山东省临沂中考数学模拟试题12
2022——2023学年山东省临沂市中考数学专项提升仿真模拟试题(3月4月)含答案

2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共12小题,每小题3分,共36分)1.在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.82.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2D.(﹣2)﹣23.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1B.2C.3D.45.把没有等式组13264xx+≥⎧⎨--⎩>﹣中每个没有等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.6.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似,在象限内将线段AB缩短为原来的12后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)7.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.一组邻边相等的矩形是正方形C.对角线相等的四边形是矩形D.对角线互相垂直的四边形是菱形8.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为()A.2536πB.12536πC.2518πD.536π9.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4B.3C.2D.110.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1B.2C.3D.411.如图,∠AOB=60°,点P是∠AOB内的定点且,若点M、N分别是射线OA、OB 上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6D.312.如果规定[x]表示没有大于x的整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.二、填空题(本大题共8小题,每小题5分,满分40分)13.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.14.分式293xx-+的值为0,那么x的值为_____.15.在△ABC中,∠C=90°,若tan A=12,则si=______.16.若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是____.17.若关于x、y的二元方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,则关于a、b的二元方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是_______.18.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=223k kx-+(k为常数)的图象上,则y1、y2、y3的大小关系为________.19.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若∠EAF=45°,则AF的长为_____.20.观察下列各式:112⨯,123⨯,134⨯,……请利用你所发现的规律,,其结果为_______.三、解答题(本大题共6小题,满分74分)21.先化简,再求值:(xy2+x2y)×222222x x yx xy y x y÷++-,其中x=π0﹣(12)﹣1,y=2sin45°22.如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果没有考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时?高度是多少?24.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1.(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的函数的解析式;(3)在象限内,当以上所求函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.25.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.26.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共12小题,每小题3分,共36分)1.在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【正确答案】A【分析】直接根据勾股定理求解即可.【详解】解:∵在直角三角形中,勾为3,股为4,∴弦为,故选A.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2D.(﹣2)﹣2【正确答案】B【详解】分析:根据数轴上两点间距离的定义进行解答即可.详解:A、B两点之间的距离可表示为:2﹣(﹣2).故选B.点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【正确答案】D【分析】根据平行线的性质判断.【详解】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1B.2C.3D.4【正确答案】B【分析】根据同底数幂的除法法则:底数没有变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数没有变,指数相加;幂的乘方法则:底数没有变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.把没有等式组13264xx+≥⎧⎨--⎩>﹣中每个没有等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【正确答案】B【详解】分析:先求出没有等式组中各个没有等式的解集,再利用数轴确定没有等式组的解集.详解:解没有等式x+1≥3,得:x≥2,解没有等式﹣2x﹣6>﹣4,得:x<﹣1,将两没有等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元没有等式组,在数轴上表示没有等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,小小无解了.6.在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似,在象限内将线段AB缩短为原来的12后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)【正确答案】C【详解】分析:利用位似图形的性质,两图形的位似比进而得出C点坐标.详解:∵以原点O为位似,在象限内将线段AB缩小为原来的12后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选C.点睛:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.一组邻边相等的矩形是正方形C.对角线相等的四边形是矩形D.对角线互相垂直的四边形是菱形【正确答案】B【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、举反例,例如等腰梯形的一组对边平行,另一组对边相等,故本选项错误;B、一组邻边相等的矩形是正方形,故本选项正确,C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、根据菱形的判定,应是对角线互相垂直的平行四边形是菱形.故本选项错误;故选:B.本题主要考查平行四边形及的平行四边形的判定.正确的命题叫真命题,错误的命题叫做假命题.解题的关键是掌握判断命题的真假关键是要熟悉课本中的性质定理与判定定理.8.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧 AC的长为()A.2536πB.12536πC.2518πD.536π【正确答案】C【详解】分析:根据圆周角定理和弧长公式解答即可.详解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧 AC的长=50525= 18018ππ⨯,故选C.点睛:此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4B.3C.2D.1【正确答案】A【详解】解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1B.2C.3D.4【正确答案】B【详解】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11.如图,∠AOB=60°,点P是∠AOB内的定点且,若点M、N分别是射线OA、OB 上异于点O的动点,则△PMN周长的最小值是()A.362 B.332 C.6 D.3【正确答案】D【详解】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=2,32,∴CD=2CH=3.故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12.如果规定[x]表示没有大于x 的整数,例如[2.3]=2,那么函数y=x ﹣[x]的图象为()A. B.C. D.【正确答案】A【详解】分析:根据定义可将函数进行化简.详解:当﹣1≤x <0,[x]=﹣1,y=x+1当0≤x <1时,[x]=0,y=x当1≤x <2时,[x]=1,y=x ﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13.在△ABC中,若∠A=30°,∠B=50°,则∠C=__________.【正确答案】100°【详解】分析:直接利用三角形内角和定理进而得出答案.详解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为100°点睛:此题主要考查了三角形内角和定理,正确把握定义是解题关键.14.分式293xx-+的值为0,那么x的值为_____.【正确答案】3【分析】分式的值为0的条件是:(1)分子为0;(2)分母没有为0.两个条件需同时具备,缺一没有可.据此可以解答本题.【详解】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为3.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母没有等于零.注意:分母没有为零这个条件没有能少.15.在△ABC中,∠C=90°,若tan A=12,则si=______.【正确答案】5【分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【详解】如图所示:∵∠C =90°,tan A =12,∴设BC =x ,则AC =2x ,故AB ,则si=25AC AB ==.故答案为255.此题主要考查了锐角三角函数关系,正确表示各边长是解题的关键.16.若从﹣1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是____.【正确答案】13【详解】分析:列表得出所有等可能结果,从中找到点M 在第二象限的结果数,再根据概率公式计算可得.详解:列表如下:由表可知,共有6种等可能结果,其中点M 在第二象限的有2种结果,所以点M 在第二象限的概率是21=63..故答案为13.点睛:本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n ,再找出某发生的结果数m ,然后根据概率的定义计算出这个的概率=m n ..17.若关于x 、y 的二元方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______.【正确答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【分析】方法一:利用关于x 、y 的二元方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,再利用加减消元法即可求出a ,b .【详解】解:方法一,∵关于x 、y 的二元方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴将解12x y =⎧⎨=⎩代入方程组3526x my x ny -=⎧⎨+=⎩,可得m =﹣1,n =2,∴关于a 、b 的二元方程组()()()()3=526a b m a b a b n a b ⎧+--⎪⎨++-=⎪⎩,整理为:42546a b a +=⎧⎨=⎩,解得:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.方法二:∵关于x 、y 的二元方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,解12a b a b +=⎧⎨-=⎩,得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,故3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.本题考查二元方程组的求解,是整体考虑的数学思想的理解、运用在此题体现明显.18.若点A (﹣2,y 1)、B (﹣1,y 2)、C (1,y 3)都在反比例函数y=223k k x-+(k 为常数)的图象上,则y 1、y 2、y 3的大小关系为________.【正确答案】y 2<y 1<y 3【详解】分析:设t=k 2﹣2k+3,配方后可得出t >0,利用反比例函数图象上点的坐标特征可求出y 1、y 2、y 3的值,比较后即可得出结论.详解:设t=k 2﹣2k+3,∵k 2﹣2k+3=(k ﹣1)2+2>0,∴t >0.∵点A (﹣2,y 1)、B (﹣1,y 2)、C (1,y 3)都在反比例函数y=223k k x-+(k 为常数)的图象上,∴y 1=﹣2t ,y 2=﹣t ,y 3=t ,又∵﹣t <﹣2t <t ,∴y 2<y 1<y 3.故答案为y 2<y 1<y 3.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值是解题的关键.19.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若∠EAF=45°,则AF 的长为_____.【正确答案】3【详解】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AB=2,∴BE=1,∴=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,4x=-,解得:x=4 3∴4103 =故答案为410 3.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.观察下列各式:112⨯,123⨯,134⨯,……请利用你所发现的规律,,其结果为_______.【正确答案】9910【分析】直接根据已知数据变化规律进而将原式变形求出答案.【详解】由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110)=9+910=9910.故答案为9910.:此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21.先化简,再求值:(xy 2+x 2y )×222222x x y x xy y x y÷++-,其中x=π0﹣(12)﹣1,y=2sin45°1【详解】分析:原式利用除法法则变形,约分得到最简结果,把x 与y 的值代入计算即可求出值.详解:原式=xy (x+y )•22()()·()x x y x y x y x y+-+=x ﹣y ,当x=1﹣2=﹣1,﹣=时,原式﹣1.点睛:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.如图,AB 为⊙O 的直径,点C 在⊙O 上,AD ⊥CD 于点D ,且AC 平分∠DAB ,求证:(1)直线DC 是⊙O 的切线;(2)AC 2=2AD•AO .【正确答案】(1)证明见解析.(2)证明见解析.【详解】分析:(1)连接OC ,由OA=OC 、AC 平分∠DAB 知∠OAC=∠OCA=∠DAC ,据此知OC ∥AD ,根据AD ⊥DC 即可得证;(2)连接BC ,证△DAC ∽△CAB 即可得.