数据结构 图的存储表示
数据结构中的名词解释

数据结构中的名词解释数据结构中的名词解释数据结构:数据结构是研究数据元素之间抽象化的相互关系和这种关系在计算机中的存储表示(即所谓数据的逻辑结构和物理结构),并对这种结构定义相适应的运算,设计出相应的算法,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。
数据:数据是人们利用文字符号、数字符号以及其他规定的符号对现实世界的事物及其活动所做的描述。
在计算机科学中,数据的含义非常广泛,我们把一切能够输入到计算机中并被计算机程序处理的信息,包括文字、表格、图象等,都称为数据。
结点:结点也叫数据元素,它是组成数据的基本单位。
逻辑结构:结点和结点之间的逻辑关系称为数据的逻辑结构。
存储结构:数据在计算机中的存储表示称为数据的存储结构。
数据处理:数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。
数据类型:数据类型是指程序设计语言中各变量可取的数据种类。
数据类型是高级程序设计语言中的一个基本概念,它和数据结构的概念密切相关。
本章主要介绍了如下一些基本概念:线性表:一个线性表是n≥0个数据元素a0,a1,a2,…,an-1的有限序列。
线性表的顺序存储结构:在计算机中用一组地址连续的存储单元依次存储线性表的各个数据元素,称作线性表的顺序存储结构。
线性表的链式存储结构:线性表的链式存储结构就是用一组任意的存储单元——结点(可以是不连续的`)存储线性表的数据元素。
表中每一个数据元素,都由存放数据元素值的数据域和存放直接前驱或直接后继结点的地址(指针)的指针域组成。
循环链表:循环链表(Circular Linked List)是将单链表的表中最后一个结点指针指向链表的表头结点,整个链表形成一个环,从表中任一结点出发都可找到表中其他的结循环链表:循环链表(Circular Linked List)是将单链表的表中最后一个结点指针指向链表的表头结点,整个链表形成一个环,从表中任一结点出发都可找到表中其他的结点。
数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系

2007 C C C 语言的特点,简单的C 程序介绍,C 程序的上机步骤。
1 、算法的概念2、简单的算法举例3、算法的特性4、算法的表示(自然语言、流程图、N-S 图表示) 1 、 C 的数据类型、常量与变星、整型数据、实型数据、字符型数据、字符串常量。
2、 C 的运算符运算意义、优先级、结合方向。
3、算术运算符和算术表达式,各类数值型数据间的混合运算。
4、赋值运算符和赋值表达式。
5、逗号运算符和逗号表达式。
1 、程序的三种基本结构。
2、数据输入输出的概念及在C 语言中的实现。
字符数据的输入输出,格式输入与输出。
1 、关系运算符及其优先级,关系运算和关系表达式。
2、逻辑运算符及其优先级,逻辑运算符和逻辑表达式。
3、if语句。
if语句的三种形式,if语句的嵌套,条件运算符。
4、switch 语句. 1 、while 语句。
2、do/while 语句。
3、for 语句。
4、循环的嵌套。
5、break 语句和continue 语句。
1 、一维数组的定义和引用。
2、二维数组的定义和引用。
3、字符数组。
4、字符串与字符数组。
5、字符数组的输入输出。
6、字符串处理函数1 、函数的定义。
2、函数参数和函数的值,形式参数和实际参数。
3、函数的返回值。
4、函数调用的方式,函数的声明和函数原型。
5、函数的嵌套调用。
6、函数的递归调用。
7、数组作为函数参数。
8、局部变量、全局变量的作用域。
9、变量的存储类别,自动变星,静态变量。
1 、带参数的宏定义。
2、“文件包含”处理。
1 、地址和指针的概念。
2、变量的指针和指向变量的指针变量。
3、指针变量的定义和引用。
4、指针变量作为函数参数。
5、数组的指针和指向数组的指针变量。
6、指向数组元素的指针。
7、通过指针引用数组元素。
8、数组名作函数参数。
9、二维数组与指针。
1 0、指向字符串的指针变星。
字符串的指针表示形式,字符串指针作为函数参数。
11 、字符指针变量和字符数组的异同。
数据结构-chap7 (1)图的存储结构

V2
V4 G2图示
无向图:在图G中,若所有边是无向边,则称G为无向图。
有向图:在图G中,若所有边是有向边,则称G为有向图。
二、图的基本术语
