大学物理实验指导材料
大学物理实验II指导书汇总

目录实验一电势差计测电动势 (1)实验二用电流场模拟静电场 (4)实验三电子束实验 (5)实验四霍耳效应法测量磁场 (8)实验四磁阻效应综合实验 (12)实验五分光计的使用和光栅测波长 (22)实验六光电效应 (28)实验七密立根油滴实验——电子电荷的测定 (31)实验七弗兰克—赫兹实验 (33)实验一 电势差计测电动势【实验原理】详见教材:《结构化大学物理实验》P.208−212。
仔细研读原理后回答以下问题: 问题1:能用电压表直接测出电池的电动势吗?为什么?问题2:箱式电势差计的工作原理图里有几个补偿回路?所测电动势的精度和什么有关? 问题3:为什么温差电偶能用作温度计?补充内容:(一)本实验用高精度的1.0185V 稳压电源代替标准电池,虽然重复性较差,但比较环保,常温下也可以忽略温度对)(t E s 的影响。
(二)测量温差电动势时,因为实验装置的冷端为环境温度,误差较大,所以只测量t E ~关系,写出方程t E E θ+=0(三)UJ31电势差计中的一些参数1. 可测范围:0.001—170.00mV ;分两档,×1档为0.001—17.000mV (最小分度1μV ),×10档为0.01—170.00mV (最小分度10μV )。
2. 准确度等级为0.05级,基本误差为(0.05%)x x U U U ∆=±+∆。
式中,x U 是被测电动势值(即示值),U ∆取值倍率为×10时,5=∆U μV ;倍率为×1时,5.0=∆U μV 。
【实验目的】(一)掌握电势差计的工作原理和结构特点。
(二)了解温差电偶的测温原理。
【实验内容】(一)电势差计的调节;(二)测温差电偶(铜-康铜)的温差电动势。
【实验器材】箱式电势差计,直流稳压工作电源,灵敏电流计,高精度1.0185V 标准电源,铜—康铜温差热电偶,加热装置。
【实验步骤及操作】(一)电势差的调节图10-1 UJ31型电势差计面板图1. 面板中各旋钮、开关介绍2.把S R旋至标准的电动势值的位置。
大学物理实验指导书--9个项目 -

大学物理实验指导书--9个项目 -实验一多普勒效应综合实验【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应。
2、由f-V关系直线的斜率求声速。
【实验原理】根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f = f0(u+V1cosα1)/(u�CV2cosα2)(1)式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。
若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:f = f0(1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。
若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f ―V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为 k=f0/u ,由此可计算出声速 u=f0/k 。
由(2)式可解出:V = u(f/f0 �C 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。
【仪器安装】图1 多普勒效应验证实验及测量小车水平运动安装示意如图1所示。
所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。
调节水平超声发射器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。
