高考试题分类考点空间直角坐标系空间向量及其运算

合集下载

1.1空间向量及其运算1.1.3空间向量的坐标与空间直角坐标系

1.1空间向量及其运算1.1.3空间向量的坐标与空间直角坐标系

人教B 版(2019)选择性必修第一册过关斩将第一章空间向量与立体几何1.1空间向量及其运算1.1.3空间向量的坐标与空间直角坐标系学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知向量{,,}a b c 是空间向量的一组基底,向量{,,}a b a b c +-是空间向量的另外一组基底,若一向量p 在基底{,,}a b c 下的坐标为(1,2,3),则向量p 在基底{,,}a b a b c +-下的坐标为( )A .13,,322⎛⎫ ⎪⎝⎭B .31,,322⎛⎫- ⎪⎝⎭C .133,,22⎛⎫-⎪⎝⎭D .13,,322⎛⎫- ⎪⎝⎭2.已知a =(2,﹣1,2),b =(x ,y ,6),a 与b 共线,则x ﹣y =( ) A .5B .6C .3D .93.下列向量与向量()1,2,1=-a 共线的单位向量为( )A.11,22⎛⎫-- ⎪ ⎪⎝⎭B.11,22⎛⎫- ⎪ ⎪⎝⎭C.1122⎛⎫-- ⎪ ⎪⎝⎭ D.1122⎛⎫⎪⎪⎝⎭4.已知点A(4,1,3),B(2,-5,1),C 为线段AB 上一点且13ACAB =,则点C 的坐标为( ) A .715,,222⎛⎫-⎪⎝⎭ B .3,3,28⎛⎫- ⎪⎝⎭C .107,1,33⎛⎫-⎪⎝⎭D .573,,222⎛⎫-⎪⎝⎭5.向量()()2,4,,2,,2a x b y ==,若6a =,且a b ⊥,则x y +的值为( ) A .3-B .1C .3或1D .3-或16.已知O 为坐标原点,(1,2,2),(2,1,4),(1,1,4)OA OB OC =-=-=,点P 是OC 上一点,则当PA PB ⋅取得最小值时,点P 的坐标为( )A .114,,333⎛⎫ ⎪⎝⎭B .11,,222⎛⎫⎪⎝⎭C .11,,144⎛⎫⎪⎝⎭D .()2,2,87.已知2(,2,0),(3,2,)a x b x x ==-,且a 与b 的夹角为钝角,则x 的取值范围是( ) A .4x <-B .40x -<<C .04x <<D .4x >8.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( ) A .平行B .垂直C .相交但不垂直D .无法判定9.三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,N 是BC 的中点,1A P λ=11A B ,113C C C M =,若PN BM ⊥,则λ=( )A .12B .13C .23D .3410.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==11.己知()2,1,3a =-,()1,4,2b =--,()7,5,c λ=,若,,a b c 三向量不能构成空间的一个基底,则实数λ的值为( ) A .657B .9C .357D .012.在空间直角坐标系中,A(1,1,-2),B(1,2,-3),C(-1,3,0),D(x ,y ,z ) ,(x ,y ,z ∈R),若四点A ,B ,C ,D 共面,则( ) A .2x +y +z =1B .x +y +z =0C .x -y +z =-4D .x +y -z =013.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭14.已知向量()123a =,,,()246b =---,,,14c =,若()7a b c +⋅=,则a 与c 的夹角为( )A .30B .60︒C .120︒D .150︒15.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,侧棱1AA ⊥底面ABCD .已知11,AB AA ==E 为线段AB 上一个动点,则1D E CE +的最小值为( )A .BC 1D .2+16.在直三棱柱111ABC A B C -中,1,12BAC AB AC AA π∠====,已知G 和E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的取值范围为( )A .5⎫⎪⎪⎣⎭B .5⎣C .5⎛⎫⎪ ⎪⎝⎭D .5⎡⎫⎪⎢⎪⎣⎭二、填空题17.已知{,,}i j k 为单位正交基底,且3,232a i j k b i j k =-++=--,则向量2a b -的坐标是_________.18.已知空间向量(2,1,3)a =-,(1,4,2)b =--,(,5,5,)c λ=,若,,a b c 共面,则实数λ=______.19.已知空间向量()21,3,0a x x =+,()1,,3b y y =-,(其中x 、y R ∈),如果存在实数λ,使得a b λ=成立,则x y +=_____________.20.已知()cos ,1,sin a θθ=,()sin ,1,cos b θθ=,则向量a b +与a b -的夹角是__________.21.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(1x -,y ,-3),且BP ⊥平面ABC ,则实数x y +=________.三、解答题22.已知空间中三点(2,0,2)A -,(1,1,2)B -,(3,0,4)C -,设a AB =,b AC =. (1)求向量a 与向量b 的夹角的余弦值; (2)若ka b +与2ka b -互相垂直,求实数k 的值.23.如图,直三棱柱111ABC A B C -,底面ABC 中,1CA CB ==,90BCA ∠=︒,棱12AA =,M 、N 分别是11A B 、1A A 的中点.(1)求BM 的长; (2)求11cos ,BA CB 的值; (3)求证:11A B C N ⊥.四、多选题24.(多选)已知(1,2,3),(2,3,4),(1,2,3)M N P --,若3PQ MN =且//PQ MN ,则Q 点的坐标可以为( ) A .(2,5,0) B .(4,1,6)---C .(3,4,1)D .(3,2,5)---参考答案1.B 【分析】设向量p 在基底{,,}a b a b c +-下的坐标为(,,)x y z ,则由已知可得23()()()()p a b c x a b y a b zc x y a x y b zc =++=++-+=++-+,从而可求出,,x y z 的值 【详解】设向量p 在基底{,,}a b a b c +-下的坐标为(,,)x y z ,则23()()()()p a b c x a b y a b zc x y a x y b zc =++=++-+=++-+,所以1,2,3,x y x y z +=⎧⎪-=⎨⎪=⎩解得3,21,23,x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩故p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭. 故选:B 【点睛】此题考查空间向量基本定理的应用,属于基础题 2.D 【分析】利用两个向量共线的坐标表示列方程,解方程求得,x y 的值,进而求得x y -的值. 