详解:(1)如图,连接OC ,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴AC ADAB AC,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果没有考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时?高度是多少?【正确答案】(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)在飞行过程中,小球从飞出到落地所用时间是4s;(3)在飞行过程中,小球飞行高度第2s时,高度是20m.【详解】分析:(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.详解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时,高度是20m.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1.(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的函数的解析式;(3)在象限内,当以上所求函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.【正确答案】(1)33y x=;(2)y =-(3)0<x <3.【详解】分析:(1)由点C 的坐标求出菱形的边长,利用平移规律确定出B 的坐标,再利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出点A 坐标,利用待定系数法求出直线AB 的解析式即可;(3)联立函数与反比例函数解析式求出交点坐标,由图象确定出满足题意的x 的范围即可.详解:(1)由点C 的坐标为(1,得到OC=2,∵四边形OABC 是菱形,∴BC=OC=OA=2,BC ∥x 轴,∴B (3,设反比例函数解析式为y=kx,把B 坐标代入得:,则反比例函数解析式为y=33x;(2)设直线AB 的解析式为y=mx+n ,把A (2,0),B (3203m n m n +=⎧⎪⎨+=⎪⎩解得:m n ⎧=⎪⎨=-⎪⎩则直线AB 的解析式为x ﹣(3)联立得:33y xy ⎧=⎪⎨⎪=-⎩,解得:3x y =⎧⎪⎨=⎪⎩1x y =-⎧⎪⎨=-⎪⎩,即函数与反比例函数图象的交点坐标为(3)或(﹣1,﹣),则当函数的图象在反比例函数的图象下方时,自变量x 的取值范围为0<x <3.点睛:此题考查了待定系数法求反比例函数解析式与函数解析式,函数、反比例函数的性质,以及函数与反比例函数图象的交点,熟练掌握待定系数法是解本题的关键.25.已知,在△ABC 中,∠A =90°,AB =AC ,点D 为BC 的中点.(1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE ⊥DF ,求证:BE =AF ;(2)若点E 、F 分别为AB 、CA 延长线上的点,且DE ⊥DF ,那么BE =AF 吗?请利用图②说明理由.【正确答案】(1)证明见解析;(2)BE =AF ,证明见解析.【分析】(1)连接AD ,根据等腰三角形的性质可得出AD =BD 、∠EBD =∠FAD ,根据同角的余角相等可得出∠BDE =∠ADF ,由此即可证出△BDE ≌△ADF (ASA ),再根据全等三角形的性质即可证出BE =AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出∠EBD =∠FAD 、BD =AD ,根据同角的余角相等可得出∠BDE =∠ADF ,由此即可证出△EDB ≌△FDA (ASA ),再根据全等三角形的性质即可得出BE =AF .【详解】(1)证明:连接AD,如图①所示.∵∠A =90°,AB =AC ,∴△ABC 为等腰直角三角形,∠EBD =45°.∵点D 为BC 的中点,∴AD =12BC =BD ,∠FAD =45°.∵∠BDE +∠EDA =90°,∠EDA +∠ADF =90°,∴∠BDE =∠ADF .在△BDE 和△ADF 中,EBD FAD BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△ADF (ASA ),∴BE =AF ;(2)BE =AF ,证明如下:连接AD,如图②所示.∵∠ABD =∠BAD =45°,∴∠EBD =∠FAD =135°.∵∠EDB +∠BDF =90°,∠BDF +∠FDA =90°,∴∠EDB =∠FDA .在△EDB 和△FDA 中,EBD FAD BD ADEDB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB ≌△FDA (ASA ),∴BE =AF .本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA 证出△BDE ≌△ADF ;(2)根据全等三角形的判定定理ASA 证出△EDB ≌△FDA .26.如图①,在平面直角坐标系中,圆心为P (x ,y )的动圆点A (1,2)且与x 轴相切于点B .(1)当x=2时,求⊙P 的半径;(2)求y 关于x 的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P 的半径为1时,若⊙P 与以上(2)中所得函数图象相交于点C 、D ,其中交点D (m ,n )在点C 的右侧,请利用图②,求cos ∠APD的大小.【正确答案】(1)54;(2)图象为开口向上的抛物线,见解析;(3)点A;x 轴;2-【详解】分析:(1)由题意得到AP=PB ,求出y 的值,即为圆P 的半径;(2)利用两点间的距离公式,根据AP=PB ,确定出y 关于x 的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m 的值,进而确定出所求角的余弦值即可.详解:(1)由x=2,得到P (2,y ),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB=y,解得:y=5 4,则圆P的半径为5 4;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=14(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,交CD于E,设PE=a,则有EF=a+1,,∴D 坐标为(,a+1),代入抛物线解析式得:a+1=14(1﹣a 2)+1,解得:a=﹣a=﹣2,即PE=﹣在Rt △PED 中,﹣2,PD=1,则cos ∠APD=PEPD﹣2.点睛:此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(4月)第Ⅰ卷(选一选共42分)一、选一选(本大题共14小题,每小题3分,共42分)1.在﹣1,﹣2,0,1四个数中最小的数是()A.-1B.-2C.0D.12.如图,BC ∥DE ,若∠A=35°,∠C=24°,则∠E 等于()A.24°B.59°C.60°D.69°3.下面的计算正确的是()A.326a a a ⋅= B.55a a -= C.326()a a -= D.325)a a =(4.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.5.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.16 B.13 C.12D.236.抽样了某校30位女生所穿鞋子的尺码,数据如下(单位:码)码号3334353637人数761511这组数据的中位数和众数分别是()A.35,35B.35,37C.15,15D.15,357.如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.78.没有等式组103412xx x->⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为()A. B.C. D.9.如图,AB为⊙O的直径,点C在⊙O上,若50OCA∠=︒,4AB=,则 BC的长为()A.103π B.109π C.59π D.518π10.如图,平行四边形ABCD 中,∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF ,下列说法没有正确的是()A.四边形CEDF 是平行四边形B.当CE ⊥AD 时,四边形CEDF 是矩形C.当∠AEC =120°时,四边形CEDF 是菱形D.当AE =ED 时,四边形CEDF 是菱形11.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是()A.60048040x x =- B.60048040x x =+C.60048040x x =+ D.60048040x x =-12.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73B.81C.91D.10913.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x …-2-1012…y…4664…小聪观察上表,得出下面结论:①抛物线与x 轴的一个交点为(3,0);②函数2y ax bx c =++的值为6;③抛物线的对称轴是12x =;④在对称轴左侧,y 随x 增大而增大.其中正确有()A.①②B.①③C.①②③D.①③④14.(2017怀化)如图,,A B 两点在反比例函数1k y x=的图象上,,C D 两点在反比例函数2k y x=的图象上,AC y ⊥轴于点,E BD y ⊥轴于点,2,1,3F AC BD EF ===,则12k k -的值是()A.6B.4C.3D.2第Ⅱ卷(非选一选共78分)二、填空题(本大题共5个小题.每小题3分,共15分)15.分解因式:﹣2x 2y+16xy ﹣32y=_______.16.化简:212(1)11x x x --÷--17.在△ABC 中,∥DE BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF=6,则DE 的长为__________.18.如图,将边长为4的菱形ABCD 纸片折叠,使点A 恰好落在对角线的交点O 处,若折痕EF=2,则∠A=_______度.19.对于实数a ,b ,定义符号min {a ,b },其意义为:当a ≥b 时,min {a ,b }=b ;当a <b 时,min {a ,b }=a .例如:min ={2,﹣1}=﹣1,若关于x 的函数y =min {2x ﹣1,﹣x +3},则该函数的值为______.三、解答题(本大题共7小题,共63分)20.21()3022tan -+-︒-21.某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x人数A08x ≤<10B816x ≤<15C1624x ≤<25D2432x ≤<m E3240x ≤<n根据以上信息解决下列问题:(1)在统计表中,m =,n =_;并补全条形统计图.(2)扇形统计图中“C 组”所对应的圆心角的度数_;(3)若该校共有900名学生,如果听写正确的个数少于24个定为没有合格,请你估计这所学校本次比赛听写没有合格的学生人数.22.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A点的仰角60β=︒,求树高AB (结果保留根号).23.如图,以AB 边为直径的⊙O 点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .(1)试判断PD 与⊙O 的位置关系,并说明理由;(2)若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.24.某商店10台A 型和20台B 型电脑的利润为4000元,20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的利润;(2)该商店计划购进两种型号的电脑共100台,其中B 型电脑的进货量没有超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使总利润?(3)实际进货时,厂家对A 型电脑下调m(0<m <100)元,且限定商店至多购进A 型电脑70台,若商店保持同种电脑的售价没有变,请你根据以上信息及(2)中条件,设计出使这100台电脑总利润的进货.25.已知正方形ABCD 中,45MAN ∠= ,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、(DC 或它们的延长线)于点M 、N ,当MAN ∠绕点A 旋转到BM DN =时(如图1),则。
2021-2022学年山东省临沂临沭县联考中考数学模试卷含解析

2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( ) A .55×106B .0.55×108C .5.5×106D .5.5×1072.不等式组1351x x -<⎧⎨-≤⎩的解集是( )A .x >﹣1B .x≤2C .﹣1<x <2D .﹣1<x≤23.下列运算正确的是 ( ) A .22a +a=33a B .()32m =5mC .()222x y x y +=+D .63a a ÷=3a4.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( ) A .﹣5 B .﹣3 C .3 D .15.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( ) A .4B .6C .16πD .86.如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A .2.3B .2.4C .2.5D .2.67.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.78.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1 个B.2 个C.1 个D.4 个10.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a411.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O 逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.3π2B.πC.2πD.3π12.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4 C.(﹣2x)2=4x2D.(a+b)2=a2+b2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知一次函数y=ax+b和反比例函数kyx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________14.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.15.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①∠EAF=45°;②△AED≌△AEF;③△ABE∽△ACD;④BE1+DC1=DE1.其中正确的是______.(填序号)16.一个凸多边形的内角和与外角和相等,它是______边形.17.使分式的值为0,这时x=_____.18.分解因式:2a4﹣4a2+2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=63,求阴影区域的面积.(结果保留根号和π)20.(6分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.21.(6分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=2(1) (11)2(1)x xx xx x--<-⎧⎪-≤≤⎨⎪-+>⎩.(1)当t=12时,原函数为y=x+1,图象G与坐标轴的交点坐标是.(2)当t=32时,原函数为y=x2﹣2x①图象G所对应的函数值y随x的增大而减小时,x的取值范围是.②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.22.(8分)计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.23.(8分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?24.(10分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.B(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=624+,cos75°=624-,tan75°=23+)25.