将组件电缆接入实验仪的对应接口上。
安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。
大学物理实验

大学物理实验 实验课程教学大纲实验课程名称:大学物理实验英文名称:实验课程编号:010202实验课程性质: __________ 实验课程属性:__________________实验教材及实验指导讲义(书)名称:<大学物理实验教程>学时学分:课程总学时 54学时总学分实验学时实验学分应开实验学期:年级学期面对专业:先修课程:全院理工学门类本科各专业一、实验课程简介及基本要求:一、课程的任务与教学基本要求1.本课程的任务是培养学生的综合实验能力,使学生在实验思想、实验方法、实验技能和处理数据几个方面得到训练,了解科学实验的主要过程、基本方法、培养用实验方法研究问题、解决问题的能力,养成科学、严谨的作风与习惯。
教学基本要求(1) 实验理论的教学在课程中应占三分之一的份量。
实验理论包括实验思想、实验方法和技巧以及数据处理方面的内容,使学生能获得较系统的知识。
(2) 很好掌握常用仪器、仪表的使用方法,能熟练使用这些仪器和仪表测量基本物理量和导出量。
(3) 通过基础实验理论的学习和应用,牢固掌握几种常用的数据处理方法;牢固掌握误差计算和分析方法,本课程以使用标准误差为主;建立正确的有效数字概念,能正确表示观测结果和试验结果。
(4) 能正确运用作图法绘制实验曲线,表示某些实验结果。
初步了解什么是科学观测和科学实验的全过程,要求能独立设计并完成比较简单的设计性实验。
(5) 能写出正确合理、有条不紊的实验报告。
二、实验目的要求三. 主要仪器设备四、实验方式与基本要求A、基础实验板块(27学时)实验一 测量误差及实验数据处理一、实验学时:4学时二、实验目的1、了解测量与误差的基本知识。
2、了解误差分析的基本知识。
3、掌握测量结果的误差估计和不确定度合成。
4、掌握测量结果的表示与数据处理方法。
三、主要内容1、测量误差——误差的基本概念、误差的分类及其特点、测量结果的表示、有效数字、误差理论和不确定度简介。
大学物理实验密度测量实验报告

实验名称:密度测量实验日期:2023年11月实验地点:物理实验室实验者:[姓名]指导教师:[指导教师姓名]一、实验目的1. 掌握使用物理天平、量筒、密度瓶等仪器测量物体密度的方法。
2. 了解流体静力称衡法和比重瓶法测量固体密度的原理。
3. 培养实验操作技能和数据处理能力。
二、实验原理密度是物质的一种特性,表示单位体积内物质的质量。
其计算公式为:ρ = m/V,其中ρ为密度,m为质量,V为体积。
本实验采用以下两种方法测量固体密度:1. 流体静力称衡法:将被测物体放入已知密度的液体中,通过测量物体在空气中和液体中的质量,利用阿基米德原理计算出物体的体积,从而求出密度。
2. 比重瓶法:将已知体积的液体倒入比重瓶中,将待测物体放入比重瓶中,通过测量液体体积的变化,计算物体的体积,进而求出密度。
三、实验仪器与材料1. 物理天平(感量0.1g)2. 量筒(100ml)3. 密度瓶(100ml)4. 烧杯(450ml)5. 待测固体(如金属块、石蜡块等)6. 水和酒精7. 细线四、实验步骤1. 流体静力称衡法(1)将待测物体放在天平上,记录其质量m1。
(2)将待测物体放入盛有水的量筒中,记录物体在空气中的质量m2。
(3)将待测物体取出,将量筒中的水倒入烧杯中,用天平称量烧杯和水的总质量m3。
(4)根据阿基米德原理,计算物体体积V = (m1 - m2) / ρ水,其中ρ水为水的密度。
(5)根据公式ρ = m1 / V,计算物体密度。
2. 比重瓶法(1)将已知体积的液体倒入比重瓶中,记录液体体积V0。
