rt△OAD≌Rt △OED(HL)∴∠AOD=∠EOD=∠AOE,在⊙O中,∠ABE=∠AOE,∴∠AOD=∠ABE,∴OD∥BE(同位角相等,两直线平行).(2)解:与(1)同理可证:Rt△COE≌Rt△COB,∴∠COE=∠COB=∠BOE,∵∠DOE+∠COE=90°,∴△COD是直角三角形,∵S△DEO=S△DAO,S△OCE=S△COB,∴S梯形ABCD=2(S△DOE+S△COE)=2S△COD=OC•OD=48,即xy=48,又∵x+y=14,∴x2+y2=(x +y )2﹣2xy =142﹣2×48=100, 在Rt △COD 中,CD ====10,∴CD =10.内切圆与外接圆半径问题9.两直角边长分别为6cm 、8cm 的直角三角形外接圆半径是 cm .【解答】解:∵直角边长分别为6cm 和8cm ,∴斜边是10cm ,∴这个直角三角形的外接圆的半径为5cm . 故答案为:5.10.已知,Rt △ABC 中,∠C =90°,AC =6,AB =10,则三角形内切圆的半径为 . 【解答】解:∵∠C =90°,AC =6,AB =10,∴BC ===8,∴△ABC 的内切圆半径r ==2.故答案是:2.11.在Rt △ABC 中,∠C =90°,AB =6,△ABC 的内切圆半径为1,则△ABC 的周长为( ) A .13B .14C .15D .16【解答】解:根据直角三角形的内切圆的半径公式,得(AC +BC ﹣AB )=1,∴AC +BC=8.则三角形的周长=8+6=14. 故选:B .12.(雅礼)已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_________. 【解答】解:∵三角形三边分别为3、4、5,∴三角形是直角三角形,如图,设Rt △ABC ,∠C=90°,AC=3,BC=4,AB=5,如图,设Rt △ABC 的内切圆的半径为r ,则OD=OE=r ,∵∠C=90°,∴CE=CD=r ,AE=AN=3-r ,BD=BN=4-r ,∴4-r+3-r=5,解得r=1,∴AN=2,在Rt △OMN 中,MN=AM -AN=21, ∴25OM ,则该三角形内心与外心之间的距离为25.13.(长沙中考)如图,在△ABC 中,AD 是边BC 上的中线,∠BAD =∠CAD ,CE ∥AD ,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.【解答】(1)解:∵AD是边BC上的中线,∴BD=CD,∵CE∥AD,∴AD为△BCE的中位线,∴CE=2AD=6;(2)证明:∵CE∥AD,∴∠BAD=∠E,∠CAD=∠ACE,而∠BAD=∠CAD,∴∠ACE =∠E,∴AE=AC,而AB=AE,∴AB=AC,∴△ABC为等腰三角形.(3)如图,连接BP、BQ、CQ,在Rt△ABD中,AB==5,设⊙P的半径为R,⊙Q的半径为r,在Rt△PBD中,(R﹣3)2+42=R2,解得R=,∴PD=P A﹣AD=﹣3=,∵S△ABQ+S△BCQ+S△ACQ=S△ABC,∴•r•5+•r•8+•r•5=•3•8,解得r=,即QD=,∴PQ=PD+QD=+=.答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为.14.(青竹湖)如图,在矩形ABCD 中,AC 为矩形ABCD 对角线, DG AC ⊥于点G ,延长DG 交AB 于点E ,已知6AD =,8CD =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C
初中数学切线的性质与判定
6
AB是圆O的弦,C是圆O外一点,BC是圆O的 切线,AB交过C点的直径于点D,OA⊥C D,试判断∆BCD的形状,并说明你的理由。
解:连接BO 可知:OA=OB 所以∠A= ∠OBD 又OA⊥CD ∠A+ ∠ADO=90°。 CB为圆O的切线。 ∠OBD+ ∠DBC=90° 所以∠ADO= ∠DBC ∠ADO=∠BDC(对顶角) 即∠BDC=∠DBC 所以∆BDC为等腰三角形。
2、数量法(d=r):和圆的距离等于半 径的直线是圆的切线。
3、判定定理:经过半径外端且垂直于这条 半径的直线是圆的切线。
初中数学切线的性质与判定
4
内切圆和内心的定义:
与三角形各边都相切的圆叫做三角形的 内切圆。内切圆的圆心是三角形三条角 平分线的交点,叫做三角形的内心。
∆ABC的内切圆圆O与BC、CA、AB分别相切于D、E、 A