(10分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价.(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?26.(12分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.27.(12分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:x 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5y 17 10 8.3 8.2 8.7 9.3 10.8 11.6描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x=________时,y有最小值.由此,小强确定篱笆长至少为________米.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】试题解析:55000000=5.5×107,故选D .考点:科学记数法—表示较大的数 2、D 【解析】由﹣x <1得,∴x >﹣1,由3x ﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D3、D 【解析】根据整式的混合运算计算得到结果,即可作出判断. 【详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意, 故选D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 4、D【解析】【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m 、n 的值,代入计算可得.【详解】∵点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,∴1+m=3、1﹣n=2, 解得:m=2、n=﹣1, 所以m+n=2﹣1=1, 故选D .【点睛】本题考查了关于y 轴对称的点,熟练掌握关于y 轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.5、A 【解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π. 【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.6、B【解析】试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=12AC×BC=12AB×CD,∴AC×BC=AB×CD,即CD=AC BCAB⋅=345⨯=125,∴⊙C的半径为125,故选B.考点:圆的切线的性质;勾股定理.7、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.8、D【解析】试题分析:列表如下黑白1 白2黑(黑,黑)(白1,黑)(白2,黑)白1 (黑,白1)(白1,白1)(白2,白1)白2 (黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.9、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.10、C【解析】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选C.【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.11、A【解析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=903180π⨯=3π2,故选:A.【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.12、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣2<x<0或x>1【解析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.14、3 5【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.15、①②④【解析】①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定④正确【详解】由旋转,可知:∠CAD =∠BAF .∵∠BAC =90°,∠DAE =45°,∴∠CAD+∠BAE =45°,∴∠BAF+∠BAE =∠EAF =45°,结论①正确;②由旋转,可知:AD =AF在△AED 和△AEF 中,=45AD AF DAE EAF AE AE ===⎧⎪∠∠︒⎨⎪⎩∴△AED ≌△AEF (SAS ),结论②正确;③在△ABE ∽△ACD 中,只有AB =AC ,、∠ABE =∠ACD =45°两个条件,无法证出△ABE ∽△ACD ,结论③错误;④由旋转,可知:CD =BF ,∠ACD =∠ABF =45°,∴∠EBF =∠ABE +∠ABF =90°,∴BF 1+BE 1=EF 1.∵△AED ≌△AEF ,EF =DE ,又∵CD =BF ,∴BE 1+DC 1=DE 1,结论④正确.故答案为:①②④【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键16、四【解析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n 边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设边数为n ,根据题意,得(n-2)•180=360,解得n=4,则它是四边形.故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.17、1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法18、1(a+1)1(a﹣1)1.【解析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案为:1(a+1)1(a﹣1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析(2)32﹣6π【解析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴∠E =90°,∴∠CAD +∠EDA =90°,即∠ADO +∠EDA =90°,∴OD ⊥EF ,∴EF 为半圆O 的切线;(2)解:连接OC 与CD ,∵DA =DF ,∴∠BAD =∠F ,∴∠BAD =∠F =∠CAD ,又∵∠BAD +∠CAD +∠F =90°,∴∠F =30°,∠BAC =60°,∵OC =OA ,∴△AOC 为等边三角形,∴∠AOC =60°,∠COB =120°,∵OD ⊥EF ,∠F =30°,∴∠DOF =60°,在Rt △ODF 中,DF =,∴OD =DF •tan30°=6,在Rt △AED 中,DA =,∠CAD =30°,∴DE =DA •sin30°=EA =DA •cos30°=9,∵∠COD =180°﹣∠AOC ﹣∠DOF =60°,由CO =DO ,∴△COD 是等边三角形,∴∠OCD =60°,∴∠DCO =∠AOC =60°,∴CD ∥AB ,故S △ACD =S △COD ,∴S 阴影=S △AED ﹣S 扇形COD =2160962360π⨯⨯⨯6π.【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD =S△COD是解题关键.20、(3)证明见解析; (3)AB=3.【解析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=221312-=5,∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用. 考点:3.全等三角形的判定与性质;3.等腰直角三角形.21、(1)(2,0);(2)①﹣32≤x≤1或x≥32;②图象G所对应的函数有最大值为214;(3)①5151t-<<+;②n≤152-或n≥1+52.【解析】(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;(2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;(3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.【详解】(1)当x=12时,y=32,当x≥32时,翻折后函数的表达式为:y=﹣x+b,将点(12,32)坐标代入上式并解得:翻折后函数的表达式为:y=﹣x+2,当y=0时,x=2,即函数与x轴交点坐标为:(2,0);同理沿x=﹣32翻折后当12x≤-时函数的表达式为:y=﹣x,函数与x轴交点坐标为:(0,0),因为12x≤-所以舍去.故答案为:(2,0);(2)当t=32时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:点A、B分别是t=﹣32、t=32的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为﹣32、1、32,①函数值y随x的增大而减小时,﹣32≤x≤1或x≥32,故答案为:﹣32≤x≤1或x≥32;②函数在点A处取得最大值,x=﹣32,y=(﹣32)2﹣2×(﹣32)=214,答:图象G所对应的函数有最大值为214;(3)n=﹣1时,y=x2+2x﹣2,①参考(2)中的图象知:当y=2时,y=x2+2x﹣2=2,解得:x=﹣1±5若图象G与直线y=2恰好有两个交点,则t51且-t>51, 5151t<<;②函数的对称轴为:x=n,令y=x2﹣2nx+n2﹣3=0,则x=n±3当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,此时原函数与x 轴的交点坐标(n +5,0)在x =2的左侧,如下图所示,则函数在AB 段和点C 右侧,故:﹣2≤x ≤n ,即:在﹣2≤n 2﹣2≤x ≤n 2﹣1≤n ,解得:n 15- 当x =n 在y 轴右侧时,(n ≥0),同理可得:n 1+5 综上:n ≤152或n ≥52. 【点睛】在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G 与直线y =2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可. 22、26m +【解析】分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅--26m=+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.23、(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P(一男一女)=1220=35.24、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)62【解析】(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=12(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE 时,△DEC是等腰三角形;于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时.∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=12(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=12∠BAC=45°.②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),∴EC的最小值即为线段CM的长(垂线段最短),设E′N=CN=a,则AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴=4aa-,∴∴在Rt△CE′M中,∴CE【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.25、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解析】(1)根据等量关系:文学书数量﹣科普书数量=4本可以列出方程,解方程即可.(2)根据题意列出不等式解答即可.【详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:2002401.5x x-=4,解得:x=10,经检验:x=10是原方程的解,∴1.5x=15,答:文学书的单价为10元,则科普书的单价为15元.(2)设最多买科普书m本,可得:15m+10(56﹣m)≤696,解得:m≤27.2,∴最多买科普书27本.【点睛】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.26、(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到BP AB CD CP=,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP ; (2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.解:(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠DPC ,∴∠BAP=∠DPC ,∴△ABP ∽△PCD , ∴BP AB CD CP=, ∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA , ∴BA BP BC BA=. ∵AB=10,BC=12, ∴101210BP =, ∴BP=253. “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.27、见解析【解析】根据题意:一边为x 米,面积为4,则另一边为4x米,篱笆长为y =2(x 4x +)=2x 8x +,由x 4x +═)2+4可得当x =2,y 有最小值,则可求篱笆长.【详解】根据题意:一边为x 米,面积为4,则另一边为4x米,篱笆长为y =2(x 4x +)=2x 8x +∵x 4x +=)2+2=)2+4,∴x 4x +≥4,∴2x 8x+≥1,∴当x =2时,y 有最小值为1,由此小强确定篱笆长至少为1米.故答案为:y =2x 8x +,2,1. 【点睛】本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.。
山东省临沂市2022——2023学年中考数学专项突破仿真模拟卷(一模二模)含答案