(2)将待测物体放入比重瓶中,用滴管调整液体体积,使比重瓶中的液体体积恢复到V0。
(3)将比重瓶中的液体倒入量筒中,记录液体体积V1。
(4)根据公式ρ = (V0 - V1) / V0 ρ液体,计算物体密度,其中ρ液体为液体密度。
五、实验结果与分析1. 流体静力称衡法实验数据如下:m1 = 50.0gm2 = 45.0gρ水= 1.0g/cm³计算得:V = (50.0g - 45.0g) / 1.0g/cm³ = 5.0cm³ρ = 50.0g / 5.0cm³ = 10.0g/cm³2. 比重瓶法实验数据如下:V0 = 100.0mlV1 = 95.0mlρ酒精= 0.8g/cm³计算得:ρ = (100.0ml - 95.0ml) / 100.0ml 0.8g/cm³ = 0.16g/cm³六、实验总结本次实验成功测量了待测物体的密度,掌握了流体静力称衡法和比重瓶法测量固体密度的原理和方法。
杨氏模量

【注意事项】
(1)加减砝码时要轻拿轻放,避免使码钩晃动。 (2)同一荷重下的两个读数要记在一起。增重与减重对应同一荷重下读数的平均值才是对应 荷重下的最佳值,它消除了摩擦(圆柱体与圆孔之间的摩擦)与滞后(加减砝码时钢丝伸长与缩短滞 后)等系统误差。
【思考题】
(1)两根材料相同,粗细、长度不同的钢丝,在相同的加载条件下,它们的伸长量是否一样? 杨氏模量是否相同? (2)有一个约 4 cm 长的压电陶瓷双晶片,加直流电压后,一片伸长,另一片收缩。将两片粘 在一起,一端固定,两侧施加几十伏直流电,则活动端将产生几十微米的横向位移,请你设计一
-3-
综合性实验
静态法测量杨氏模量
架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离) 。将测量结果填入数据记录表中。 (2)在望远镜中读出加有本底砝码时十字叉丝横线对应的标尺的某一刻度,记为 s 0 ,然后在 此基础上逐个增加砝码,在数据记录表中记下每加一个砝码时十字叉丝横线对应的标尺的刻度
'
s i' ,直到七个砝码加完为止。
1. S 的最佳值及不确定度的计算 (1) . S 的最佳值(用逐差法)
1 1 ; S 2 ( S 5 S1 ) 4 4 1 S4 ( S7 S3 ) ; 4 1 S ( S1 S 2 S 3 S 4 ) 4
S1 ( S 4 S0 )
s( D ) 6
(3). D 平均值的实验标准差: s( D )
(4). 千分尺的的示值极限误差: m 0.004mm (5). 合成不确定度: u( D )
2 2 uB S( D )2 ( uA
m
3
)2
-5-
综合性实验
大学物理实验补充材料0612修订版 (1)

实验4-6 空气比热容比的测定1、按照如下示意图连接电路,注意温度传感器AD590和测温电压表的正负极不要接错。
压力传感器直接连接测量空气压强的数字电压表。
2、利用传感器可将非电学量转换为电学量进行测量(阅读课本P82),如本实验中利用压力传感器和温度传感器将压强和温度转换为电压,利用数字电压表进行测量。
测空气压强的数字电压表用于测量超过环境气压的那部分压强,1KPa 的压强变化产生20mV 的电压变化。
温度传感器接6V 直流电源和5K Ω电阻后,可产生5mV/K (将课本中5mV/℃改为5mV/K )的信号电压,即1开尔文的温度变化产生5mV 的电压变化。
3、表4-6-1改为如下格式:表4-6-1 数据记录参考用表周围大气压强P 0/(105Pa)实验开始前测量的室温T 0/mV测量次数状态Ⅰ压强显示值 P 1/mV状态Ⅰ温度T 0/mV状态Ⅲ压强显示值P 2/mV状态Ⅲ温度T 0/mV状态Ⅰ气体 实际压强P 0+P 1/(105Pa)状态Ⅲ气体 实际压强P 0+P 2/(105Pa)γ正常关闭1 2 3提前关闭 推迟关闭说明:(1)开始实验前,预热仪器和调零后,将进气活塞和放气活塞都打开,记录此时测温电压表显示的室温T 0 。