有向完全图: n个顶点的有向图最大边数是n(n-1) 无向完全图: n个顶点的无向图最大边数是n(n-1)/2 1、邻接点及关联边
主要内容
知识点
– – – – 1.图的定义,概念、术语及基本操作。 2.图的存储结构,特别是邻接矩阵和邻接表。 3.图的深度优先遍历和宽度优先遍历。 4.图的应用(连通分量,最小生成树,拓扑排序,关键路经,最短 路经)。 1.基本概念中,完全图、连通分量、生成树和邻接点是重点。 2.建立图的各种存储结构的算法。 3.图的遍历算法及其应用。 4.通过遍历求出连通分量的个数,深(宽)度优先生成树。 5.最小生成树的生成过程。 6.拓扑排序的求法。关键路经的求法。 7.最短路径的手工模拟。
自测题 2
设无向图的顶点个数为n,则该图最多有( )条边。 A.n-1
B.n(n-1)/2
C.n(n+1)/2 D.0 E.N2 【清华大学1998一.5(分)】
自测题 3
一个有n个结点的图,最少有( )个连通分量,最多有( )个 连通分量。
A. 0
B.1 C.n-1 D.n 【北京邮电大学 2000 二.5 (20/8分)】
0
V1 e1 V3 V4 V5 V2 1 0 1 0 1
否则
0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 V1 V2 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0
数据结构-实验6图的存储和遍历

实验6.1实现图的存储和遍历一,实验目的掌握图的邻接矩阵和邻接表存储以及图的邻接矩阵存储的递归遍历。
二,实验内容6.1实现图的邻接矩阵和邻接表存储编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并输出。
(2)由有向图G的邻接矩阵产生邻接表,并输出。
(3)再由(2)的邻接表产生对应的邻接矩阵,并输出。
6.2 实现图的遍历算法(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。
(5)利用非递归算法重解任务(4)。
(6)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。
三,源代码及结果截图#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream.h>#include<malloc.h>#define MAX_VERTEX_NUM 20typedef char VRType;typedef int InfoType; // 存放网的权值typedef char VertexType; // 字符串类型typedef enum{DG,DN,AG,AN}GraphKind; // {有向图,有向网,无向图,无向网}/*建立有向图的邻接矩阵*/typedef struct ArcCell{VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;对带权图则为权值类型InfoType *info; //该弧相关信息的指针(可无)}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;;//图的当前顶点数和弧数GraphKind kind;//图的种类标志}MGraph;/* 顶点在顶点向量中的定位*/int LocateVex(MGraph &M,VRType v1){int i;for(i=0;i<M.vexnum;i++)if(v1==M.vexs[i])return i;return -1;}void CreateGraph(MGraph &M)//建立有向图的邻接矩阵{int i,j,k,w;VRType v1,v2;M.kind=DN;printf("构造有向网:\n");printf("\n输入图的顶点数和边数(以空格作为间隔):");scanf("%d%d",&M.vexnum,&M.arcnum);printf("输入%d个顶点的值(字符):",M.vexnum);getchar();for(i=0;i<M.vexnum;i++) //输入顶点向量{scanf("%c",&M.vexs[i]);}printf("建立邻接矩阵:\n");for(i=0;i<M.vexnum;i++)for(j=0;j<M.vexnum;j++){M.arcs[i][j].adj=0;M.arcs[i][j].info=NULL;}printf("请顺序输入每条弧(边)的权值、弧尾和弧头(以空格作为间隔):\n");for(k=0;k<M.arcnum;++k)// 