山东省临沂市2022-2023学年中考数学专项突破仿真模拟卷(一模)一、选一选(本大题共12小题,每小题3分,共36分)1.3-的倒数是()A.3B.13 C.13- D.3-2.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥3.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C. 2.8×104D.0.28×1054.内角和为540°的多边形是()A. B. C. D.5.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160B.中位数为158C.众数为158D.方差为20.36.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°7.下列运算正确的是()A.(a﹣3)2=a2﹣9B.(12)﹣1=2 C.x+y=xy D.x6÷x2=x38.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为()A.B. C. D.9.九年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是()A.1010123x x =- B.1010202x x =-C.1010123x x =+ D.1010202x x=+10.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.31311.若关于x 的一元二次方程2210x x kb ++=-有两个没有相等的实数根,则函数y kx b =+的图象可能是()A. B.C. D.12.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为()A.92432 B.98132 C.82432 D.88132二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:x 2﹣4=__.14.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.15.若式子1x x有意义,则x 的取值范围是___.16.股市规定:股票每天的涨、跌幅均没有超过10%,即当涨了原价的10%后,便没有能再涨,叫做涨停;当跌了原价的10%后,便没有能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是_____.17.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,BE 与CD 相交于点G,且OE =OD ,则AP 的长为__________.18.如图,反比例函数y=32x的图象上,点A 是该图象象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角△ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP ,在点A 运动过程中,当BP 平分∠ABC 时,点A 的坐标为_____.三、(本大题共2小题,每小题满分12分,共12分)19.计算:(﹣1)2018﹣1﹣3tan30°.20.分式方程2322xx x+--=1的解为________.四.(本大题共2小题,每小题满分16分,共16分)21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.某校组织了初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚没有完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中随机抽出两张卡片,求抽到A,B两班的概率.五.(本大题满分8分)23.如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否某一个定点,如果是,请证明你的结论;如果没有是,请说明理由六.(本大题满分10分)24.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比次购买时提高5元,B品牌足球按次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用没有超过次花费的80%,且保证这次购买的B种品牌足球没有少于20个,则这次学校有哪几种购买?(3)请你求出学校在第二次购买中至多需要多少资金?七.(本大题满分10分)25.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.(1)求证:AE是⊙O的切线;(2)过点C 作CG⊥AD,垂足为F,与AB 交于点G,若AG•AB=36,ta=22,求DF 的值八.(本大题满分10分)26.如图,在平面直角坐标系中,抛物线2842(2)y mx mx m m =-++>与y 轴的交点为A ,与x 轴的交点分别为B (1x ,0),C (2x ,0),且214-=x x ,直线AD x ∥轴,在x 轴上有一动点E (t ,0)过点E 作平行于y 轴的直线l 与抛物线、直线AD 的交点分别为P 、Q .(1)求抛物线的解析式;(2)当0<t ≤8时,求∆APC (3)当t >2时,是否存在点P ,使以A 、P 、Q 为顶点的三角形与∆AOB 相似?若存在,求出此时t 的值;若没有存在,请说明理由.山东省临沂市2022-2023学年中考数学专项突破仿真模拟卷(一模)一、选一选(本大题共12小题,每小题3分,共36分)1.3-的倒数是()A.3 B.13C.13-D.3-【正确答案】C【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【正确答案】C【详解】分析:根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.详解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选C .点睛:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C. 2.8×104D.0.28×105【正确答案】C【详解】试题分析:28000=1.1×104.故选C .考点:科学记数法—表示较大的数.4.内角和为540°的多边形是()A. B. C. D.【正确答案】C【详解】设它是n 边形,根据题意得,(n ﹣2)•180°=540°,解得:n =5.故选:C .5.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160B.中位数为158C.众数为158D.方差为20.3【正确答案】D【详解】解:A .平均数为(158+160+154+158+170)÷5=160,正确,故本选项没有符合题意;B .按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项没有符合题意;C .数据158出现了2次,次数至多,故众数为158,正确,故本选项没有符合题意;D .这组数据的方差是S 2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D .点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度没有大.6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【正确答案】A【详解】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.考点:平行线的性质.7.下列运算正确的是()A.(a﹣3)2=a2﹣9B.(12)﹣1=2 C.x+y=xy D.x6÷x2=x3【正确答案】B【详解】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A.(a﹣3)2=a2﹣6a+9,故该选项错误;B.(12)﹣1=2,故该选项正确;C.x与y没有是同类项,没有能合并,故该选项错误;D.x6÷x2=x6-2=x4,故该选项错误.故选B.点睛:可没有是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.8.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为()A. B. C. D.【正确答案】A【详解】分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×3 2,即可推出详解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB•sin60°=1×32=32,∴BC=2BH=故选A.点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.9.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是()A.1010123x x=- B.1010202x x=-C.1010123x x=+ D.1010202x x=+【正确答案】C【详解】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.10.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613 B.513 C.413 D.313【正确答案】B【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【详解】解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P =;故选:B .本题考查了求概率的方法:先列表展示所有等可能的结果数n ,再找出某发生的结果数m ,然后根据概率的定义计算出这个的概率=m n.11.若关于x 的一元二次方程2210x x kb ++=-有两个没有相等的实数根,则函数y kx b =+的图象可能是()A. B.C. D.【正确答案】B【详解】∵方程2210x x kb ++=-有两个没有相等的实数根,∴()4410kb =-+ >,解得:0kb <,即k b 、异号,当00k b >,<时,函数y kx b =+的图象过一三四象限,当00k b <,>时,函数y kx b =+的图象过一二四象限,故选:B .12.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为()A .92432 B.98132 C.82432 D.88132【正确答案】A【详解】分析:连接OE 1,OD 1,OD 2,如图,根据正六边形的性质得∠E 1OD 1=60°,则△E 1OD 1为等边三角形,再根据切线的性质得OD 2⊥E 1D 1,于是可得OD 2=32E 1D 1=32×2,利用正六边形的边长等于它的半径得到正六边形A 2B 2C 2D 2E 2F 2的边长=32×2,同理可得正六边形A 3B 3C 3D 3E 3F 3的边长=(32)2×2,依此规律可得正六边形A 11B 11C 11D 11E 11F 11的边长=(32)10×2,然后化简即可.详解:连接OE 1,OD 1,OD 2,如图,∵六边形A 1B 1C 1D 1E 1F 1为正六边形,∴∠E 1OD 1=60°,∴△E 1OD 1为等边三角形,∵正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,∴OD 2⊥E 1D 1,∴OD 2=2E 1D 1=2×2,∴正六边形A2B2C2D2E2F2的边长=32×2,同理可得正六边形A3B3C3D3E3F3的边长=(2)2×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:x2﹣4=__.【正确答案】(x+2)(x-2)##(x-2)(x+2)【详解】解:由平方差公式ɑ2-b2=(ɑ+b)(ɑ-b)可得x2﹣4=(x+2)(x﹣2),故答案是:(x+2)(x﹣2).14.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.【正确答案】2【详解】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos ∠A=4×cos60°=4×12=2海里.故答案为2.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.15.若式子1x x有意义,则x 的取值范围是___.【正确答案】1x ≥-且0x ≠【详解】∵式子x在实数范围内有意义,∴x +1≥0,且x ≠0,解得:x ≥-1且x ≠0,故答案为x ≥-1且x ≠0.16.股市规定:股票每天的涨、跌幅均没有超过10%,即当涨了原价的10%后,便没有能再涨,叫做涨停;当跌了原价的10%后,便没有能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是_____.【正确答案】2(110%)(1)1x -+=.【分析】股票跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x ,每天相对于前就上涨到1+x ,由此列出方程解答即可.【详解】设这两天此股票股价的平均增长率为x ,由题意得(1﹣10%)(1+x )2=1.故(1﹣10%)(1+x )2=1.本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则两次变化后的数量关系为()21a x b ±=.17.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,BE 与CD 相交于点G,且OE =OD ,则AP 的长为__________.【正确答案】4.8【详解】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为4.8.18.如图,反比例函数y=32x的图象上,点A是该图象象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____.【详解】分析:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,则有△AOE ≌△OCF ,进而可得出AE=OF 、OE=CF,根据角平分线的性质可得出CP CF BC AP AE AB ===,设点A 的坐标为(a ,32a )(a >0),由22OE AE =可求出a 值,进而得到点A 的坐标.详解:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F,如图所示.∵△ABC 为等腰直角三角形,∴OA=OC ,OC ⊥AB ,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF .在△AOE 和△OCF 中,===AEO OFC AOE OCF OA OC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AOE ≌△OCF (AAS ),∴AE=OF ,OE=CF .∵BP 平分∠ABC ,∴CP CF BC AP AE AB ===∴2OE AE =.设点A 的坐标为(a ,32a ),2232a=,解得:,∴32a ,∴点A ,).点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键.三、(本大题共2小题,每小题满分12分,共12分)19.计算:(﹣1)2018﹣1﹣3tan30°.【正确答案】﹣6+【详解】分析:直接利用二次根式的性质以及值的性质和角的三角函数值分别化简求出答案.详解:原式=1﹣1+3×33=﹣﹣=﹣点睛:此题主要考查了实数运算,正确化简各数是解题关键.20.分式方程2322x x x+--=1的解为________.【正确答案】X=1;【详解】分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:2−3x =x −2,解得:x =1,经检验x =1是分式方程的解.故选A.点睛:本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定要注意验根.四.(本大题共2小题,每小题满分16分,共16分)21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (﹣1,3),B (﹣4,0),C (0,0)(1)画出将△ABC 向上平移1个单位长度,再向右平移5个单位长度后得到的△A 1B 1C 1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【正确答案】(1)作图见解析;(2)作图见解析;(3)P(165,0).【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【详解】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=16 5,∴P点的坐标(165,0).考点:平移变换;旋转变换;轴对称-最短路线问题.22.某校组织了初三科技小制作比赛,有A.B.C,D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚没有完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中随机抽出两张卡片,求抽到A,B两班的概率.【正确答案】(1)25件;(2)见解析;(3)B班的获奖率高;(4)1 6.【详解】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率.试题解析:(1)由题意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%,∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),如图所示:;(3)A班的获奖率为:1410035%⨯×=40%,B班的获奖率为:1125×=44%,C班的获奖率为:1020=50%;D班的获奖率为:810020%⨯×=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中随机抽出两张卡片,求抽到A、B两班的概率为:212=16.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.五.