周围大气压强值由实验老师告知。
(2)为便于比较实验结果,5次测量过程中,用打气球打气时,尽量将P 1控制在相同的值。
打气结束,将进气活塞也关闭,等待瓶内空气稳定。
(3)按照课本步骤3所述方法正常关闭活塞2测3次,提前和推迟关闭活塞2各测1次,提前和推迟的效果要明显一点。
(4)计算3次正常关闭活塞2时所得的γ的平均值和标准偏差。
4、完成课后思考题1、2,试给出理论证明。
5、 补充思考题:本实验中测空气压强的数字电压表灵敏度为20mV/Kpa ,当数字电压表显示为温度传感器 5K Ω电阻测温电压表..6V 直流电源200mV时,待测气体压强为P0+10Kpa。
根据测量温度的数字电压表计算温度值的方法与此类似,试根据实验开始前测量的室温T0计算环境的摄氏温度值。
大学物理实验报告材料-单摆测重力加速度.doc

大学物理实验报告材料-单摆测重力加速度.doc
单摆是在物理上常见的一个实验室现象,在物理实验中,它可以用来研究动能与惯性的转换,以及作用力的作用。
本次实验的目的是用单摆测量重力加速度。
实验原理:
在实验中,将被试悬吊在一根绳子上,它会随着时间发生频谱上的摆动,其频率为:$$ f = \frac{g}{2 \pi l} $$其中 g 是重力加速度,l 是绳子的长度。
根据这一定律,可以测得重力加速度 g。
实验装置:
实验的关键装置有绳子、悬挂架和被试者。
将绳子固定在悬挂架上,绳子的fixed端作为摆锤的支点,绳子的活动端由被试者拉动并悬挂在悬持架上。
由于被试者的重量,悬挂架及其附件会摆动,从而形成单摆运动。
实验流程:
(1)安装实验装置:将绳子安装到悬持架上,然后将被试者悬吊在悬持架上。
(2)测量频率:将时间计量器安装在悬持架上,将时间计量器的时间与摆动的周期测得并修正。
(3)测量长度:测量出绳子的长度。
(4)计算重力加速度:根据实验原理,根据相应的计算公式计算重力加速度的值。
实验结果:
实验中测量的绳子的长度为1.2m,测量的单摆运动周期为5s,根据上文提供的计算公式可得重力加速度g=9.83m/s²。
实验结论:
通过本次实验,可以用单摆测量重力加速度,测量值为9.83m/s²,与标准值9.8m/s²误差在可接受范围内。
实验结论证明,以单摆为例,可以研究惯性与动能之间的转换,以及重力加速度。
大学物理仿真实验具体操作指导

大学物理仿真实验具体操作指导示波器的调整和使用1.主窗口打开用示波器测时间仿真实验,主窗口如下:2.正式开始实验(1)操作界面如下:(2)测示波器校准信号周期连接示波器CH1和示波器校准信号。
校准信号为周期1KHz,峰峰值为4V的对称方波信号。
双击示波器,打开示波器调节界面:在示波器调节窗口中,左键单击示波器开关,打开示波器,进行示波器调节和校准。
调节电平旋钮,是信号稳定调节示波器聚焦旋钮和辉度旋钮使示波器显示屏中的信号清晰,调好后如下图。
调节CH1幅度调节旋钮和CH1幅度微调旋钮,校准信号显现为峰峰值为4V。
调节示波器时间灵敏度旋钮和扫描微调旋钮,校准信号周期显示为1KHz,调好后如下图。
至此,示波器校准结束(3)正式开始实验调节示波器时间灵敏度旋钮,使0.1 ms/cm。
界面如下:调节示波器时间灵敏度旋钮,使0.2 ms/cm。
界面如下:调节示波器时间灵敏度旋钮,使0.5 ms/cm。
界面如下:(4)选择信号发生器的对称方波接y输入(幅度和y轴量程任选),信号频率为200Hz~2kHz(每隔200Hz测一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率首先按照校准CH1的方法对CH2进行校准。