构造表结点链表{cin>>w>>v1>>v2;i=LocateVex(M,v1);j=LocateVex(M,v2);M.arcs[i][j].adj=w;}}//按邻接矩阵方式输出有向图void PrintGraph(MGraph M){int i,j;printf("\n输出邻接矩阵:\n");for(i=0; i<M.vexnum; i++){printf("%10c",M.vexs[i]);for(j=0; j<M.vexnum; j++)printf("%2d",M.arcs[i][j].adj);printf("\n");}}// 图的邻接表存储表示typedef struct ArcNode{int adjvex; // 该弧所指向的顶点的位置struct ArcNode *nextarc; // 指向下一条弧的指针InfoType *info; // 网的权值指针)}ArcNode; // 表结点typedef struct VNode{VertexType data; // 顶点信息ArcNode *firstarc; // 第一个表结点的地址,指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];// 头结点typedef struct{AdjList vertices;int vexnum,arcnum; // 图的当前顶点数和弧数int kind; // 图的种类标志}ALGraph;void CreateMGtoDN(ALGraph &G,MGraph &M){//由有向图M的邻接矩阵产生邻接表int i,j;ArcNode *p;G.kind=M.kind;G.vexnum=M.vexnum;G.arcnum=M.arcnum;for(i=0;i<G.vexnum;++i){//构造表头向量G.vertices[i].data=M.vexs[i];G.vertices[i].firstarc=NULL;//初始化指针}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j)if(M.arcs[i][j].adj){p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;G.vertices[i].firstarc=p;}}void CreateDNtoMG(MGraph &M,ALGraph &G){ //由邻接表产生对应的邻接矩阵int i,j;ArcNode *p;M.kind=GraphKind(G.kind);M.vexnum=G.vexnum;M.arcnum=G.arcnum;for(i=0;i<M.vexnum;++i)M.vexs[i]=G.vertices[i].data;for(i=0;i<M.vexnum;++i){p=G.vertices[i].firstarc;while(p){M.arcs[i][p->adjvex].adj=1;p=p->nextarc;}//whilefor(j=0;j<M.vexnum;++j)if(M.arcs[i][j].adj!=1)M.arcs[i][j].adj=0;}//for}//输出邻接表void PrintDN(ALGraph G){int i;ArcNode *p;printf("\n输出邻接表:\n");printf("顶点:\n");for(i=0;i<G.vexnum;++i)printf("%2c",G.vertices[i].data);printf("\n弧:\n");for(i=0;i<G.vexnum;++i){p=G.vertices[i].firstarc;while(p){printf("%c→%c(%d)\t",G.vertices[i].data,G.vertices[p->adjvex].data,p->info);p=p->nextarc;}printf("\n");}//for}int visited[MAX_VERTEX_NUM]; // 访问标志数组(全局量)void(*VisitFunc)(char* v); // 函数变量(全局量)// 从第v个顶点出发递归地深度优先遍历图G。
数据结构:图