(本大题满分8分)23.如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否某一个定点,如果是,请证明你的结论;如果没有是,请说明理由【正确答案】(1)见解析;(2)直线EG一个定点,这个定点为正方形的(AC、BD的交点);理由见解析.【详解】分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH 证出AH=CF,由SAS证明△AEH≌△CGF即可求解;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的.详解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=CF,在△AEH与△CGF中,AH=CF,∠A=∠C,AE=CG,∴△AEH≌△CGF(SAS);(2)直线EG一个定点,这个定点为正方形的(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∠OAE=∠OCG,∠AOE=∠COG,AE=CG,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的.点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.六.(本大题满分10分)24.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.(1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元.(2)学校为了响应习“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共42个,正好赶上商场对商品价格进行调整,A 品牌足球售价比次购买时提高5元,B 品牌足球按次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用没有超过次花费的80%,且保证这次购买的B 种品牌足球没有少于20个,则这次学校有哪几种购买?(3)请你求出学校在第二次购买中至多需要多少资金?【正确答案】(1)购买一个A 种品牌的足球需要50元,购买一个B 种品牌的足球需要80元;(2)有三种,具体见解析;(3)3150元.【分析】(1)、设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元,根据题意列出二元方程组,从而求出x 和y 的值得出答案;(2)、设第二次购买A 种足球m 个,则购买B 种足球(42-m )个,根据题意列出没有等式组求出m 的取值范围,从而得出答案;(3)、设学校在第二次购买中的费用为w 元,再列出函数的关系式,然后利用函数性质得出答案.【详解】解:(1)设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元2030460045x y y x +=⎧⎨=⎩,解得80100x y =⎧⎨=⎩答:购买一个A 种品牌、一个B 种品牌的足球分别需要80元,100元;(2)设第二次购买A 种足球m 个,则购买B 种足球(50-m )个(805)1000.9(42)460080%4220m m m ++⨯-≤⨯⎧⎨-≥⎩,解得:2022m ≤≤∵m 为整数∴20,21,22m =,所以一共有三种:种:购买A 种足球20个,则购买B 种足球22个,第二种:购买A 种足球21个,则购买B 种足球21个,第三种:购买A 种足球22个,则购买B 种足球20个.(3)设学校在第二次购买中的费用为w 元,则()85904253780,w m m m =+-=-+5k =- <0,则w 随m 的增大而减小,所以当20m =时,w 为:52037803680-⨯+=元;答:学校在第二次购买中至多需要3680元.七.(本大题满分10分)25.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,BC 的延长线于过点A 的直线相交于点E,且∠B=∠EAC .(1)求证:AE是⊙O的切线;(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,ta=22,求DF的值【正确答案】(1)见解析;(2)【详解】分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;(2)由△ACD∽△CFD,可得DF CDCD AD=,想办法求出CD、AD即可解决问题.详解:(1)证明:连接CD.∵∠B=∠D,AD是直径,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切线.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴AC AB AG AC=,∴AC2=AG•AB=36,∴AC=6,∵tanD=ta=2 2,在Rt△ACD中,tanD=AC CD=22∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴DF CDCD AD=,∴,点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.八.(本大题满分10分)26.如图,在平面直角坐标系中,抛物线2842(2)y mx mx m m=-++>与y轴的交点为A,与x轴的交点分别为B(1x,0),C(2x,0),且214-=x x,直线AD x∥轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求∆APC面积的值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与∆AOB相似?若存在,求出此时t的值;若没有存在,请说明理由.【正确答案】(1)21234y x x=-+;(2)12;(3)t=163或t=323或t=14.【分析】(1)首先利用根与系数的关系得出:128x x+=,条件214-=x x求出12,x x的值,然后把点B,C的坐标代入解析式计算即可;(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的值;(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.【详解】解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由122184x xx x+=⎧⎨-=⎩解得:1226x x =⎧⎨=⎩∴B (2,0)、C (6,0)则4m ﹣16m +4m +2=0,解得:m =14∴该抛物线解析式为:y =21234x x -+;.(2)可求得A (0,3)设直线AC 的解析式为:y =kx +b ,∵360b k b =⎧⎨+=⎩∴123k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为:y =﹣12x +3,要构成∆APC ,显然t ≠6,分两种情况讨论:当0<t <6时,设直线l 与AC 交点为F ,则:F (t ,﹣132t +),∵P (t ,21234t t -+),∴PF =21342t t -+,∴S △APC =S △APF +S △CPF =22113113()()(6)242242t t t t t t -+⋅+-+⋅-=2113()6242t t -+⋅=2327(3)44t --+,此时值为:274,②当6≤t ≤8时,设直线l 与AC 交点为M ,则:M (t ,﹣132t +),∵P (t ,21234t t -+),∴PM =21342t t -,∴S △APC =S △APF ﹣S △CPF =22113113()()(6)242242t t t t t t ----=23942t t -=2327(3)44t --,当t =8时,取值,值为:12,综上可知,当0<t ≤8时,∆APC 面积的值为12;(3)如图,连接AB ,则∆AOB 中,∠AOB =90°,AO =3,BO =2,Q (t ,3),P (t ,21234t t -+),①当2<t ≤6时,AQ =t ,PQ =2124t t -+,若:AOB AQP ∆∆ ,则:AO BOAQ PQ=,即:232124t t t =-+,∴t =0(舍),或t =163,若△AOB ∽△PQA ,则:AO OBPQ AO=,即:232124t t t =-+,∴t =0(舍)或t =2(舍),②当t >6时,AQ '=t ,2124PQ t t '=-若:△AOB ∽△AQP ,则:AO BOAQ P Q =''',即:232124t t t =-,∴t =0(舍),或t =323,若△AOB ∽△PQA ,则:AO BOP Q AQ =''',即:233124t t t =-,∴t =0(舍)或t =14,∴t =163或t =323或t=14本题是二次函数综合题目,主要考查了待定系数法求二次函数解析式、三角形的面积公式、相似三角形的性质,利用分类讨论的思想和方程思想求解是解决本题的关键.山东省临沂市2022-2023学年中考数学专项突破仿真模拟卷(二模)一、单选题1.16的平方根是()A.6B.-4C.±4D.±82.下列图形中,既是轴对称图形又是对称图形的是()A. B. C. D.3.下列运算正确的是()A.4a 2-2a 2=2B.a 2•a 4=a 3C.(a-b)2=a 2-b 2D.(a+b)2=a 2+2ab+b24.一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5B.6C.7D.85.没有等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为()A .1k < B.1k ³ C.1k > D.1k <6.如图,在直角坐标系中,四边形OABC 为菱形,对角线OB 、AC 相交于D 点,已知A 点的坐标为(10,0),双曲线y=kx(x >0)D 点,交BC 的延长线于E 点,且OB •AC =120(OB >AC )y =7x(x >0);②E 点的坐标是(4,6);③sin ∠COA =35;④EC =72;⑤AC +OB .其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题7.有意义,则实数x 的取值范围是____________.8.十八大以来,全国有6800多万人口摆脱贫困,以的带领中国人民创造了人类减贫史上的奇迹.把6800万用科学记数法表示为__________.9.分解因式:m 3﹣9m =_____.10.若一组数据3,4,x ,6,8的平均数为5,则这组数据的方差是__________.11.如图,△ABC 中,点D 在BA 的延长线上,DE ∥BC ,如果∠BAC =80°,∠C =33°,那么∠BDE 的度数是__________.12.已知实数a 在数轴上的位置如图,则化简|1﹣的结果为_____.13.如图,A 、B 、C 是⊙O 上的三点,且四边形OABC 是菱形.若点D 是圆上异于A 、B 、C 的另一点,则∠ADC 的度数是___________________.14.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套.已知2套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需__________元.15.如图,二次函数2y ax bx c =++的图象与y 轴正半轴相交,其顶点坐标为(12,1),下列结论:①abc >0;②a =b ;③a =4c ﹣4;④方程21ax bx c ++=有两个相等的实数根,其中正确的结论是______.(只填序号即可).16.如图,在平面直角坐标系中,A (4,0)、B (0,-3),以点B 为圆心、2为半径的⊙B 上有一动点P .连接AP ,若点C 为AP 的中点,连接OC ,则OC 的最小值为__________.三、解答题17.-π)0+cos 45°+(12)-2.。
2022年山东省临沂市兰山区中考数学一模试题及答案解析

2022年山东省临沂市兰山区中考数学一模试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若x的相反数是3,则x的绝对值是( )A. −3B. −13C. 3D. ±32. 下列数学符号中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 根据琅琊新闻网报道,截至2021年6月17日24时,临沂市累计接种新冠病毒疫苗2085.8万剂次,将“2085.8万”用科学记数法表示为( )A. 0.20858×108B. 2.0858×108C. 2.0858×104D. 2.0858×1074. 已知9m=2,27n=3,则32m+3n的值为( )A. 1B. 5C. 6D. 125. 分式方程xx−1−1=3(x−1)(x+2)的解为( )A. x=1B. x=−1C. 无解D. x=−26. 如图AB是圆O的直径点E、C在圆O上,点A是弧EC的中点,过点A作圆O的切线,交BC的延长线于点D,连接EC,若∠ADB=60.5°,∠ACE的度数为( )A. 29.5°B. 31.5°C. 58.5°D. 63°7. 临沂一体彩销售中心今年开业,一月份总销售额12000元,三月份销售额为14520元,且从一月份到三月份,每月销售额的平均增长率相同,则每月销售额的平均增长率为( )A. 8%B. 9%C. 10%D. 11%8. 已知甲乙两队员射击的成绩如图,设甲乙两队员射击成绩的方差分别为S甲 2、S乙 2,则S 甲 2、S乙 2的大小关系为( )A. S甲 2>S乙 2B. S甲 2<S乙 2C. S甲 2=S乙 2D. 不能确定9. 已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是( )A. 40πB. 24πC. 20πD. 12π10. 如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3√5米,坡顶有旗杆BC,旗杆顶端B 点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为( )A. 5米B. 6米C. 8米D. (3+√5)米11. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=−1.下列结论中,2正确的是( )A. abc>0B. a+b=0C. 2b+c>0D. 4a+c<2b12. 如图,正方形ABCD的边长为4,点E是边BC上一点,且BE=3,以点A为圆心,3为半径的圆分别交AB、AD于点F、G,DF与AE交于点H,并与圆A交于点K,连接HG、CH,给出下列4个结论,其中正确的结论有( )①H是FK的中点②S△AHG:S△DHC=9:16③△HGD≌△HEC④DK=75A. ①③④B. ①②③C. ②③D. ①②④二、填空题(本大题共4小题,共16.0分)13. 在实数−2,π,−√25,223,3.14,无理数有______个.14. 点(α,β)在反比例函y=kx的图象上,其中α,β是方程x2−2x−8=0的两根,则k=______;若点A(−1,y1),B(−14,y2),C(1,y3)在反比例函数y=kx的图象上,则y1,y2,y3的大小关系是______.15. 如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为______cm2.(结果保留π)16. 如图,在Rt△ABC中,AB⊥AC,AB=AC=6,点D在AC上,且AD=2,点E是AB上的动点,连接DE,点F、G分别是BC和DE的中点,连接AG,FG,当AG=FG时,线段AE长为______.三、解答题(本大题共7小题,共68.0分。
山东省临沂市罗庄区、河东区、高新区三区2024届中考数学适应性模拟试题含解析