【详解】由于a 与b 共线,所以6212x y ==-,解得6,3x y ==-,所以9x y -=. 故选:D 【点睛】本小题主要考查两个空间向量共线的坐标表示,属于基础题. 3.C 【分析】根据一个向量共线的单位向量计算公式a a±,可得结果【详解】由||122a =++=, ∴与向量a 共线的单位向量为11,22⎛⎫ ⎪⎪⎝⎭或1122⎛⎫-- ⎪ ⎪⎝⎭. 故选:C 【点睛】本题考查向量的单位向量,属基础题题. 4.C 【分析】C 为线段AB 上一点,且3|AC |=||AB |,可得13AC AB =,利用向量的坐标运算即可得出. 【详解】∵C 为线段AB 上一点,且3|AC |=||AB |,∴13AC AB =, ∴13OC OA AB =+=(4,1,3)+13(﹣2,﹣6,﹣2),=107133⎛⎫-⎪⎝⎭,,.故选C . 【点睛】本题考查了向量共线定理、向量的坐标运算,考查了计算能力,属于基础题. 5.D 【解析】22422440a b y x x y ⋅=⨯+⨯+⨯=++=,又2246a =+== ,所以解得43x y =⎧⎨=-⎩或41x y =-⎧⎨=⎩ ,所以1x y +=或3x y +=-,故选D. 6.A 【分析】根据三点共线,可得OP OC λ=,然后利用向量的减法坐标运算,分别求得,PA PB ,最后计算PA PB ⋅,经过化简观察,可得结果. 【详解】设(,,4)OP OC λλλλ==,则(1,2,24)PA λλλ=---- (2,1,44)PB λλλ=----则2211812818103PA PB λλλ⎛⎫⋅=--=-- ⎪⎝⎭ ∴当13λ=时,PA PB ⋅取最小值为-10, 此时点P 的坐标为114,,333⎛⎫ ⎪⎝⎭. 故选:A 【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题. 7.A 【分析】根据a 与b 的夹角为钝角,则0a b <,再根据坐标关系建立不等式即可求解. 【详解】∵()2(,2,0)3,2,x x x λ≠-,∴a 与b 不共线, ∵a 与b 的夹角为钝角,∴0a b <,即3 2(2)0x x +-<,解得4x <-, 故选A. 【点睛】本题考查向量的夹角.注意向量数量积的坐标关系与向量平行的坐标关系的区别. 8.B 【分析】根据题意,求得向量AD 和BC 的坐标,再结合空间向量的数量积的运算,即可得到两直线的位置关系,得到答案. 【详解】由题意,点()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -, 可得()3,1,6AD =--,()2,0,1BC =, 又由()()2310610AD BC ⋅=⨯+-⨯+-⨯=, 所以AD BC ⊥,所以直线AD 与BC 垂直. 故选:B . 【点睛】本题主要考查了空间向量的数量积的运算及其应用,其中解答中熟记空间向量的坐标运算,以及空间向量的数量积的运算是解答本题的关键,着重考查了推理与运算能力,属于基础题. 9.C 【分析】建立空间直角坐标系,求出,,,P B M N 坐标,进而求出,PN BM 坐标,由=0PN BM ⋅,即可求解. 【详解】如图,以AB ,AC ,1AA 所在直线分别为x ,y ,z 轴, 建立空间直角坐标系A xyz -,则(),0,1P λ,11,,022N ⎛⎫ ⎪⎝⎭,()1,0,0B ,20,1,3M ⎛⎫ ⎪⎝⎭,11,,122PN λ⎛⎫=-- ⎪⎝⎭,21,13BM ⎛⎫=-- ⎪⎝⎭,所以1120223PN BM λ=-+-=⋅,即23λ=. 故选:C.【点睛】本题考查空间向量坐标运算,求出各点坐标是解题的关键,属于基础题. 10.B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.11.A 【分析】由条件可得,,a b c 共面,根据共面向量的基本定理,即可求出结论. 【详解】,,a b c 三向量不能构成空间的一个基底,,,a b c 共面,()2,1,3a =-,()1,4,2b =--,()7,5,c λ=,存在唯一的实数对(,)x y ,使得c xa yb =+,274532x y x y x y λ-=⎧⎪-+=⎨⎪-=⎩解得337177657x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 故选:A. 【点睛】本题考查空间向量共面的坐标关系,属于基础题. 12.A 【解析】(0,1,1)AB =-,(2,2,2)AC =-,(1,1,2)AD x y z =--+,因为,,,A B C D 四点共面,所以,,AB AC AD 共面,即存在,λμ使得AD AB AC λμ=+,即12{1222x y z μλμλμ-=--=++=-+,消去,λμ得21x y z ++=,故选A .13.C 【分析】设(,,)Q x y z ,根据点Q 在直线OP 上,求得(,,2)Q λλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB ⋅取得最小值,即可求解. 【详解】 设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=, 即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q .故选:C. 【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得出关于λ的二次函数是解答的关键,着重考查运算与求解能力. 14.C 【解析】由题意可得14a =,56b =,且2b a =-,所以7a c -⋅=,cos ,a ca c a c ⋅==71142-=-,所以0,120a c =,选C. 【点睛】本题考查向量的数量积坐标运算与运用向量求夹角,但本题更重要的是要发现2b a =-的平行关系,就可以简化运算,否则要设c 坐标,待定系数运算求坐标,运算复杂了. 15.B 【分析】由已知条件建立如图所示的空间直角坐标系,(,0,0)(01)E t t ,则1D E CE +=的最小值问题转化为求平面直角坐标系tOu 中的一个动点(,0)P t 到两定点(0,2),(1,1)M N -的距离之和的最小值的问题,即转化为求平面直角坐标系tOu 中的一个动点(,0)P t 到两定点(0,2),(1,1)M N -的距离之和的最小值的问题,由图可知当M ,P ,N 三点共线时,(,0)P t 到两定点(0,2),(1,1)M N -的距离之和最小,从而可得答案 【详解】建立如图所示的空间直角坐标系A xyz -,则1(0,0,0),(1,1,0)A D C . ∵E 为线段AB 上一个动点, ∴设(,0,0)(01)E t t ,则1D E ==,CE =故问题转化为求1D E CE +=+的最小值问题,即转化为求平面直角坐标系tOu 中的一个动点(,0)P t 到两定点(0,2),(1,1)M N -的距离之和的最小值的问题,如图所示.由此可知,当M ,P ,N 三点共线时,()1min min ||D E CE MN +====故选:B. 