数据结构:图在计算机科学领域,数据结构是我们组织和存储数据的方式,以便能够高效地进行操作和处理。
而图,作为一种重要的数据结构,在许多应用中都发挥着关键作用。
想象一下,我们生活中的各种关系,比如朋友关系、交通网络、电路连接等等,这些都可以用图来表示。
图由顶点(也称为节点)和边组成。
顶点代表着事物或者对象,而边则表示顶点之间的关系。
比如说,在一个社交网络中,每个人可以看作是一个顶点,如果两个人是朋友,那么在他们对应的顶点之间就会有一条边。
这种直观的表示方式让我们能够清晰地理解和分析复杂的关系。
图有两种主要的表示方式:邻接矩阵和邻接表。
邻接矩阵就像是一个表格,行和列都对应着顶点,如果两个顶点之间有边相连,对应的位置就标记为 1,否则为 0 。
这种表示方式简单直观,但当顶点数量很多而边的数量相对较少时,会浪费大量的存储空间。
邻接表则是为每个顶点创建一个链表,链表中存储着与该顶点相邻的顶点。
这种方式在处理稀疏图(边的数量相对较少的图)时,能够节省大量的空间,并且在查找相邻顶点时也比较高效。
图的遍历是操作图的重要方式之一。
深度优先遍历就像是在迷宫中一直往前走,直到走不通了再回溯;而广度优先遍历则像是以一个点为中心,一层一层地向外扩展。
深度优先遍历通常使用递归的方式实现。
从一个起始顶点开始,沿着一条路径尽可能地深入,直到无法继续,然后回溯,尝试其他的路径。
这种遍历方式在搜索、查找路径等问题中经常被使用。
广度优先遍历则使用队列来实现。
先将起始顶点入队,然后依次取出队列头部的顶点,并将其相邻的未访问过的顶点入队。
这种方式常用于计算最短路径、层次遍历等问题。
图的应用非常广泛。
在网络路由中,通过构建网络的图模型,可以找到最优的数据包传输路径;在任务调度中,可以根据任务之间的依赖关系,使用图来安排任务的执行顺序;在地图导航中,城市和道路可以表示为图,从而为用户规划最佳的出行路线。
再比如,在人工智能中的搜索算法中,图可以用来表示状态空间。
数据结构:第7章 图

6.2 图的存储结构
➢图的邻接矩阵存储表示
6.2 图的存储结构
➢采用数组表示法构造无向网G
• 输入顶点数、边数等基本数据 • 输入各顶点信息,构造顶点向量 G.vexs[n] • 初始化邻接矩阵 G.arcs • 输入各条边所依附的顶点及权值,写入邻接矩阵G.arcs
6.2 图的存储结构
➢采用邻接矩阵表示法,创建无向网G
图的定义和术语
• 对于有n个顶点的图,最多有多少条弧? (不考虑自身到自身的弧)
每个顶点最多向其它n-1个顶点分别发出一条弧 所以
• n个顶点的有向图最多可以有 n(n-1)条弧 • 考虑无向图的情况: • n个顶点的无向图最多可以有n(n-1)/2 条边
• 弧(边)数达到最大的图称作完全图
• 有很少(如e<nlogn)弧(边)的图称为稀疏图 • 反之称为稠密图
图的定义和术语
• 无向图G=(V,{E}) • 从顶点v到顶点v’的路径 是由v出发到达v’的顶点序列 • 若为有向图,则路径也是有向的 • 第一个顶点和最后一个顶点相同的路径叫做回路或环 • 序列中顶点不重复出现的路径称为简单路径 • 除了第一个顶点和最后一个顶点之外,其余顶点不重复
出现的回路称为简单回路或简单环
图的定义和术语
• 无向图G中,如果从顶点v到v’有路径, 则称v和v’是连通的
• 对于任意两个顶点都连通的图,叫做连通图 • 无向图中的极大连通子图叫做连通分量
v1
v2
v3
v4
v5
图的定义和术语
• 有向图中, • 对于任意两个顶点都存在双向路径的图,叫做强连通图 • 有向图中的极大强连通子图叫做强连通分量
6.2 图的存储结构
➢数组表示法
数据结构-图

出发点,访问D,标注数字序号④;
(a)无向图 G9
(b)深度优先遍历
图的遍历
3.1图的深度优先遍历
接着到G,访问G, 标注数字序号⑤;G 相邻顶点都访问过了,顺着虚线箭头方向
回退到 D,D 相邻顶点都访问过了,顺着虚线箭头方向回退到C,C 相邻顶点也都访问过
图的基本概念
1.2图的操作定义
02
PART
图的存储结构
2.1邻接矩阵
首先介绍的是数组表示法,即用两个数组分别存储顶点的信息和顶点之间的关系。
用来存放图中 n 个顶点的数组称为顶点数组。我们可将图中顶点按任意顺序保存到顶点数组中,
这样按存放次序每个顶点就对应一个位置序号(简称位序),依次为0~n-1;接着用一个 n×n 的二维
称为有向图。例如,当V={v1,v2,v3,v4,v5},VR={<v1,v2>,