连接示波器CH2和信号发生器双击实验平台上示波器和信号发生器,打开示波器和信号发生器调节界面左键单击信号发生器“开关”按钮,打开信号发生器,信号频率为200Hz~2kHz(每隔200Hz测一次),调节信号频率,波形选择对称方波,选择示波器合适的时基,调节时间灵敏度旋钮,使信号满屏,测量对应频率的厘米数、周期和频率。
同时把示波器中的方式拨动开关调到CH2档上频率为200Hz(周期为5ms)时,界面图如下:(5) 选择信号发生器的非对称方波接Y轴,频率分别为200,500,1K,2K,5K,10K,20K,(Hz),测量各频率时的周期和方波的宽度。
以信号发生器的频率为x轴,示波器频率为y轴,作y-x曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长度测量本授课单元教学目标:1.了解游标卡尺、螺旋测微器的构造,掌握它们的原理,正确读数和使用方法。
2.学会直接测量、间接测量的误差计算与数据处理。
本授课单元教学重点和难点:1.掌握游标卡尺、螺旋测微器的构造原理,读数原理以及零点修正 本授课单元教学过程设计:1.引入本实验 2.实验原理 (1)游标卡尺①结构:游标卡尺主要由主尺和游标两部分构成。
游标尺主要由两部分构成(如图1-2),与卡口A 、A '相联的主尺D ,主尺按米尺刻度;与卡口B 、B ',及尾尺C 相联的游标尺E ,游标紧贴着主尺可滑动,尾尺C 用来测量槽的深度。
它们测量的数值都是由游标的0线与主尺0线之间的距离表示出来F 为固定螺丝。
②准确度:设游标卡尺上的每一刻度长为x ,主尺上每刻度长为y ,游标上有个分格m ,游标的总长与主尺上分格的总长相等,即:y m mx )1(-=主尺与游标上每个分格的差值为m y x y x =-=∆,x ∆称为该游标尺的准确度。
③读数:对于一般的情形,若游标0线在主尺上的位置读出mm 的整数位为K ,而付尺上的第n 根刻度线与主尺上的某一刻度线对齐,则待测物体的长度:)()(mm x n mm K L ∆⨯+=④0点修正:我们在用游标尺测量之前必须检查两个0线是否对齐,若由于某种原因两个0线没有对齐,而又要用该游标尺测量时,那就必须对测量结果进行修正。
这有两种情况:A 当卡口密合时,游标上的0线在主尺上的0线的右方,如图1-4(a), 且游标的第n 根刻度线与主尺上的某一刻度线对齐,这种情况下说明了在游标尺未测量物体之前尺上已经出现了mm mn+的读数了,这个读数就是0点修正值,所以在以后没测一次就应在读数上减去0点修正值,即测定植=读数-修正值[mm mn+] 游标卡尺结构示意图B 当卡口密合时,游标上0线在主尺0线左方,如图1-4(b),且且游标的第n 根刻度线与主尺上的某一刻度线对齐,这种情况下说明了在游标尺未测量物体之前尺上已经出现了mm mn)1(--的读数了,这个读数就是0点修正值,所以在以后没测一次就应在读数上减去0点修正值,即测定植=读数-修正值[mm mn)1(--](2)螺旋测微器①构造:由精密的微动螺旋杆和一螺旋套组成。
②准确度:螺旋杆可以在螺旋套内旋转,其螺距为mm 5.0,螺旋杆是和螺旋柄相连的,在柄上附有沿圆周的刻度,共有50个分格,当螺旋杆沿轴线方向前进)01.0(505.0mm mm 即,螺旋杆圆周刻度转过1个分格,即螺旋测微器的准确度x ∆为mm 01.0 ③读数:测量之前,应先把卡口闭合,检查是否有修正。
若不需,就可以开始测量了。
测量时,将物体放在卡口之间。
当螺旋杆离待测物理较远时可用微分筒;当螺旋杆快接近待测物体时,要用后面的小棘轮,直到听到“咔、咔”的声音。
然后观察微分筒边缘在固定标尺上的位置,mm 5.0整数部分由固定标尺上的刻度直接读出,小于mm 5.0的部分,则由固定标尺横线在微分筒上所在的位置上读出。