【点睛】此题考查空间中两线段和最小问题,转化为平面问题解决,考查空间向量的应用,属于中档题 16.A 【分析】由已知建立如图所示的空间直角坐标系A xyz -,设(0,,0),(,0,0)D y F x ,则11,,1,,1,22GD y EF x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,由GD EF ⊥可得21x y +=,从而可得1||02DF y ⎫===<<⎪⎭,进而可求出结果 【详解】建立如图所示的空间直角坐标系A xyz -,则11,0,1,0,1,22G E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,设(0,,0),(,0,0)D y F x ,则11,,1,,1,22GD y EF x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,∵GD EF ⊥,∴0GD EF ⋅=,即11022x y --+=,即21x y +=, 又∵01x <<,∴0121y <-<, ∴102y <<.又1||02DF y ⎫===<<⎪⎭,∴当25y =时,min 5DF ==; 当0y =时,||1DF =;当12y =时,1||2DF =,故线段DF 的长度的取值范围为5⎫⎪⎪⎣⎭. 故选:A 【点睛】此题考查点、线、面间的距离计算,考查空间向量的应用,考查计算能力,属于基础题 17.(5,7,7)- 【分析】由3,232a i j k b i j k =-++=--直接计算2a b -,化简后可得其坐标 【详解】解:由3,232a i j k b i j k =-++=--,得2(3)2(232)a b i j k i j k -=-++---(3)(464)(4)(6)(34)577i j k i j k i i j j k k i j k =-++---=--++++=-++,则2(5,7,7)a b -=-. 故答案为:(5,7,7)- 【点睛】此题考查空间向量的坐标运算,属于基础题 18.4 【分析】利用空间向量共面的条件,设出实数x ,y ,使c xa yb =+,列出方程组,求出λ的值即可. 【详解】 解:向量a 、b 、c 共面,∴存在实数x ,y 使得c xa yb =+,即)(2,1,(,5,5)(1,4,23)y x λ=-+--,∴245325x y x y x y λ-=⎧⎪-+=⎨⎪-=⎩;解得324x y λ=⎧⎪=⎨⎪=⎩故答案为:4. 【点睛】本题考查了空间向量的共面问题,也考查了方程组的解法与应用问题,是基础题目. 19.2 【分析】利用向量的坐标运算得出关于x 、y 、λ的方程组,解出即可得出x y +的值. 【详解】()21,3,0a x x =+,()1,,3b y y =-,且a b λ=,所以()21303x x y y λλλ⎧+=⎪=⎨⎪=-⎩,解得131x y λ=-⎧⎪=⎨⎪=-⎩,因此,2x y +=. 故答案为:2. 【点睛】本题考查空间向量共线的坐标运算,建立方程组求解是解题的关键,考查计算能力,属于基础题. 20.2π【分析】利用向量坐标运算表示出a b +与a b -,根据数量积运算法则可求得()()0a b a b +⋅-=,即两向量垂直,得到夹角. 【详解】()sin cos ,2,sin cos a b θθθθ+=++,()cos sin ,0,sin cos a b θθθθ-=--()()2222cos sin sin cos 0a b a b θθθθ∴+⋅-=-+-=()()a b a b ∴+⊥-,即a b +与a b -的夹角为2π故答案为2π 【点睛】本题考查向量夹角的求解,关键是能够通过向量的坐标运算求得两向量的数量积,属于基础题. 21.257【分析】由题意,可得,,AB BC BP AB BP BC ⊥⊥⊥,利用向量的数量积的运算公式列出方程组,求得,,x y z 的值,即可求解. 【详解】由题意,可得,,AB BC BP AB BP BC ⊥⊥⊥,利用向量的数量积的运算公式,可得()352015603130z x y x y z ⎧+-=⎪-++=⎨⎪-+-=⎩解得407x =,157y =-,4z =,∴401525777x y +=-=.【点睛】本题主要考查了向量的数量积的应用,其中解答中根据题设条件和线面位置关系,利用向量的数量积的运算公式,列出方程组求得,,x y z 的值是解答的关键,着重考查了推理与运算能力,属于基础题. 22.(1)10-;(2)52k =-或2k =.【分析】(1)先写出a ,b ,再根据空间向量的夹角公式直接求解即可; (2)根据空间向量垂直的坐标表示直接求解即可得答案. 【详解】(1)∵()1,1,0a AB ==,()1,0,2b AC ==-, 设a 与b 的夹角为θ,∴cos 10|a ba b θ⋅===∣;(2)∵()1,,2ka b k k +=-,()22,,4ka b k k -=+-且()()2ka b ka b +⊥-,∴2(1)(2)80k k k -++-=,即:52k =-或2k =. 【点睛】本题考查空间向量的夹角的计算,空间向量的垂直求参数,考查运算能力,是基础题.23.(123)证明见解析 【分析】(1)以C 为原点,建立空间直角坐标系C xyz -,依题意得()0,1,0B ,()1,0,1M ,根据空间两点间距离公式: d =即可求得BM 的长.(2)求出1BA 和1CB ,根据111111cos ,BA CB BA CB BA CB ⋅=⋅,即可求得11cos ,BA CB 的值.(3)求出1A B 和1C N ,11A B C N ⋅的值,根据向量垂直与数量积的关系a b ⊥时,=0a b ⋅,即可求证11A B C N ⊥. 【详解】(1)以C 为原点,建立空间直角坐标系C xyz -.如图:依题意得()0,1,0B ,()1,0,1M ,根据空间两点间距离公式: d =∴ (1BM ==(2)依题意得:()11,0,2A ,()0,1,0B ,()0,0,0C ,()10,1,2B . ∴()11,1,2BA =-,()10,1,2CB =,113BA CB ⋅=,16BA =15CB =,∴11111130cos ,BA CB BA CB BA CB ⋅==⋅. (3)依题意得()10,0,2C ,11,,222N ⎛⎫⎪⎝⎭∴()11,1,2A B =--,111,,022C N ⎛⎫= ⎪⎝⎭.∴11110022A B C N ⋅=-++=∴11A B C N ⊥【点睛】本题考查了平面向量的坐标运算和平面向量数量积的坐标运算,熟练掌握向量的基本知识是解本题关键,对于立体几何中角的计算问题,可以利用空间向量法,利用向量的夹角公式求解,考查了空间想象能力和计算能力,属于基础题. 24.AB 【分析】首先设(),,Q x y z ,根据题意得到3PQ MN =或3PQ MN =-,从而得到132333x y z +=⎧⎪-=⎨⎪+=⎩或132333x y z +=-⎧⎪-=-⎨⎪+=-⎩,再解方程组即可得到答案. 【详解】设(),,Q x y z ,∴(1,2,3)PQ x y z =+-+. 因为(1,2,3),(2,3,4)M N ,所以(1,1,1)MN =. 因为||3||PQ MN =且//PQ MN , 所以3PQ MN =或3PQ MN =-,所以(1,2,3)3(1,1,1)x y z +-+=或(1,2,3)3(1,1,1)x y z +-+=-,132333x y z +=⎧⎪-=⎨⎪+=⎩或132333x y z +=-⎧⎪-=-⎨⎪+=-⎩ 解得250x y z =⎧⎪=⎨⎪=⎩或416x y z =-⎧⎪=-⎨⎪=-⎩故Q 点的坐标为(2,5,0)或(4,1,6)---. 故选:AB 【点睛】本题主要考查空间向量的坐标运算,属于简单题.。