D O


初中数学切线的性质与判定
7
如图所示,PBC是圆O的割线,A点是圆O上一点,且 PA2=PB×PC。求证:PA是圆O的切线.
证明: 连接AB AC,连接BO并延长与圆O相交于点
D
P
A
在△PBA和 △PAC中,PA/PC=PB/PA(题意) , ∠P这公共角,
∴△PBA和 △PAC相似
B
∴∠PAB=∠PCA
连接OA AD,易知 ∠ADB=∠PCA(圆周角)
∵BD是直径,OB OA OD是半径 C ∴∠BAO+∠OAD=90°,∠OAD=∠ODA
∴∠PAB=∠OAD
∴∠PAB+∠BAO=90°
∴PA是圆O的切线(切线判定定理)
初中数学切线的性质与判定
8
已知直角梯形ABCD中,AD//BC,AB⊥BC,以腰
DC的中点E为圆心的圆与AB相切,梯形的上底A
D与底BC是方程x2-10x+16=0的两根,
求圆E的半径r.
AD
解:连接EF,F为圆E的切点
因为EF⊥AB 所以EF//BC
F
E
且E为CD中点 所以EF为梯形ABCD的中位线
又AD、BC的为x2-10x+16=0的ቤተ መጻሕፍቲ ባይዱ根
所以AD=2,BC=8 EF=1/2(AD+BC)=5 即半径为5.
初中数学切线的性质与判定
Dr.Feng
问题:
如图,在圆O中,经过半径OA的外端点A作直线 l⊥OA,则直线L圆O的位置关系怎样?为什么?
O
A
l
切线的判定定理:经过半径的外端并且垂直于这条半径 的直线是圆的切线。
初中数学切线的性质与判定
2
证明直线与圆相切有如下三种途径:
1、定义法:和圆有且只有一个公共点的直 线是圆的切线。
F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的 F 长解。:连OA、OB、OC,OE、OF、OD
根据垂直平分线的性质。有 AE=AF,BF=BD,CD=CE
B
可设AE=AF=x 则BF=BD=9-x,CD=CE=13-x
O D
E
C
BD+CD=9-x+13-x=14
x=4
所以AF=4,BD=5,CE=9


初中数学切线的性质与判定
9
切线的性质:
1、切线和圆只有一个公共点。 2、切线和圆心的距离等于半径。 3、切线垂直于过切点的半径。 4、经过圆心垂直于切线的直线必过切点。 5、经过切点垂直于切线的直线必过圆心。
初中数学切线的性质与判定
10
如图所示,直线AB切圆O于点C,DE是圆O的直径, EF⊥AB于F,DC的延长线与EF的延长线交于点G,若 ∠E=80°,求∠G的度数。
O
E
D
A
C
FB
G
初中数学切线的性质与判定
11
如图所示,在直角梯形ABCD中,∠A=∠B=90°, AD//BC,E为AB上一点,DE平分∠ADC,CE 平分∠BCD。 求证:(1)DE ⊥CE. (2)以AB为直径的圆与CD相切。
D1 3
2C 4
A
E
B
初中数学切线的性质与判定
12
如图,圆O的直径AB=2,AM和BN是它的两条切线,
初中数学切线的性质与判定
5
在直角∆ABC中,∠B=90°,∠A的平分
A
线交BC于D,以D为圆心,DB长为半径作
圆D。
试证明说:明连:DAFC是圆O的切线。
F
因为DB⊥AB 垂足为点B,又点B在圆上。
所以AB为圆D的切线。
又AD为∠A的角平分线 所以DF ⊥AC且DB=DF 即:AC为圆D的切线。
B
DE切YY圆O于E,交AM于D,交BN于C,设AD=x,BD=y.
(1)求证:AM//BN; (2)求y关于x的关系式;
A
(3)求四边形ABCD的面积是S,并证明:S1≥S2
O
DM E
B
CN
初中数学切线的性质与判定
13
Dr.Feng
初中数学切线的性质与判定
14
感谢您的聆听 您的关注使我们更努力
此课件下载后可自行编辑修改 关注我 每天分享干货
初中数学切线的性质与判定
15
相关文档
最新文档