则待测物体的长度:)()(mm x z mm K L ∆⨯+= 其中K 为螺旋柄边缘在固定标尺所处位置的mm 5.0整数部分,z 为固定标尺横线在螺旋柄上所对应的位置,x ∆为螺旋测微器的准确度。
图 正修正值图负修正值78mm 183.4 mm 680.4 mm 982.1④0点修正:同理,在测量之前,一定要检查是否有0点修正值。
在测砧与测杆之间未放物体(小球)时,轻轻转动棘轮,待听到发出“咔、咔”的声音时即停止转动。
然后观察微分筒“0”线与固定标尺的横线是否对齐。
若未对齐,则此时的读数为零读数。
零读数有正、负,测量结果需予以修正。
同样有2种情况,如图1-7所示。
图 修正值mm d a 021.0)(=ο mm d b 028.0)(-=οA 当卡口密合时,螺旋杆的边缘尚未到达固定标尺的0线而且固定标尺横线在螺旋柄上所对应的位置为z ,这种情况下说明了在未测量物体之前尺上已经出现了[mm z 01.0⨯]的读数了,这个读数就是0点修正值,所以在以后没测一次就应在读数上减去0点修正值,即测定植=读数-修正值[mm z 01.0⨯]B 当卡口密合时,螺旋杆的边缘已超过固定标尺的0线而且固定标尺横线在螺旋柄上所对应的位置为z ,这种情况下说明了在未测量物体之前尺上已经出现了[mm z 01.0)50(⨯--]的读数了,这个读数就是0点修正值,所以在以后没测一次就应在读数上减去0点修正值,即测定植=读数-修正[mm z 01.0)50(⨯--](3)固体密度的测定 ①直接称衡法对于形状规则的物体,用游标卡尺或千分尺测量其线度,然后根据其体积公式计算它的体积;对于形状不规则、密度分布均匀的物体用量杯测它的体积,量杯读数时,应注意以液体中心面为读数基准,不能以液体与量杯接触交线为基准,同时眼睛位置应与液面相平。
②液体静力称衡法用量杯直接称衡体积其测量的准确度低,利用阿基米德原理测量的准确度可以大大提高。
阿基米德原理指出,物体在液体中减少的重量等于它所排开同体积液体的重量。
为此,用物理天平测得物体在空气中的质量1M (不考虑空气的浮力)和浸在水中(全部浸没)的质量2M ,则21M M -就等于物体同体积的水的质量,若实验时,温度为t ℃,该时水的密度为t ρ,则物体的体积为tM M V ρ21-=。
t M M M V M ρρ2111-==∴ (4)液体密度的测定①直接测量法:将密度计直接放在液体里面,观察液面在密度计所对应的刻线,所对应的刻线读数就是待测液体密度,直接读数即可测得液体密度。
注意不同的液体要用不同的密度计。
②称衡法(密度瓶法):在一定温度的条件下,密度瓶的容积是一定的,设密度瓶容积为V ,质量为1m ,装满待测的液体后其质量为2m ,则待测液体质量为:12m m m -=由此可得液体的密度为:图螺旋测微器读数示意图Vm m V m 12-==∴ρ3.实验内容(1)用游标卡尺测量圆柱体的直径和高各5次; (2)用螺旋测微器测钢珠或钢线的直径10次; 4.实验数据与数据处理(1)测圆柱体体积(误差计算)相对误差:%100⨯∆=ddE 结果表述:d d d ∆±=绝对误差()()1512--==∆∑=n h h h h i iσ相对误差: %100⨯∆=hhE 结果表述:h h h ∆±= 体积的测量结果:h d V 24π=相对误差:%1002⨯⎪⎭⎫⎝⎛∆+∆⨯=∆=h h d d V V E 绝对误差:E V V ⨯=∆ 结果表述:V V V ∆±=2、测钢珠直径仪器名称:螺旋测微器(mm 250-) 准确度:mm 01.0体积的测量结果:10101∑==i idd绝对误差: ()()11012--==∑=n d dd i iση相对误差:%100⨯=dE η结果表述:()mm d d =±=η5.思考题(1)游标卡尺的测量准确度为mm 01.0,其主尺的最小分度的长度为mm 5.0,试问游标的分度数(格数)为多少?