高考立体几何复习三部曲—空间直角坐标系的应用

高考立体几何复习三部曲—空间直角坐标系的应用

高考立体几何复习三部曲—空间直角坐标系的应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学立体几何三部曲—空间之直角坐标系专项一、积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算3、应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:OP=x OM+y OAOP=x OA+(1-x)OB-一、空间向量的简单应用1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是() A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对2.(2012·济宁一模)若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是() A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}3.(教材习题改编)下列命题:①若A 、B 、C 、D 是空间任意四点,则有AB +BC +CD +DA =0; ②若MB =x MA +y MB ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2D .34.在四面体O -ABC 中,OA =a ,OB =b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =________(用a ,b ,c 表示).5.013·大同月考)若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)6已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637 C.607D.657二、利用空间向量证明平行或垂直[例] 已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.方法利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l1的方向向量v1=(a1,b1,c1),l2的方向向量v2=(a2,b2,c2).则l1∥l2⇔v1∥v2⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R).l1⊥l2⇔v1⊥v2⇔a1a2+b1b2+c1c2=0.(2)设直线l的方向向量为v=(a1,b1,c1),平面α的法向量为n=(a2,b2,c2),则l∥α⇔v⊥n⇔a1a2+b1b2+c1c2=0.l⊥α⇔v∥n⇔(a1,b1,c1)=k(a2,b2,c2).(3)设平面α的法向量n1=(a1,b1,c1),β的法向量为n2=(a2,b2,c2),则α∥β⇔n1∥n2,α⊥β⇔n1⊥n2.1.2012·长春模拟)如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.2.如图所示,平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CD=∠C1CB=∠BCD=60°.(1)求证:C1C⊥BD;(2)当CDCC1的值是多少时,能使A1C⊥平面C1BD请给出证明.3.如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E、F、G分别是线段P A、PD、CD的中点.求证:PB∥平面EFG.三、利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a,b所成的角).2.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|e·n| |e||n|.3.求二面角的大小(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB,CD〉.(2)如图2、3,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ=〈n1,n2〉(或π-〈n1,n2〉).1.(教材习题改编)已知向量m,n分别是直线l和平面α的方向向量、法向量,若cos〈m,n〉=-12,则l与α所成的角为()A.30°B.60°C.120°D.150°2.(教材习题改编)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为()A.45°B.135°C.45°或135°D.90°3.在如图所示的正方体A 1B1C1D1-ABCD中,E是C1D1的中点,则异面直线DE与AC 夹角的余弦值为( )A .-1010B .-120C.120D.10104.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.5.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.(一)异面直线所成的角[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13若存在,求出M 点;不存在,说明理由.1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1. .(二)直线与平面所成角[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.2.(2012·宝鸡模拟)如图,已知P A⊥平面ABC,且P A=2,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.(1)求证:PC⊥平面ADE;(2)求直线AB与平面ADE所成角的大小.(三)二面角[例3]在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=5,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;3.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC⊥BE;(2)若二面角C-AE-D的大小为60°,求λ的值.11A1如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(I )证明:11AC A B ⊥;(II )设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.【课后练习题】1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.3.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC , ∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.5.(2012·辽宁高考)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)若二面角A′-MN-C为直二面角,求λ的值.6.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2.将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直说明理由.7.(2013·湖北模拟)如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点.(1)求证:P A⊥EF;(2)求二面角D-FG-E的余弦值.8.(2012·北京西城模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角若存在,确定E 点位置;若不存在,说明理由.9.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.10.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.11.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2. (1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE的长;若不存在,请说明理由.12.(2012·湖北模拟)在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°.(1)若异面直线A1B与B1C1所成的角为60°,求棱柱的高;(2)设D是BB1的中点,DC1与平面A1BC1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.11。

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用

高考数学资料——5年高考题、3年模拟题分类汇编专题_空间向量在立体几何中的应用

第三节空间向量在立体几何中的应用一、填空题1. 若等边的边长为,平面内一点知足,则_________2.在空间直角坐标系中,已知点 A( 1,0, 2), B(1 , -3 , 1) ,点 M在 y 轴上,且 M到 A 与到 B 的距离相等,则 M的坐标是 ________。

【分析】设由可得故【答案】 (0,-1 , 0)二、解答题3.(本小题满分 12 分)如图,在五面体ABCDEF中, FA 平面 ABCD, AD(II )证明:,(I II )又由题设,平面的一个法向量为4.(此题满分15 分)如图,平面平面,是认为斜边的等腰直角三角形,分别为,,的中点,,.(I )设是的中点,证明:平面;(II )证明:在内存在一点,使平面,并求点到,的距离.证明:( I )如图,连结 OP,以 O为坐标原点,分别以 OB、 OC、 OP所在直线为轴,轴,轴,成立空间直角坐标系 O,则,由题意得,因,所以平面BOE的法向量为,得,又直线不在平面内,所以有平面6.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF不在同一平面内,M, N 分别为 AB, DF的中点。