山东省临沂市罗庄区、河东区、高新区三区2024年中考数学适应性模拟试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据统计, 2015年广州地铁日均客运量均为6590 000人次,将6590 000用科学记数法表示为( )A .46.5910⨯B .465910⨯C .565.910⨯D .66.5910⨯2.下列计算正确的是( )A .﹣5x ﹣2x=﹣3xB .(a+3)2=a 2+9C .(﹣a 3)2=a 5D .a 2p ÷a ﹣p =a 3p3.已知数a 、b 、c 在数轴上的位置如图所示,化简|a +b |﹣|c ﹣b |的结果是( )A .a +bB .﹣a ﹣cC .a +cD .a +2b ﹣c4.如图,直角坐标平面内有一点(2,4)P ,那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12C .55 D .55.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定6.2(2)-的相反数是( )A .2B .﹣2C .4D .﹣27.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .8.如图是某几何体的三视图,下列判断正确的是( )A .几何体是圆柱体,高为2B .几何体是圆锥体,高为2C .几何体是圆柱体,半径为2D .几何体是圆锥体,直径为29.二次函数y=ax 2+bx+c(a≠0)的图象如图,a ,b ,c 的取值范围( )A .a<0,b<0,c<0B .a<0,b>0,c<0C .a>0,b>0,c<0D .a>0,b<0,c<010.如图,A (4,0),B (1,3),以OA 、OB 为边作□OACB ,反比例函数k y x=(k ≠0)的图象经过点C .则下列结论不正确的是( )A .□OACB 的面积为12B .若y <3,则x >5C .将□OACB 向上平移12个单位长度,点B 落在反比例函数的图象上.D .将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上.11.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥12.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算(7+3)(73-)的结果等于_____.14.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD 的面积为_____.15.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx=,则k值为_____.17.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.18.已知a1=32,a2=55,a3=710,a4=917,a5=1126,…,则a n=_____.(n为正整数).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.20.(6分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.21.(6分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.求反比例函数的解析式;若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.23.(8分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.24.(10分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.25.(10分)如图,已知▱ABCD.作∠B的平分线交AD于E点。
临沂市中考数学模拟精品试题附答案

临沂市中考数学模拟精品试题附答案一、选择题1. 某班级中有男生和女生,男生人数是女生人数的4倍,如果将班级中男生人数和女生人数都减少1,那么男生人数将是女生人数的5倍。
求该班级男生和女生的总人数。
A. 28B. 35C. 42D. 562. 一个长方体的外表面积是48平方厘米,体积是20立方厘米。
则该长方体的体对角线的长度是多少厘米?A. 4B. 20C. 24D. 323. 一批产品运往目的地,开始时车上有产品555箱,经过每一个分销中心,产品数量减少的百分之十。
经过5个分销中心后,剩余产品317.52箱。
请问运往目的地的产品数量为多少?A. 800B. 900C. 1000D. 12004. 若正方形的面积是121平方厘米,那么这个正方形的对角线长是多少厘米?A. 11B. 11√2C. 22D. 22√25. 一根长方形的钢筋长70厘米,钢筋上有两个标记,分别距离钢筋一端15厘米和45厘米,这两个标记的所在位置之间距离是多少厘米?A. 20B. 25C. 30D. 60二、填空题6. 有8个正整数,这8个数的和是180,平均数是22.5,有6个数都是奇数,另外两个数的平均数是几?答案:357. 某物业小区的绿地面积占总面积的10%,道路面积占总面积的30%,楼房面积占总面积的40%,停车场占总面积的20%。
若停车场的面积是400平方米,则该小区总面积是多少平方米?答案:20008. 已知函数 f(x)=3x^3-10x^2+5x-7,求 f(2) 的值。
答案:39. 小明的年龄是小芳的3/2倍,今年小明的年龄是小芳的3倍减15岁,那么小明今年多大?答案:3010. 若 a:b=3:4,b:c=5:7,则 a:b:c 的比是多少?答案:15:20:28三、解答题11. 一组数据为:12,15,x,19,25,30。
(1)数据的平均数是多少?(2)若这组数据的中位数等于20,求 x 的值。
(1)数据的平均数是:(12 + 15 + x + 19 + 25 + 30)/6 = 20 + x/6 = 20将等式两边同时乘以6得:6 * 20 = 120则 x = 120 - 6 * 20 = 120 - 120 = 0(2)若中位数等于20,则有:x = 2012. 已知一架飞机始终以恒定的速度前进,从最初的位置出发,4小时后到达A地,再飞行2小时后到达B地。
2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(一模二模)含解析

2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(一模)一.选一选:(每小题4分,共48分)1. sin60°=( )A.C. 1122. 在下列四个标志中,是轴对称图形的是( )A. B. C. D.3. 下列方程中,是一元二次方程的是( )A. 2x ﹣y =3B. x 2+=2C. x 2+1=x 2﹣1D. x (x ﹣1)1x =04. 已知一组数据,,,,的平均数是2,方差是,那么另一组数据,1x 2x 3x 4x 5x 13132x -,,,,的平均数和方差分别是 .232x -332x -432x -532x -()A. B. C. D. 12,32,124,34,35. 的值在( )2-A. 0到l 之间B. 1到2之间C. 2到3之间D. 3到4之间6. 函数中,x 的取值范围是( )y =A. x ≠0B. x >﹣2C. x <﹣2D. x ≠﹣27.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A. B. C. 3D. 152154838. 若,则的正确结果是( )230y +-=x y -A. -1B. 1C. -5D. 59. 如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交ABCD 60DAB ∠=︒D DF 于点,交于点,则图中阴影部分的面积是( )AD E CD G A. B. C.D. 183π-9π-92π-3π-10. 如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A. 20B. 27C. 35D. 4011. 如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1AB 的高度约为(到0.1米,参考数据:) ()2.45≈≈≈A. 30.6米 B. 32.1 米 C. 37.9米 D. 39.4米12. 如果关于x 的分式方程有负分数解,且关于x 的没有等式组1311a x x x --=++的解集为x <-2,那么符合条件的所有整数a 的积是 ( )2()4,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩A. -3B. 0C. 3D. 9二.填 空 题:(每小题4分,共24分)13. 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.=________20-11-3-2014-4+6⨯()()15. 如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC=6,BC :AC=1:2,则AB 的长为_____.16. 为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.17. 如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (),D20,53-是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么k 的值是_______18. 如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略没有计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.三.解答题:(每小题8分,共16分)19. 已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.20. 数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚没有完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.四.解 答 题(每小题10分,共50分)21. (1)(a b )2 a (a 2b )+(2a+b )(2a b )(2)(m 1 ).81m +2269m m m m -++22. 如图,在平面直角坐标系中,O 为原点,直线AB 分别与x 轴、y 轴交于B 和A ,与反比例函数的图象交于C 、D ,CE ⊥x 轴于点E ,tan ∠ABO=,OB=4,OE=2.12(1)求直线AB 和反比例函数的解析式;(2)求△OCD 的面积.23. “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发,这样,从重庆到上海的实际运行时间将增加m%小时,求m 的值.10924. 有一个n 位自然数能被x 0整除,依次轮换个位数字得到的新数能被...abcd gh bcd...gha x 0+1整除,再依次轮换个位数字得到的新数能被x 0+2整除,按此规律轮换后,cd...ghab 能被x 0+3整除,…,能被x 0+n﹣1整除,则称这个n 位数是xd...ghabc ...habc g a ...bcd gh的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.abc abc 25. 已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2.(1)若CE=1,求BC 的长;(2)求证:AM=DF+ME .五.解 答 题(每小题12分)26. 如图1,已知抛物线2x+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,连接CD ,过点D 作DH ⊥x 轴于点H ,过点A 作AE ⊥AC 交DH 的延长线于点E .(1)求线段DE 的长度;(2)如图2,试在线段AE 上找一点F ,在线段DE 上找一点P ,且点M 为直线PF 上方抛物线上的一点,求当△CPF 的周长最小时,△MPF 面积的值是多少;(3)在(2)问的条件下,将得到的△CFP 沿直线AE 平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x 轴交于点K ,则是否存在这样的点K ,使得△F′F″K 为等腰三角形?若存在求出OK 的值;若没有存在,说明理由.2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(一模)一.选一选:(每小题4分,共48分)1. sin60°=( )A.C. 112【正确答案】D【详解】根据三角函数值即可得sin,故选D.2. 在下列四个标志中,是轴对称图形的是( )A.B. C. D.【正确答案】A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.是轴对称图形,故此选项正确;A 没有是轴对称图形,故此选项错误;B 没有是轴对称图形,故此选项错误;C 没有是轴对称图形,故此选项错误.D 故选.A 本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 下列方程中,是一元二次方程的是( )A. 2x ﹣y =3B. x 2+=2C. x 2+1=x 2﹣1D. x (x ﹣1)1x =0【正确答案】D【详解】解:因为2x ﹣y =3中含有两个未知数,所以2x ﹣y =3没有是一元二次方程;A.因为x 2+=2没有是整式方程,所以x 2+=2没有是一元二次方程;B.1x 1x C.因为x 2+1=x 2﹣1没有二次项,所以x 2+1=x 2﹣1没有是一元二次方程;D.由x (x ﹣1)=0得,是一元二次方程,20x x -=故选:D.本题考查一元二次方程需要满足三个条件:含有一个未知数,未知数的次数是2,()1()2整式方程.()34. 已知一组数据,,,,的平均数是2,方差是,那么另一组数据,1x 2x 3x 4x 5x 13132x -,,,,的平均数和方差分别是 .232x -332x -432x -532x -()A. B. C. D. 12,32,124,34,3【正确答案】D【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x 1,x 2,x 3,x 4,x 5的平均数是2,∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是3×2-2=4;∵数据x 1,x 2,x 3,x 4,x 5的方差为,13∴数据3x 1,3x 2,3x 3,3x 4,3x 5的方差是×32=3,13∴数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的方差是3,故选D .本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差没有变,即数据的波动情况没有变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.5. 的值在( )2-A. 0到l 之间 B. 1到2之间C. 2到3之间D. 3到4之间【正确答案】B【详解】∵9<11<16,∴,34<<∴122<-<故选B.6. 函数中,x的取值范围是( )y =A. x ≠0B. x >﹣2C. x <﹣2D. x ≠﹣2【正确答案】B【详解】要使有意义,y =所以x+2≥0且x+2≠0,解得x >-2.故选B.7. 如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为()A. B. C. 3D. 15215483【正确答案】A【详解】∵∠AED=∠B ,∠A=∠A ∴△ADE ∽△ACB∴,AE DEAB BC =∵DE=6,AB=10,AE=8,∴,8610BC =解得BC =.152故选A.8. 若,则的正确结果是()230y +-=x y -A. -1B. 1C. -5D. 5【正确答案】A【分析】≥0,≥0,根据非负数的性质列方程求x ,y .23y -【详解】因为≥0,≥0,所以x -2=0,3-y =0,解得x =2,y =3.23y -所以x -y =2-3=-1.故选:A .初中阶段内的非负数有:值;偶数次方;算术平方根,非负数的性质是:如果几个非负数的和为0,那么这几个非负数都等于0,此时可得方程(组),解方程(组)即可求得未知数的值.9. 如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交ABCD 60DAB ∠=︒D DF于点,交于点,则图中阴影部分的面积是( )AD E CDG A. B. C.D. 183π-9π-92π-3π-【正确答案】B【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴,∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积9π.故选B .本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A. 20B. 27C. 35D. 40【正确答案】B【详解】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=个,(3)2n n +则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.11. 如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1AB 的高度约为(到0.1米,参考数据:) ( )2.45≈≈≈A. 30.6米B. 32.1 米C. 37.9米D. 39.4米【正确答案】D【分析】延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG(米),即可得出大楼AB的高度.