以毫米作单位,游标的总长度可能取哪些值?(2)试述游标卡尺、螺旋测微器的零点修正值如何确定?测定值如何表示? (3)游标卡尺读数需要估读吗,为什么?(4)实验中所用的水是事先放置在容器里,还是从水龙头里当时放出来的好,为什么? (5)观察密度计刻度是否均匀,若不均匀,为什么? 本授课单元参考资料(含参考书、文献等,必要时可列出)(注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案;3. “重点”、“难点”、“教学手段与方法”部分要尽量具体;4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课,下同。
)实验二 单摆实验·【实验目的】1. 用单摆测量当地的重力加速度。
2. 研究单摆振动的周期。
·【实验仪器】FD-DB-Ⅱ新型单摆实验仪·【仪器介绍】1. 数字毫秒计停表计时是以摆轮的摆动周期为标准,数字毫秒计的计时是以石英晶片控制的振荡电路的频率为标准。
常用的数字毫秒计的基准频率为100kHz ,经分频后可得10kHz 、1kHz 、0.1kHz 的时标信号,信号的时间间隔分别为0.1ms 、1ms 、10ms 。
数字毫秒计上时间选择档就是对这几种信号的选择。
如选用1ms 档,而在测量时间内有123个信号进入计数电路,则数字显示为123,即所测量的时间长度是123ms 或0.123s 。
对数字毫秒计计时的控制有机控(机械控制,即用电键)和光控(光控制,即用光电门)两种。
光电门是对数字毫秒计进行光控的部件,它由聚光灯和光电二极管组成(图1),当光电管被遮光时产生的电讯号输入毫秒计,控制其计时电路。
控制信号又分为1S 和2S 两种,1S 是测量遮光时间的长度,遮光开始的信号使计时电路的“门”打开,时标信号依次进入毫秒计的计数电路,遮光终了的信号使计时电路的“门”关闭,时标信号不能再进入计数电路,显示的数值即遮光时间的长度。
使用2S 时,是测量两次遮光之间的时间间隔,第一次开始遮光时,计时电路和“门”打开,第二次再遮光时,“门”才关闭,显示的数值就是两次遮光的时间间隔。
一般测量多选用2S 档。
为了在一次测量之后,消去显示的数字,毫秒计上设有手动和自动置零机构,自动置零时还可调节以改变显示时间的长短。
当测完一次之后来不及置零时,则最后显示的是两次被测时间的累计。
图3是数字毫秒计面板的示意图,所用仪器的实际面板可参阅仪器说明书。
·【实验原理】(1)周长与摆长的关系:一根长为L 不能伸缩的细线,上端固定,下端悬挂一质量为m 的小球,设细线质量比小球质量小很多,可以将小球当作质点,将小球略微推动后,小球在重力作用下可在竖直平面内来回摆动,这种装置称为单摆,如图所示。
单摆往返摆动一次所需要的时间称为单摆的周期,可以证明,当摆幅很小时,单摆周期T 满足以下公式:gLT π2= (1) 当然,这种理想的单摆实际上是不存在的,因为悬线是有质量的,实验中采用了半径为r 的金属小球来代替质点。
所以,只有当小球质量远大于悬线的质量,而它的半径双远小于悬线长度时才能将小球作为质点来处理,并可由(1)式进行计算。
但此时必须将悬挂点与球心之间的距离作为摆长。
如固定摆长L ,测出相应的振动周期T ,即可由(1)式求g 。
也可以逐次改变摆长L ,测量各相应的周期T ,再求出2T ,最后在坐标纸上作出L T -2图。
如图是一条直线,说明2T 与L 成正比关系。
在直线上选到两点P1(L1,T12)和P2(L2,T22),由两点式求得斜率122122L L T T k --=;再从g k 24π=求得重力加速度,即:21221224T T L L g --=π (2) ·【实验内容与步骤】1) 调节好各实验仪器。