(I)若平面 ABCD ⊥平面 DCEF,求直线 MN与平面 DCEF所成角的正当弦;(I I )用反证法证明:直线 ME 与 BN 是两条异面直线。

设正方形ABCD,DCEF的边长为2,以 D 为坐标原点,分别以射线DC,DF,DA为 x,y,z轴正半轴成立空间直角坐标系如图.则 M( 1,0,2 ) ,N(0,1,0),可得=(-1,1,2).又 =( 0, 0, 2)为平面DCEF的法向量,可得cos(,)=·DCEF所成角的正弦值为所以MN与平面cos · 6 分( Ⅱ ) 假定直线ME与 BN共面,8 分则 AB平面 MBEN,且平面 MBEN与平面 DCEF交于 EN由已知,两正方形不共面,故AB平面 DCEF。

高考数学常考知识点之空间向量

高考数学常考知识点之空间向量

空间向量1.空间向量的概念: 具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下 b a AB OA OB +=+=b a -=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)( 3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式 t +=a .其中向量a 叫做直线l 的方向向量.5.向量与平面平行: 已知平面α和向量a ,作OA a = ,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α . 通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面M AB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+ 或对空间任一点O ,有OP OM xMA yMB =++ ① ①式叫做平面MAB 的向量表达式7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB =++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,O A aO B b == ,则AOB ∠叫做向量a 与b 的夹角,记作,a b <> ;且规定0,a b π≤<>≤ ,显然有,,a b b a <>=<> ;若,2a b π<>= ,则称a 与b 互相垂直,记作:a b ⊥ . 9.向量的模:设OA a = ,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .10.向量的数量积: a b ⋅= ||||cos ,a b a b ⋅⋅<> .已知向量AB a = 和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B '' 叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B '' 的长度||||cos ,||A B AB a e a e ''=<>=⋅ .11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<> .(2)0a b a b ⊥⇔⋅= .(3)2||a a a =⋅ .12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅ .(2)a b b a ⋅=⋅ (交换律)(3)()a b c a b a c⋅+=⋅+⋅ (分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅ a ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a222321a a a ++==(=⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥那么向量叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α.②利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB。

2021-2022年高考数学一轮复习专题8.6空间直角坐标系空间向量及其运算讲

2021-2022年高考数学一轮复习专题8.6空间直角坐标系空间向量及其运算讲

2021年高考数学一轮复习专题8.6空间直角坐标系空间向量及其运算讲【考纲解读】【知识清单】1.空间向量的线性运算1.空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量,其大小叫做向量的模或长度.(2)几种常用特殊向量①单位向量:长度或模为1的向量.②零向量:长度为0的向量.③相等向量:方向相同且模相等的向量.④相反向量:方向相反而模相等的向量.⑤共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫作共线向量或平行向量.⑥共面向量:平行于同一个平面的向量.2.空间向量的线性运算(1)空间向量的加减与数乘运算是平面向量运算的推广.设a,b是空间任意两向量,若,P∈OC,则,,.(2)向量加法与数乘向量运算满足以下运算律①加法交换律:a+b=b + a .②加法结合律:(a+b)+c=a +(b+c).③数乘分配律:λ(a+b)=λa+λb.④数乘结合律:λ(μa)=(λμ)a.(λ∈R,μ∈R).对点练习:【人教A版,P117复习题第1题】如图,空间四边形中,点在上,且,点为中点,则等于()A. B.C. D.【答案】B2. 共线向量定理、共面向量定理的应用(1)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a=λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对x 、y ,使. (3)空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{x ,y ,z },使.把{a ,b ,c }叫做空间的一个基底.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x 、y 、z ,使.其中x +y +z =1. 对点练习:已知,,,若三向量共面,则实数等于( ) A . B . C . D . 【答案】D【解析】由题三个向量共面可设:,则:(7,5,)(2,,3)(,4,2)m m m n n n λ=-+--得:725432m n m n m nλ=-⎧⎪=-+⎨⎪=-⎩,解得:337177m n ⎧=⎪⎪⎨⎪=⎪⎩,.3.空间向量的数量积及其应用1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算a=(a1,a2,a3),b=(b1,b2,b3)向量和a+b=(a1+b1,a2+b2,a3+b3)向量差a-b=(a1-b1,a2-b2,a3-b3)数量积a·b=a1b1+a2b2+a3b3共线a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R)垂直a⊥b⇔a1b1+a2b2+a3b3=0夹角公式cos〈a,b〉=a1b1+a2b2+a3b3a21+a22+a23b21+b22+b23对点练习:已知向量,,且与互相垂直,则的值为()A. B. C. D.【答案】D4.