【详解】解:延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1∴BH:CH=1设BH=x米,则CH x米,在Rt△BCH中,BC=12米,由勾股定理得:x2+)2=122,解得:x=6,∴BH=6米,CH∴BG=GH-BH=15-6=9(米),EG=DH=CH+CD(米),∵∠α=45°,∴∠EAG =90°-45°=45°,∴△AEG 是等腰直角三角形,∴AG =EG+20(米),∴AB =AG +BG+20+9=()≈39.4米.故选:D本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH ,得出EG 是解决问题的关键.12. 如果关于x 的分式方程有负分数解,且关于x 的没有等式组1311a xx x --=++的解集为x <-2,那么符合条件的所有整数a 的积是 ( )2()4,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩A. -3B. 0C. 3D. 9【正确答案】D【详解】解:,2()43412a x x x x ①②-≥--⎧⎪⎨+<+⎪⎩由①得:x ≤2a +4,由②得:x <﹣2,由没有等式组的解集为x < 2,得到2a +4≥ 2,即a ≥ 3,分式方程去分母得:a 3x 3=1 x ,把a = 3代入整式方程得:﹣3x 6=1 x ,即,符合题意;72x =-把a = 2代入整式方程得:﹣3x 5=1 x ,即x = 3,没有合题意;把a = 1代入整式方程得:﹣3x 4=1 x ,即,符合题意;52x =-把a =0代入整式方程得:﹣3x 3=1 x ,即x = 2,没有合题意;把a =1代入整式方程得:﹣3x 2=1 x ,即,符合题意;32x =-把a =2代入整式方程得:﹣3x 1=1 x ,即x =1,没有合题意;把a =3代入整式方程得:﹣3x =1 x ,即,符合题意;12x =-把a =4代入整式方程得:﹣3x +1=1 x ,即x =0,没有合题意,∴符合条件的整数a 取值为﹣3; 1;1;3,之积为9.故选:D .二.填 空 题:(每小题4分,共24分)13. 废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.【正确答案】3×104【分析】【详解】解:因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:600×50=30 000,用科学记数法表示为3×104立方米.故答案为3×104.=________20-11-3-2014-4+6⨯()()【正确答案】1320-11-3-2014-4+6⨯()()=2+9-4+6=13.故答案是:13.15. 如图,P 是⊙O 的直径AB 延长线上一点,PC 切⊙O 于点C ,PC=6,BC :AC=1:2,则AB 的长为_____.【正确答案】9【详解】PC 切⊙O 于点C ,则∠PCB=∠A ,∠P=∠P ,∴△PCB ∽△PAC ,∴,12BP BC PC AC ==∵BP=PC=3,12∴PC 2=PB•PA ,即36=3•PA ,∵PA=12∴AB=12-3=9.故答案是:9.16. 为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.【正确答案】17【分析】分别求出众数、中位数即可得解.【详解】解:∵8出现的次数至多,∴众数是8;∵这组数据按从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,∴中位数与众数之和为8+9=17,故17.本题考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17. 如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (),D20,53-是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么k 的值是_______【正确答案】-12【详解】过E 点作EF⊥OC 于F,如图所示:由条件可知:OE=OA=5,,532043EFBC tan BOC OFOC∠====所以EF=3,OF=4,则E 点坐标为(-4,3)设反比例函数的解析式是y =,kx 则有k=-4×3=-12.故答案是:-12.18. 如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略没有计)结果甲比乙晚回到家中,如图是两人之间的距离y 米与他们从学校出发的时间x 分钟的函数关系图,则甲的家和乙的家相距_____米.【正确答案】5200【详解】设甲到学校的距离为x 米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:7033900420y x y x ⨯=+⎧⎨⨯=⎩解得 240030x y =⎧⎨=⎩所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.本题考查函数的应用,二元方程组的应用等知识,解题的关键是读懂图象信息.三.解 答 题:(每小题8分,共16分)19. 已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE =BF .求证:EA ⊥AF .【正确答案】见解析【分析】根据条件可以得出AD =AB ,∠ABF =∠ADE =90°,从而可以得出△ABF ≌△ADE ,就可以得出∠FAB =∠EAD ,就可以得出结论.【详解】证明:∵四边形ABCD 是正方形,∴AB =AD ,∠ABC =∠D =∠BAD =90°,∴∠ABF =90°.∵在△BAF 和△DAE 中,,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩===∴△BAF ≌△DAE (SAS ),∴∠FAB =∠EAD ,∵∠EAD +∠BAE =90°,∴∠FAB +∠BAE =90°,∴∠FAE =90°,∴EA ⊥AF .20. 数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚没有完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.【正确答案】576名【详解】试题分析:根据统计图可以求得本次的人数和体重落在B 组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg 至53kg 的学生大约有多少名.试题解析:本次的学生有:32÷16%=200(名),体重在B 组的学生有:200 16 48 40 32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg 至53kg 的学生大约有:1800×=576(名),64200答:我校初三年级体重介于47kg 至53kg 的学生大约有576名.四.解 答 题(每小题10分,共50分)21. (1)(a b )2 a (a 2b )+(2a+b )(2a b )(2)(m 1 ).81m +2269m m m m -++【正确答案】(1) ;(2)24a 233m mm +-【详解】试题分析:(1)先去括号,再合并同类项即可;(2)先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(a b )2 a (a 2b )+(2a +b )(2a b )=a 2 2ab +b 2 a 2+2ab +4a 2 b 2=4a 2;(2).2286911m m m m m m -+--÷++(=2(1)(1)8(1)1(3)m m m m m m -+-+⨯+-= 229(1)1(3)m m m m m -+⨯+-=2(3)(3)(1)1(3)m m m m m m +-+⨯+-=.233m mm +-22. 如图,在平面直角坐标系中,O 为原点,直线AB 分别与x 轴、y 轴交于B 和A ,与反比例函数的图象交于C 、D ,CE ⊥x 轴于点E ,tan ∠ABO=,OB=4,OE=2.12(1)求直线AB 和反比例函数的解析式;(2)求△OCD 的面积.【正确答案】(1),;(2)8.122y x =-+6y x =-【详解】试题分析:(1)先求出A 、B 、C 点坐标,用待定系数法求出直线AB 和反比例的函数解析式;(2)联立函数的解析式和反比例的函数解析式可得交点D 的坐标,从而根据三角形面积公式求解.试题解析:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE ⊥x 轴于点E ,tan ∠ABO==,AO CE BO BE =12∴OA=2,CE=3,∴点A 的坐标为(0,2)、点B 的坐标为C (4,0)、点C 的坐标为(﹣2,3),设直线AB 的解析式为,y kx b =+则,2{40b k b =+=解得:,1{22k b =-=故直线AB 的解析式为,122y x =-+设反比例函数的解析式为(),my x =0m ≠将点C 的坐标代入,得3=,∴m=﹣6.2m-∴该反比例函数的解析式为;6y x =-(2)联立反比例函数的解析式和直线AB 的解析式可得,6{122y x y x =-=-+可得交点D 的坐标为(6,﹣1),则△BOD 的面积=4×1÷2=2,△BOD 的面积=4×3÷2=6,故△OCD 的面积为2+6=8.考点:反比例函数与函数的交点问题.23. “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发,这样,从重庆到上海的实际运行时间将增加m%小时,求m 的值.109【正确答案】(1)1600千米;(2)620【详解】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可.109试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有:,()()8120816320x y x y ⎧+⎪⎨++⎪⎩==解得: .801600x y ⎧⎨⎩==答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1 m%)(8+m%)=1600,109解得:m 1=620,m 2=0(没有合题意舍去),答:m 的值为620.24. 有一个n 位自然数能被x 0整除,依次轮换个位数字得到的新数能被...abcd gh bcd...gha x 0+1整除,再依次轮换个位数字得到的新数能被x 0+2整除,按此规律轮换后,cd...ghab 能被x 0+3整除,…,能被x 0+n﹣1整除,则称这个n 位数是x 0d...ghabc ...habc g a ...bcd gh 的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.abc abc 【正确答案】(1)见解析;(2) 201,207,255【详解】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,用能被3整除即可.试题解析:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字没有是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209没有能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴这个三位自然数可能是为251,255,257,259,而251,257,259没有能被3整除,∴这个三位自然数为255,即这个三位自然数为201,207,255.此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b的值.25. 已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【正确答案】(1)2;(2)见解析.【详解】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,图形GM=GF+MF即可得证.试题解析:(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)AM=DF+ME证明:如图,∵F 为边BC 的中点,∴BF=CF=BC ,12∴CF=CE ,在菱形ABCD 中,AC 平分∠BCD ,∴∠ACB=∠ACD ,在△CEM 和△CFM 中,∵,CE CF ACB ACDCM CM ⎧⎪∠∠⎨⎪⎩===∴△CEM ≌△CFM (SAS ),∴ME=MF ,延长AB 交DF 的延长线于点G ,∵AB ∥CD ,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G ,∴AM=MG ,在△CDF 和△BGF 中,∵2G BFG CFD BF CF ∠∠⎧⎪∠∠⎨⎪⎩===∴△CDF ≌△BGF (AAS ),∴GF=DF ,由图形可知,GM=GF+MF ,∴AM=DF+ME .五.解 答 题(每小题12分)26. 如图1,已知抛物线2x+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,连接CD ,过点D 作DH ⊥x 轴于点H ,过点A 作AE ⊥AC 交DH 的延长线于点E .(1)求线段DE 的长度;(2)如图2,试在线段AE 上找一点F ,在线段DE 上找一点P ,且点M 为直线PF 上方抛物线上的一点,求当△CPF 的周长最小时,△MPF 面积的值是多少;(3)在(2)问的条件下,将得到的△CFP 沿直线AE 平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x 轴交于点K ,则是否存在这样的点K ,使得△F′F″K 为等腰三角形?若存在求出OK 的值;若没有存在,说明理由.;(3)见解析.【详解】分析:(1)根据解析式求得C 的坐标,进而求得D 的坐标,即可求得DH 的长度,令y=0,求得A ,B 的坐标,然后证得△ACO ∽△EAH ,根据对应边成比例求得EH 的长,进继而求得DE 的长;(2)找点C 关于DE 的对称点N (4,找点C 关于AE 的对称点G (-2,,连接GN ,交AE 于点F ,交DE于点P ,即G 、F 、P、N 四点共线时,△CPF 周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN 的解析式:AE 的解析式:,过点M 作y 轴的平行线交FH 于点Q ,设点M (m ,,则Q (m ,),根据S △MFP=S △MQF+S △MQP ,得出S △解析式即可求得,△MPF 面积的值;(3)由(2)可知C (0F (0),P (2,求得△CFP C′F′P′F ″,且F′F″=4,然后分三种情况讨论求得即可.本题解析:(1)对于抛物线y=﹣x 2+x +,令x=0,得y=,即C (0,),D (2,),∴DH=,令y=0,即﹣x 2+x +=0,得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∵AE ⊥AC ,EH ⊥AH ,∴△ACO ∽△EAH ,∴=,即=,解得:EH=,则DE=2;(2)找点C 关于DE 的对称点N (4,),找点C 关于AE 的对称点G (﹣2,﹣),连接GN,交AE于点F ,交DE 于点P ,即G、F 、P 、N 四点共线时,△CPF周长=CF +PF +CP=GF +PF +PN 最小,直线GN 的解析式:y=x﹣;直线AE 的解析式:y=﹣x﹣,联立得:F (0,﹣),P (2,),过点M 作y 轴的平行线交FH 于点Q ,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=11,综上所述:OK=3,4﹣1,4+1或者11.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.2022-2023学年山东省临沂市中考数学专项提升仿真模拟试题(二模)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,没有读、错涂或涂的代号超过一个,一律得0分)1. 的倒数是( )14-A. 4B. -4C. D. 16142. 如图,直线,若,,则的度数为( )//AD BC 142∠=78BAC ∠=2∠ A. B. C. D. 425060683.下列某没有等式组的解集在数轴上表示如图所示,则该没有等式组是( )A. B. C. D. 1313x x -<⎧⎨+<⎩1313x x -<⎧⎨+>⎩1313x x ->⎧⎨+>⎩1313x x ->⎧⎨+<⎩4. 如图,在中,,,,则等于( )Rt ABC ∆90C =∠10AB =8AC=sin A A. B. C. D. 354534435. 下列说确的是( )A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的方式是全面。