<v1,v4>,<v2,v4>,<v3,v1>,<v3,v5>,<v4,v3>,<v5,v4>},则顶点集合
V、关系集合VR 构成有向图G1=(V,VR),如图(a)所示。
图的基本概念
1.1图的定义与基本术语
无向图(Undirected Graph)。如果顶点间的关系是无
序号作为表结点的值,所以一条弧对应一个表结点。右图为有向图 G1
和无向图 G2的邻接表表示法存储示意图。
图的存储结构
2.2邻接表
对于有向网和无向网,由于表结点表示边或弧,因此需要对表结点扩充一个属性域,表
结点至少包含顶点序号、权值和下一表结点指针 3 个属性,由此构成网的邻接表。
数据结构图

所以:对于点多边少的稀疏图来说,采用邻接表 结构使得算法在时间效 率上大大提高。
16
3/12
广度优先搜索(Breadth First Search,简称BFS ) BFS类似于树的层序遍历; 用一个数组用于标志已访问与否,还需要一个工作队列。
【例】一个无向图的BFS
8
6
CD
4
7
HG
BA
邻接多重表(Adjacency Multilist)
9
边表
• 在某些应用中,有时主要考察图中边的权值以及所依附的 两个顶点,即图的结构主要由边来表示,称为边表存储结 构。
• 边表结构采用顺序存储,用2个一维数组构成,一个存储 顶点信息,一个存储边的信息。边数组的每个元素由三部 分组成:
– 边的起点下标 – 边的终点下标 – 边的权值
1
A [i][
j]
0
如果 (vi , v j ) 或 vi , v j G的边 其它
无权图的邻接矩阵表示示例
V1
V2
V0
3
V3
4 12/15
带权图的邻接矩阵的定义
A [i][ j] wij
如果 (vi , vj ) 或 vi , v j G的边 其它
带图权的图邻的接邻矩接阵矩表阵示表示示例示[例例6.9]
1
第一部分 图的定义和术语
2
图的定义
“图” G可以表示为两个集合:G =(V, E)。每条 边是一个顶点对(v, w) E ,并且 v, w V。
通常:用 |V| 表示顶点的数量(|V| ≥ 1), 用 |E| 表示边的数量(|E| ≥ 0)。
(1) 无向图(完全有向图边数与顶点数之间的 关系) (2) 有向图(完全有向图弧数与顶点数之间的 关系) (3) 简单图:没有重边和自回路的图 (4) 邻接 (5) 路径,路径长度 (6) 无环(有向)图:没有任何回路的(有向)图 (7) 度,入度,出度 (8) 无向图的顶点连通、连通图、连通分量 (9) 有向图的顶点强连通,强连通图、连通分量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
@staticmethod def _out_edges(mat, v): edges = [] row = mat[v] for i in range(len(row)): if row[i] != 0 and row[i] != inf: edges.append((i, row[i])) # (邻接点,边权) return edges
2016 《数据结构》
图
主要内容
图的概念和操作 图的存储:邻接矩阵,邻接表 图的遍历:宽度优先,深度优先 生成树:DFS 生成树,BFS 生成树 最小生成树:Prim 算法,Kruskal 算法 最短路径问题:
单源点最短路径和 Dijkstra 算法 所有顶点之间的最短路径和 Floyd 算法
2018/3/7
第七章 图
21
获取顶点v的所有“邻接点”(邻接边、出边)
def out_edges(self, v): '''获取v的所有(邻接点,边权)对,以list形式返回''' assert 0 <= v < self._vnum return self._mat[v]
2018/3/7
第七章 图
2018/3/7
第七章 图
24
2018/3/7
第七章 图
25
无权图的读入
input = sys.stdin.read()
data = list(map(int, input.split())) n, m = data[0:2] data = data[2:] edges = list(zip(data[0:(2 * m):2], data[1:(2 * m):2])) adj = [[] for _ in range(n)] for (a, b) in edges: adj[a - 1].append(b - 1) adj[b - 1].append(a - 1) # 有向图去除此句!