空间直角坐标系以及空间向量的坐标运算空间直角坐标系及有关概念(1)空间直角坐标系:以空间一点O为原点,建立三条两两垂直的数轴:x轴,y轴,z轴.这时建立了一个空间直角坐标系Oxyz,其中点O叫做坐标原点,x轴,y轴,z轴统称坐标轴.由每两个坐标轴确定的平面叫做坐标平面.(2)右手直角坐标系的含义:当右手拇指指向x轴的正方向,食指指出y轴的正方向时,中指指向z轴的正方向.(3)空间一点M的坐标用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标.2.空间两点间的距离公式设点A(x1,y1,z1),B(x2,y2,z2),则=(x1-x2)2+(y1-y2)2+(z1-z2)2.对点练习:【xx届广西桂林,百色,梧州,北海,崇左五市高三5月联考】如图,在三棱锥中,平面平面,与均为等腰直角三角形,且,.点是线段上的动点,若线段上存在点,使得异面直线与成的角,则线段长的取值范围是()A. B. C. D.【答案】B【解析】()()22234110m t s s t =---->,结合可得()222412231s s s ->+⇒<,所以,则()()22226123PA s t s s s =-+-=+=<,即,应选答案B. 【考点深度剖析】本部分内容较少单独考查,主要考查向量数量积的坐标表示、空间向量方法在在证明平行与垂直及计算夹角与距离的应用.【重点难点突破】考点一 空间向量的线性运算【1-1】空间四边形ABCD 中,若向量,,点E ,F 分别为线段BC ,AD 的中点,则的坐标为( )A .B .C .D . 【答案】B【1-2】在平行六面体ABCD-A 1B 1C 1D 1中,设,E ,F 分别是AD 1,BD 的中点.(1)用向量表示,;(2)若,求实数x ,y ,z 的值.【答案】(1),;(2).【解析】(1)111D B D D DB AA AB AD a b c =+=-+-=--,11122EF EA AF D A AC =+=+ 1111()()()222AA AD AB AD a c =-+++=-.(2)11111111()()22222D F D D D B c a b c a b c =+=-+--=--,所以.【领悟技法】1.选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需向量.2.首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量,求若干个向量的和,可以通过平移将其转化为首尾相接的向量求和问题解决. 【触类旁通】【变式一】如图,在空间四边形中, , , .点在上,且, 是的中点,则=( )A. B.C. D. 【答案】B【变式二】【百强校】xx 学年】辽宁省葫芦岛市一中如图,在平行六面体中,为的交点.若 , ,则下列向量中与相等的向量是( )A .B .C .D . 【答案】A【解析】由题意知,111111112B M B A A A AM B A A A AC =++=++111()222a c ab a bc →→=-+++=-++,故应选.【2-1】【浙江省杭州市萧山区第一中学】已知,,若,则( ) A. , B. , C. , D. , 【答案】A【2-2】有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3 D .4【答案】B【解析】①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立,③正确,④中若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.故选B. 【领悟技法】1.在空间适当选取三个不共面向量作为基向量,其它任意一向量都可用这一组基向量表示.2.中点向量公式,在解题时可以直接使用. 3.证明空间任意三点共线的方法对空间三点P ,A ,B 可通过证明下列结论成立来证明三点共线. (1);(2)对空间任一点O ,;(3)对空间任一点O ,(1)OP xOA yOB x y =++=. 4.证明空间四点共面的方法对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面 (1);(2)对空间任一点O ,;(3)对空间任一点O ,(1)OP xOM yOA zOB x y z =++++=; (4)∥(或∥或∥). 【触类旁通】【变式一】若,,不共线,对于空间任意一点都有,则,,,四点( )A .不共面B .共面C .共线D .不共线 【答案】B【变式二】【浙江慈溪中学】已知,,,,若,则________;若,,,四点共面,则__________. 【答案】,.【解析】由题意得,,,∴316320OC AB OC AB x ⊥⇒⋅=--=, ∴;若,,,四点共面,∴存在唯一的实数,使得,,∴(,8,8)(2,2,2)(1,4,6)x λμ-=--+-,∴28248826x x λμλμλμ=-+⎧⎪-=+⇒=⎨⎪=--⎩.考点3 空间向量的数量积及其应用【3-1】已知A (2,3,-1),B (2,6,2),C (1,4,-1),则向量与的夹角为( ) A .45° B .90° C .30° D .60° 【答案】D【解析】因为1(0,3,3),(1,1,0),cos ,2322AB AC AB AC ==-<>==⨯,所以,故选D.【3-2】【xx 届江西省南昌三中高三上学期第二次考试】已知半径为的球内切于正四面体,线段是球的一条动直径是直径的两端点),点是正四面体的表面上的一个动点,则的取值范围是______________________. 【答案】311488OP OA OB OC=++而又()()22cos ABD 26cos 123AB BD AB BD ππ∠⋅=⋅-==- 由题意M ,N 是直径的两端点,可得,,()()()222••••11PM PN PO OM PO ON PO PO OM ON OM ON PO PO =++=+++=-=-而由此可知,要求出的取值范围,只需求出,的范围即可. 当P 位于E (切点)时,OP 取得最小值1; 当P 位于A 处时,OP 取得最大值3. 综上可得的最小值为11=0,最大值为91=8. 则的取值范围是[0,8].再由12PM PN AB BD PM PN ⋅+⋅=⋅-,知取值范围是 故答案为: .【领悟技法】1. 当题目条件有垂直关系时,常转化为数量积为零进行应用;2. 当异面直线所成的角为时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是,,所以3. 立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解. 【触类旁通】【变式一】已知向量, ,且与互相垂直,则的值为( ) A. 2 B. 0 C. -1 D. 1 【答案】B【变式二】【xx届河南省郑州、平顶山、濮阳市高三二模】已知空间四边形,满足,,,,则的值()A. B. C. D.【答案】B【解析】考点4 空间直角坐标系以及空间向量的坐标运算【4-1】【xx届江西省吉安一中、九江一中等八所重点中学高三4月联考】已知动点P在棱长为1的正方体的表面上运动,且线段,记点P的轨迹长度为.给出以下四个命题:①;②;③④函数在上是增函数,在上是减函数.其中为真命题的是___________(写出所有真命题的序号)【答案】①④【解析】2312333231233l f ππ⎛⎫==⨯⨯⨯= ⎪ ⎪⎝⎭,故答案③不正确;由于时,单调递增且当时, 最大;当,单调递减,故答案④正确;应填答案①④。