2024年山东省临沂市联盟中考数学一模试卷(含解析)

2024年山东省临沂市联盟中考数学一模试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.(3分)2022的相反数是 A.B.C.2022D.2.(3分)某商城开设一种摸奖游戏,中一等奖的机会为20万分之一,将这个数用科学记数法表示为 A.B.C.D.3.(3分)下面的图形中既是轴对称图形又是中心对称图形的是 A.B.C.D.4.(3分)如图,图中所示的几何体为一桶快餐面,其俯视图正确的是 A.B.C.D.5.(3分)下列计算正确的是A B CD.6.(3分)世界文化遗产“三孔”景区已经完成基站布设,“孔夫子家”自此有了网络.网络峰值速率为网络峰值速率的10倍,在峰值速率下传输500兆数据,网络比网络快45秒,求这两种网络的峰值速率.设网络的峰值速率为每秒传输兆数据,依题意,可列方程是 A.B.()1202212022-2022-()5210-⨯6210-⨯5510-⨯6510-⨯()()()3=-=6=±0.6=-5G5G 5G4G5G 4G4G x()5005004510x x-=5005004510x x-=C.D .7.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是 A .B .C .D .8.(3分)如图,半径为3的经过原点和点,是轴左侧优弧上一点,则为A .B .CD9.(3分)如图,点的坐标是,点的坐标是,为的中点,将绕点逆时针旋转后得到△.若反比例函数的图象恰好经过的中点,则的值是 500050045x x -=500500045x x-=()A O (0,2)CB y A tan OBC ∠()13A (2,0)-B (0,6)C OB ABC ∆B 90︒A BC ''k y x=A B 'D k ()A .9B .12C .15D .1810.(3分)抛物线上的部分点的横坐标与纵坐标的对应值如表:01236300则下列结论:①;②;③抛物线的对称轴为直线;④方程的两个根为,.正确的有 A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)函数的取值范围是 .12.(3分)因式分解: .13.(3分)为了落实“双减”政策,东营市某学校对初中学生的课外作业时长进行了问卷调查,15名同学的作业时长统计如下表,则这组数据的众数是 分钟.作业时长(单位:分钟)5060708090人数(单位:人)1462214.(3分)如图,在中,弦半径,,则的度数为 .2y ax bx c =++x y x ⋯⋯1-⋯⋯y ⋯⋯1-⋯⋯0a >3c =2x =20ax ax c ++=11x =23x =()y =x 39x x -=O //AC OB 40BOC ∠=︒AOC ∠15.(3分)关于的一元二次方程有两个不相等的实数根,则的取值范围是 .16.(3分)如图,是等腰直角三角形,直角顶点与坐标原点重合,若点在反比例函数的图象上,则经过点的函数图象表达式为 .三、解答题(本大题共8小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题、(本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母写在答 题纸中相应的方框内,注意可以用多种不同的方法来选取正确答案. 1.在实数中02)33(,)3(,...,45678.2,71,2,3,0---ππ,无理数的个数为( ) (A) 3 个 (B) 4个 (C)5个 (D) 6个 2.不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为( )(A) (B)3.若右图是某几何体的三视图,则这个几何体是( ) (A) 正方体(B) 圆柱(C)球(D)圆锥主视图 左视图 俯视图4.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽取小明的概率是( ) (A)21 (B) 31 (C)41 (D) 615.已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
③当13x x =-=或时,函数y 的值都等于0. ④024<++c b a 其中正确结论的个数是( ) (A)1 (B)2 (C)3 (D) 4 6.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) (A)43 (B)45(C)54 (D )347.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠; ③直角三角形斜边上的中线等于斜边的一半。
④菱形的对角线互相垂直. 其中原命题与逆命题均为真命题的个数是( ) (A)4个 (B)3个 (C)2个 (D)1个8.如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂 直平分线DE 交BC 的延长线于点E ,则CE 的长为( )0 1 2 3 4 012340 1 2 3 4 0 1 2 3 4AD B EC(A)32(B)76(C)256(D)29.如图,点A在双曲线6yx=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )(A) 47 (B)5 (C) 27 (D)2210.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()二、填空题、(本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11. 化简▲.16的平方根为▲。
12. 将二次函数2xy=的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是▲。
13. 定义新运算“*”,规则:()()a a ba bb a b≥⎧*=⎨<⎩,如122*=,()522-*=。
若210x x+-=的两根为12,x x,则12x x*=▲.14.若一边长为40㎝的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径的最小值为▲㎝.(铁丝粗细忽略不计)15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB=AC=8 cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是▲ cm216.如图所示,在ABCRt∆中,︒=∠90C,8,6==BCAC,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是:▲。
图2A(M)EDCBDB A(M)(第15题)三、计算题、(本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.计算:(本小题满分6分) (1)0|2|(1--++ (2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.18.(本小题满分6分)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连结1AA ,求证:四边形11OAA B 是平行四边形;19.(本小题满分6分)如图,沿江堤坝的横断面是梯形ABCD ,坝顶AD=4m ,坝高AE=6 m ,斜坡AB 的坡比2:1=i ,∠C=60°,求斜坡AB 、CD 的长。
20.(本小题满分8分)BCBA在一个口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是35. (1)求n 的值;(2)把这n 个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率。
21.(本小题满分8分)如图,已知在等腰△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC 交AB 于点D .(1)尺规作图:过A ,D ,C 三点作⊙O (只要求作出图形,保留痕迹,不要求写作法); (2)求证:BC 是过A ,D ,C 三点的圆的切线;(3)若过A ,D ,C 三点的圆的半径为3,则线段BC 上是否存在一点P ,使得以P ,D ,B 为顶点的三角形与△BCO 相似.若存在,求出DP 的长;若不存在,请说明理由.22.(本小题满分10分)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润甲店 200 170 乙店160150(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?23.(本小题满分10分)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (1)若折叠后使点B 与点A 重合,求点C 的坐标;(2)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(3)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,时点C 的坐标.求此24.(本小题满分12分)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,. (1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?参考答案yBOAyB OAyBOAA BCOxy一、选择题(本题有10个小题,每小题3分,共30分)题次 1 2 3 4 5 6 7 8 9 10 答案BDBACADBCA二、填空题(本题有6个小题,每小题4分,共24分) 11. 4 ,2 12. ()212+-=x y 13.215- 14. 32015.31648- 16.524=R 或86≤<R三、计算题(本题有8个小题,共66分) 17. (本小题满分6分)18.(本小题满分6分) (1)6,135°……4分 (2)11190AOA OA B ∠=∠=︒ ∴ 11//OA A B又11OA AB A B ==∴四边形11OAA B 是平行四边形……2分 19. (本小题满分6分)解:∵斜坡AB 的坡比2:1=i ,∵AE :BE=1:2,又AE=6 m ∴BE=12 m…………2分 ∴222261261265+=+=(m )……2分 作DF ⊥BC 于F ,则得矩形AEFD ,有DF=AE=6 m , ∵∠C=60° ∴CD=DF ·sin60°=33 m…………2分 答:斜坡AB 、CD 的长分别是5,33。
20.(本小题满分8分)(1)依题意2355n n n -==.······················ (3分) (2)当5n =时,这5个球两个标号为1,其余标号分别为2,3,4. 两次取球的小球标号出现的所有可能的结果如下表:∴由上表知所求概率为920P =. ····················· (5分)21.(本小题满分8分)解:(1)作出圆心O , ………………………………………………………………1分以点O 为圆心,OA 长为半径作圆.…………………………………………1分 (2)证明:∵CD ⊥AC ,∴∠ACD =90°.∴AD 是⊙O 的直径……………1分 连结OC ,∵∠A =∠B =30°, ∴∠ACB =120°,又∵OA =OC , ∴∠ACO =∠A =30°,…………1分 ∴∠BCO =∠ACB -∠ACO =120°-30°=90°. ∴BC ⊥OC ,(1,4) (1,4)(2,4) (3,4)(1,3) (1,3) (2,3)(4,3) (1,2) (1,2) (3,2)(4,2) (1,1)(2,1) (3,1)(4,1)(1,1) (2,1) (3,1) (4,1)第2个球的标号 43 21111234第1个球的标号OP 2P 1DCA∴BC 是⊙O 的切线. ……………………………………………1分(3)存在. ……………………………………………………………………………1分∵∠BCD =∠ACB -∠ACD =120°-90°=30°, ∴∠BCD =∠B , 即DB =DC .又∵在Rt△ACD 中,DC=AD 330sin =︒⋅, ∴BD 3.解法一:①过点D 作DP 1// OC ,则△P 1D B ∽△COB , BOBDCO D P =1, ∵BO =BD +OD =32,∴P 1D =BOBD×OC =3333……………………………1分②过点D 作DP 2⊥AB ,则△BDP 2∽△BCO , ∴BCBDOC D P =2, ∵BC =,322=-CO BO∴13332=⨯=⨯=OC BC BD D P .………………………………………1分 解法二:①当△B P 1D ∽△BCO 时,∠DP 1B =∠OCB =90°.在Rt△B P 1D 中,DP 1=2330sin =︒⋅BD . ………………1分 ②当△B D P 2∽△BCO 时,∠P 2DB =∠OCB =90°. 在Rt△B P 2D 中,DP 2=130tan =︒⋅BD . ……………1分22.(本小题满分10分)依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则 (1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ·················· (3分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件. ②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件. · (3分) (3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+- (20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ····························· (4分)23.(本小题满分10分)本小题满分10分.解(1)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ························· 4分(2)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,,则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························· 2分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················ 1分(3)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥.则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△.有OB OCOA OB''=,得2OC OB ''=. ····················· 1分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(2)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. ······················ 2分24.(本小题满分12分)(1)设抛物线解析式为(2)(4)y a x x =+-,把(08)C ,代入得1a =-. 228y x x ∴=-++2(1)9x =--+,图① 图② 图③用心 爱心 专心 11 顶点(19)D , ···························· (4分)(2)假设满足条件的点P 存在,依题意设(2)P t ,,由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+,它与x 轴的夹角为45,设OB 的中垂线交CD 于H ,则(210)H ,. 则10PH t =-,点P 到CD的距离为2d PH t ==-.又PO =. ···················· (2分)t =-. 平方并整理得:220920t t +-=10t =-±∴存在满足条件的点P ,P的坐标为(210-±,. ········· (2分) (3)由上求得(80)(412)E F -,,,.①若抛物线向上平移,可设解析式为228(0)y x x m m =-+++>.当8x =-时,72y m =-+.当4x =时,y m =. 720m ∴-+≤或12m ≤.072m ∴<≤. ····(2分) ②若抛物线向下移,可设解析式为228(0)y x x m m =-++->. 由2288y x x m y x ⎧=-++-⎨=+⎩,有20x x m -+=. 140m ∴=-≥△,104m ∴<≤. ∴向上最多可平移72个单位长,向下最多可平移14个单位长. ······ (2分)。