8
A
3 9 4
6 5 1
D
2
0 3 5 0 1 9 0 6
8 4 2 0
14
B
2018/3/7
C
g3.out_edges(2) = [ (0, 9), (3, 2) ]
获取顶点v的所有“邻接点”(邻接边、出边)
def out_edges(self, v): '''获取v的所有(邻接点,边权)对,以list形式返回''' assert 0 <= v < self._vnum # 用assert替代异常 return Graph._out_edges(self._mat, v)
2018/3/7 第七章 图 27
将标准输入stdin重定向到文件
import sys # 导入sys模块 input = sys.stdin.read() 这里要在 console窗口 中,转到文件所在的目录,执行命令: python **.py < graph.txt 其中: **.py 是包含代码段的文件 graph.txt是图信息文件,和**.py在同一目录下
g1.out_edges(1) = [ (0, 1), (4, 1), (5, 1) ]
第七章 图
17
有向图的邻接表
A
B C E
0 1 2 3 4 A B 1 2 3 0 2 ^ ^ ^ 1 ^ 4 ^
C
D E
D
Python中list的list:
[ [(1, 1), (4, 1)], [(2, 1)], [(3, 1)], [(0, 1), (1, 1)] [(2, 1)] ]
22
说明
课本中对无权、有权图统一处理了,具体应用中 可针对图的类型做专门的定义,使得无权图的邻 接点集是单纯的点集,不是(u, 1)形式的边对。
通常对图的表示和操作,直接使用list的list型的对 象即可,不需要封装成专门Graph类型。
2018/3/7
第七章 图
23
由文件中读入图信息
UCSD_Algorithms on Graph
0
A
1 2 0 0
3 1 9 6 ^
2 0 3
5 4 ^ 2 ^
3
8 ^
1
2 3
B
C D
B
1
C
Python中list的list:
[ [(1, 3), (2, 5), (3, 8)], [(2, 1), (0, 4)], [(0, 9), (3, 2)], [(0, 6)] ]
2018/3/7
g3.out_edges(2) = [ (0, 9), (3, 2) ]
2018/3/7
第七章 图
15
邻接表 Adjacent List
(邻接矩阵的压缩)
2018/3/7
第七章 图
16
无向图的邻接表
B A
F E
C
D
0
1 2 3 4 5
A B C D E F
1
0 3 2 0 1
4
4 5 5 1 2
^
5 ^ ^ ^ 3 ^ ^
Python中list的list: [ [(1, 1), (4, 1)], [(0, 1), (4, 1)], [(3, 1), (5, 1)], [(2, 1), (5, 1)], [(0, 1), (1, 1)], [(1, 1), (2, 1), (3, 1)] ] 2018/3/7
B A F
C
D
E
Python等长list的list:
[ [0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 1], [1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0] ]
2018/3/7 第七章 图 10
有向图的邻接矩阵:非对称
第七章 图
20
图的建立——邻接表
# 课本采用了继承方式,逻辑上不是太好!
class GraphA(Graph): def __init__(self, mat): vnum = len(mat)
# mat是等长list的list
# 所有顶点的(邻接点,边权)对的list self._mat = [Graph._out_edges(mat, i) for i in range(vnum)] self._vnum = vnum
12
2018/3/7
第七章 图
图的建立——邻接矩阵
class Graph: def __init__(self, mat): vnum = len(mat) # 对传入的mat做了拷贝构造 self._mat = [mat[i][:] for i in range(vnum)] self._vnum = vnum
2018/3/7
第七章 图
13
获取顶点v的所有“邻接点”
B A F E C
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0
D
g1.out_edges(1) = [ (0, 1), (4, 1), (5, 1) ]
关系集
顶点之间关系,即边集或弧集 边或弧的总数
图的类型
有向、无向、带权、不带权
第七章 图 *
*
邻接矩阵 Adjacent Matrix
2018/3/7
第七章 图
9
无向图的邻接Байду номын сангаас阵:对称
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0
也可以: python **.py 然后手工输入图信息,以Ctrl+Z结束输入。
2018/3/7
第七章 图
28
AOV 网,拓扑排序
AOE 网,关键路径
*
第七章 图
*
无向图、有向图、带权图(网)
B A F E A
3 9 4 5 8 6
C D B C D
2
A E D
B
2018/3/7
1
第七章 图
C
3
图的概念
Graph=( V, E )
V = { v | v 某数据对象}
• 顶点的有穷非空集合;
v
*
第七章 图
图的基本操作
ADT Graph:
Graph(self)
vertex_num(self) vertices(self) add_vertex(self, v) add_edge(self, v1, v2) get_edge(self, v1, v2) out_edges(self, v) degree(self, v)
E = {(u, v) | u, v V } 或 E = {<u, v> | x, y V}
• 是顶点之间关系的有穷集合,也叫边(或弧)集合。
u
v
u
v
• 称u、v互为邻接点。
2018/3/7
第七章 图
4
顶点的度
与之相关联的边或弧的数目 有向图:D(v)=ID(v)+OD(v)
ID(v): 入度(in-degree),即入边数; OD(v):出度(out-degree),即出边数。
*
第七章 图
*