(整理)考点37空间直角坐标系空间向量及其运算

(整理)考点37空间直角坐标系空间向量及其运算

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。

考点37 空间直角坐标系、空间向量及其运算一、解答题1.(2012·北京高考理科·T16)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图2. (1) 求证:A 1C ⊥平面BCDE ;(2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.【解题指南】(1)利用线面垂直的判定定理证明;(2)(3)找出三个垂直关系,建系,利用向量法求解.【解析】(1)//,,DE BC AC BC DE AC ⊥∴⊥,1,DE A D DE CD ∴⊥⊥,111,,A D CD D DE ACD DE AC =∴⊥∴⊥面又11,,AC CD CD DE D AC BCDE ⊥=∴⊥面.(2)由(1)可知,1,,CB CD AC 两两互相垂直,分别以它们为x 轴、y 轴、z 轴建立空间直角坐标系,则1A,(0,1,3),(1,2,0),M CM BE ==-AB CDECBE D A 1M图1图21(3,0,A B =-,设平面1A BE 的法向量为1111(,,)n x y z =,由11111112030n BE x y n A B x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令11x =,得11(1,2n =,设所求线面角为α,则1132sin 22n CM α⋅=+=,sin α=, [0,]2πα∈,4πα∴=.(3)假设存在这样的点P ,设点P 的坐标为(m,0,0),04m ≤≤3,(0,2,0)D ,1(,0,A P m =- 1(0,2,A D =-,设2222(,,)n x y z =为平面1ADP的法向量,由21222122020n A P mx n A D y ⎧⋅=-=⎪⎨⋅=-=⎪⎩,令2z=26(n m =,又11A DP A BE 平面与平面垂直,12n n ∴⋅=633022m ++=,解得2m =-(舍去).所以不存在点P.2.(2012·辽宁高考理科·T18)如图,直三棱柱///ABC A B C -,90BAC ∠=,/,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点.(Ⅰ)证明:MN ∥平面//A ACC ;(Ⅱ)若二面角/A MN C --为直二面角,求λ的值.【解题指南】(1)由中点联想到中位线,据中位线和底边平行,解决问题;(2)建立空间直角坐标系,利用空间向量法求λ的值【解析】(1)连接,AB AC '',由已知得M 为AB '的中点,又N 为B C ''的中点,所以MN 为三角形AB C ''的中位线,故MN ∥AC ',又MN A ACC AC A ACC '''''⊄⊂平面,平面, 因此(2)以A 为坐标原点O ,分别以直线,,AB AC AA '为x 轴,y 轴,z 轴,建立空间直角坐标系o xyz -,设1AA '=,则AB AC λ==,从而(0,0,0),(,0,0),(0,,0),(0,0,1),(,0,1),(0,,1)A B C A B C λλλλ'''所以1(,0,),(,,1)2222M N λλλ设(,,)m x y z =是平面A MN '的一个法向量,由00m A M m MN ⎧'⋅=⎪⎨⋅=⎪⎩得10221022x z y z λλ⎧-=⎪⎪⎨⎪+=⎪⎩取1x =,则1,y z λ=-=,故(1,1,)m λ=-设(,,)n a b c =是平面MNC 的一个法向量,由00n NC n MN ⎧⋅=⎪⎨⋅=⎪⎩得取1b =-,则3,a c λ=-=,故(3,1,)n λ=--因为A MN C '--为直二面角,所以0(1,1,)(3,1,)0m n λλλ⋅=⇒-⋅--=⇒=.3.(2012·天津高考理科·T17)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,∠BCA==2PA AD ,=1AC .DBAP(Ⅰ)证明PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030,求AE 的长.【解题指南】建立空间直角坐标系应用空间向量证明垂直关系、求空间角较简捷.【解析】方法一:如图,以点A 为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),B )0,21,21( ,P (0,0,2),(Ⅰ)易得),2-,1,0(=PC ),0,0,2(=AD 于是0.=AD PC ,所以PC ⊥AD. (Ⅱ)PC (0,1,-2),=CD (2,1,0),=-设平面PCD 的一个法向量n ),,,(z y x n =则不妨令1=z ,可得n )1,2,1(=,可取平面PAC 的一个法向量m )0,0,1(=,于是从而所以二面角A-PC-D 的正弦值为630.(Ⅲ)设点E 的坐标为(0,0,h ),其中]2,0[∈h ,由此得11(,,),22BE h =-由(2,1,0),CD =-故BE CD cos BE,CD |BE ||CD |10<>==, 所以2330cos 2010302==+h ,解得1010=h ,即1010=AE .关闭Word 文档返回原板块。

2023年高考数学一轮复习(新高考1) 第7章 §7.6 空间向量的概念与运算

2023年高考数学一轮复习(新高考1) 第7章 §7.6 空间向量的概念与运算

§7.6空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a=λb a1=λb1,a2=λb2,(b ≠0,λ∈R )a 3=λb 3 垂直 a ·b =0 (a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b |a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉= a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示 直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,m α∥β n ∥m ⇔n =λm (λ∈R ) α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × )教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A ,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a . ∴MP →+NC 1—→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫12c +a=32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎡⎦⎤12(OB →+OC →)-OA →=-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+zAA 1—→,则x -y +z 等于( )A.12 B .1 C.32 D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=kAC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN →=kC 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =kB 1A —→+AB →=AB →-kAB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-kAA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或P A →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C四点共面D .若P ,A ,B ,C 为空间四点,且有P A →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件 答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确;若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点, 且有P A →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ, 可得P A →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a ) =12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝⎛⎭⎫12b +12c ·⎝⎛⎭⎫-b +12a ⎝⎛⎭⎫12b +12c 2·⎝⎛⎭⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径,∴OM →+ON →=0,OM →·ON →=-1,∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确. 跟踪训练3 如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a ,∴AC 1—→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD , AB ⊂平面ABCD ,所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以AB →=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面P AD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0), A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎫52,1,72. (1)EF →=⎝⎛⎭⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎪⎨⎪⎧-5x -2y =0,7z =0,取⎩⎪⎨⎪⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n .又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面P AD ;(2)平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a2,0, D ⎝⎛⎭⎫-a 2,0,0,P ⎝⎛⎭⎫0,0,a 2, B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点, 所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为 OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0.且EF ⊄平面P AD ,所以EF ∥平面P AD . (2)因为P A →=⎝⎛⎭⎫a2,0,-a 2, CD →=(0,-a ,0),所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a ,0)=0, 所以P A →⊥CD →, 所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18 B .-18 C .3 2 D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件. 3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2, 又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=(3λ)2+(-2λ)2+(-λ)2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3), 所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧ x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝⎛⎭⎫255,55,0或⎝⎛⎭⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1),所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________. 答案 ⎝⎛⎭⎫32,32,0解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝⎛⎭⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1), ∴BN →=(1,-1,1),∴|BN →|=12+(-1)2+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0), B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2), ∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos 〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝⎛⎭⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝⎛⎭⎫12,12,0, ∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0), C (0,a ,0),E ⎝⎛⎭⎫a ,a2,0,P (0,0,a ), F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a ,0). 因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD . (2)解 设G (x ,0,z ), 则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, CB →=(a ,0,0),CP →=(0,-a ,a ), 若使GF ⊥平面PCB ,则需FG →·CB →=0, 且FG →·CP →=0,由FG →·CB →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(a ,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2, 由FG →·CP →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. 所以G 点坐标为⎝⎛⎭⎫a2,0,0, 即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( ) A .向量a ,b (a ≠0,b ≠0),若a ⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14P A →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c ) 答案 AB解析 由向量垂直的充要条件可得A 正确; ∵PC →=14P A →+34PB →,∴14PC →-14P A →=34PB →-34PC →, 即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误; 由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( ) A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥α B .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c 答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误; 对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6,根据线面角的定义可得,l 与α所成角为π6,故B 正确;对于C ,因为u =-12v =-12(-2,-4,4)=(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos ∠EAF =________;EF =________.答案 25 62解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝⎛⎭⎫0,12,1,F ⎝⎛⎭⎫1,0,12, ∴AE →=⎝⎛⎭⎫0,12,1,AF →=⎝⎛⎭⎫1,0,12, EF →=⎝⎛⎭⎫1,-12,-12,cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25,∴cos ∠EAF =25,EF =|EF →|=12+⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1,解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______. 答案 ⎝⎛⎭⎫43,43,83解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23,此时OQ →=⎝⎛⎭⎫43,43,83.16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O , 则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, 所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 且平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1—→=(0,1,3), AA 1—→·BD →=0×(-23)+1×0+3×0=0, 所以BD →⊥AA 1—→,即BD ⊥AA 1. (2)解 假设在直线CC 1上存在点P , 使BP ∥平面DA 1C 1, 设CP →=λCC 1—→,P (x ,y ,z ), 则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0,又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎪⎨⎪⎧2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →, 即n 1·BP →=-3-3λ=0,解得λ=-1, 即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考试题分类考点空间直角坐标系空间向量及其运算
————————————————————————————————作者:————————————————————————————————日期:
考点37 空间直角坐标系、空间向量及其运算
一、解答题
1.(2012·北京高考理科·T16)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图
2. (1) 求证:A 1C ⊥平面BCDE ;
(2) 若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;
(3) 线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.
【解题指南】(1)利用线面垂直的判定定理证明;(2)(3)找出三个垂直关系,
建系,利用向量法求解.
【解析】(1)//,,DE BC AC BC DE AC ⊥∴⊥Q ,1,DE A D DE CD ∴⊥⊥,
111
,,A D CD D DE ACD DE AC =∴⊥∴⊥Q I 面
又11,,AC CD CD DE D AC BCDE ⊥=∴⊥Q I 面.
(2)由(1)可知,1,,CB CD AC 两两互相垂直,分别以它们为x 轴、y 轴、z 轴
建立空间直角坐标系,则1(0,0,23)A ,(0,1,3),(0,1,3),(1,2,0),M CM BE ==-u u u u r u u u r
1(3,0,23)A B =-u u u r ,设平面1A BE 的法向量为1111(,,)n x y z =u r
, 由
1111111203230n BE x y n A B x z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩u r u u u r u r u u u r ,令11x =,得113(1,,)22
n =u r ,
A
B C D E
C B E D
A
M 图图
设所求线面角为α,则113
22
sin
22
n CMα
⋅=+=⨯⨯
u r u u u u r

2
sin
2
α=

[0,]
2
π
α∈
Q
,4
π
α
∴=
.
(3)假设存在这样的点P,设点P的坐标为(m,0,0),04
m
≤≤3,
(0,2,0)
D,1(,0,23),
A P m
=-
u u u r
1
(0,2,23)
A D=-
u u u u r
,
设2222
(,,)
n x y z
=
u u r
为平面1A DP的法向量,由
2122
2122
230
2230
n A P mx z
n A D y z
⎧⋅=-=


⋅=-=
⎪⎩
u u r u u u r
u u r u u u u r

令23
z=,得2
6
(,3,3)
n
m
=
u u r

又11
A DP A BE
Q平面与平面垂直,
12
n n
∴⋅=
u r u u r6330
22
m
++=
,解得2
m=-(舍去).
所以不存在点P.
2.(2012·辽宁高考理科·T18)如图,直三棱柱///
ABC A B C
-,90
BAC
∠=o,/,
AB AC AA
λ
==点M,N分别为/A B和//
B C的中点.
(Ⅰ)证明:MN∥平面//
A ACC;
(Ⅱ)若二面角/A MN C
--为直二面角,求λ的值.
【解题指南】(1)由中点联想到中位线,据中位线和底边平行,解决问题;(2)建立空间直角坐标系,利用空间向量法求λ的值
【解析】(1)连接,
AB AC
'',由已知得M为AB'的中点,又N为B C''的中点,所以MN
为三角形AB C ''的中位线,故MN ∥AC ',又MN A ACC AC A ACC '''''⊄⊂平面,平面, 因此
(2)以A 为坐标原点O ,分别以直线,,AB AC AA '为x 轴,y 轴,z 轴,建立空间直角坐标系o xyz -,
设1AA '=,则AB AC λ==,从而(0,0,0),(,0,0),(0,,0),(0,0,1),(,0,1),(0,,1)A B C A B C λλλλ'''
所以1(,0,),(,,1)
2222M N λλλ
设(,,)m x y z =u r 是平面A MN '的一个法向量,由00m A M m MN ⎧'⋅=⎪⎨⋅=⎪⎩u r u u u u u r u
r u u u u r 得1022
1022x z y z λλ⎧-=⎪⎪⎨⎪+=⎪⎩
取1x =,则1,y z λ=-=,故
(1,1,)
m λ=-u r
设(,,)n a b c =r 是平面MNC 的一个法向量,由0
0n NC n MN ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u u r 得
取1b =-,则3,a c λ=-=,故
(3,1,)
n λ=--r
因为A MN C '--为直二面角,所以
0(1,1,)(3,1,)02
m n λλλ⋅=⇒-⋅--=⇒=u r r
.
3.(2012·天津高考理科·T17)
如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,∠BCA
==2PA AD ,=1AC .
D
C
B
A
P
(Ⅰ)证明PC 丄AD ;
(Ⅱ)求二面角A PC D
--的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为0
30,求AE的长. 【解题指南】建立空间直角坐标系应用空间向量证明垂直关系、求空间角较简捷.
【解析】方法一:如图,
以点A为原点建立空间直角坐标系,依题意得
A(0,0,0),D(2,0,0),C(0,1,0),B)0,
2
1
,
2
1
(-,P(0,0,2),
(Ⅰ)易得),
2-,1,0(
=
PC),
0,0,2(
=
AD于是0
.=
AD
PC,所以PC⊥AD.
(Ⅱ)PC(0,1,-2),
=
u u u r
CD(2,1,0),
=-
u u u r
设平面PCD的一个法向量n
r
),
,
,
(z
y
x
n=则
不妨令1
=
z,可得n
r
)1,2,1(
=,可取平面PAC的一个法向量m
u u r
)0,0,1(
=,于是
从而所以二面角A-PC-D的正弦值为
6
30
.
(Ⅲ)设点E的坐标为(0,0,h),其中]2,0[∈
h,由此得
11
(,,),
22
BE h
=-
u u u r
由(2,1,0),
CD=-
u u u r

2
BE CD3
cos BE,CD
|BE||CD|1020h
<>==
+
u u u r u u u r
u u u r u u u r g
u u u r u u u r
g

所以
2
3
30
cos
20
10
30
2
=
=
+h
,解得
10
10
=
h,即
10
10
=
AE.。

相关文档
最新文档