离散数学填空题及答案
《离散数学》试题及答案 2

《离散数学》试题及答案 2《离散数学》试题及答案2一、填空题1设子集a,b,其中a={1,2,3},b={1,2},则a-b=____________________;?(b)=__________________________.2.设有限集合a,|a|=n,则|?(a×a)|=__________________________.3.设子集a={a,b},b={1,2},则从a至b的所有态射就是_______________________________________,其中双射的就是__________________________.4.已知命题公式g=?(p?q)∧r,则g的主析取范式是_________________________________________________________________________________________.5.设g就是全然二叉树,g存有7个点,其中4个叶点,则g的总度数为__________,分枝点数为________________.6设a、b为两个集合,a={1,2,4},b={3,4},则从a?b=_________________________;a?b=_________________________;a-b=_____________________.7.设r就是子集a上的等价关系,则r所具备的关系的三个特性就是______________________,________________________,______________________________ _.8.设命题公式g=?(p?(q?r)),则使公式g为真的解释有__________________________,_____________________________,__________________________.9.设子集a={1,2,3,4},a上的关系r1={(1,4),(2,3),(3,2)},r1={(2,1),(3,2),(4,3)},则r1?r2=________________________,r2?r1=____________________________,r12=________________________.(a)-10.设有限集a,b,|a|=m,|b|=n,则||?(a?b)|=_____________________________.11设a,b,r是三个集合,其中r是实数集,a={x|-1≤x≤1,x?r},b={x|0≤x<2,x?r},则a-b=__________________________,b-a=__________________________,a∩b=__________________________,.13.设子集a={2,3,4,5,6},r就是a上的相乘,则r以子集形式(列出法)记作__________________________________________________________________.14.设一阶逻辑公式g=?xp(x)??xq(x),则g的前束范式是_______________________________.15.设g就是具备8个顶点的树,则g中减少_________条边就可以把g变为全然图。
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学-试卷答案

山东大学继续(网络)教育学院试卷课程名称:离散数学课程代码:0006610024考试说明:一、填空题(本大题共10小题,共64分)1.一个图是欧拉图是指:图中包含一条_回路__经过图中_每条边___一次且仅一次。
(8.0分)2.完全m叉树中有l片叶,i个分支点,则有它们之间的关系表达式是______。
(4.0分)3.假设P:我们划船,Q:我们跑步。
命题:“我们既划船又跑步”的符号化为__P∧Q___。
(4.0分)4.假设P(x):x是生物,Q(x):x要呼吸,命题“所有的生物都要呼吸”符号化为__Vx(P(x)→Q(x))____。
(4.0分)5.一个代数系统是群的条件是:运算是_封闭的、可结合__的,存在_幺元___,每个元素都有逆元。
(8.0分)6.设,A上的二元运算*定义为:,(4.0分)则在含幺半群中,单位元是__2__。
7.假设,,(16.0分)(1)___{1,2,3,5}___;(2)___{1,3,5,7,11,13,17,19}___;(3)_{7,11,13,17,19}_____;(4)__Ø____;8.设无向图G有12条边,有3个3度的顶点,其余顶点度数均小于3,则G中至少有__11____个顶点。
(4.0分)9.一棵树有2个2度顶点,1个3度顶点,3个4度顶点,则有_9_____片叶。
(4.0分)10. 假设R和S是A集合上的任意关系,若R和S是__自反____的,则R。
S也是___自反___的。
(8.0分)二、综合题(本大题共2小题,共36分)1.假设N是自然数集合,定义上的二元关系R。
证明:R是一个等价关系,并求出关系R所确定的等价类。
2.令V={a,b,c,d,e},E={aa,ab,ab,ba,cd,ca,dd,de},A={<a,a>,<a,b>,<b,a>,<c,d>}做出图G=<V,E>和D=<V,A>的图示。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
大学试卷《离散数学》及答案.docx

离散数学一、填空题(本大题共48分,共16小题,每小题3分)1.--公式为之充分必要条件是其合取范式之每一合取项中均必同时包含一命题变元及其否定2.无向图G具有是生成树,当且仅当的,若G为(n,m)连通图,要确定G的一棵生成树必删掉G的条边。
3.一个无向图的欧拉回路要求经过图中一次且仅一次,汉密顿图要求经过图中一次且仅一次。
4.设P:我生病,Q:我去学校(1)命题“我虽然生病但我仍去学校”符号化为o (2)命题“只有生病的时候,我才不去学校”符号化为o (3)命题"如果我生病,那么我不去学校”符号化为o5.设有33盏灯,拟公用一个电源,则至少需要5个插头的接线板数6.若HlAH2A-AHn是 ,则称Hl, H2, -Hn是相容的,若HlAH2A-AHn是 ,则称H1.H2, -Hn是不相容的7.设f,g,h 是N 到N上的函数(N 为自然数集合),f(n)=n+l;g(n)=2n;h(n)=0;贝lj(fdg)oh=8.K5的点连通度为 ,边连通度为o9.A={1, 2, 3, 4, 5, 6, 8, 10, 24, 36}, R 是A 上的整除关系。
子B={1, 2, 3, 4},那么B的上界是; B的下界是;:6的上确界是; B的下确界为10.命题公式P-*QAR的对偶式为11.设入={1, {2}, <t>},则A的幕集有元素个。
12.设A={0, 1,2, 3}, B={4,6, 7}, C={8, 9, 12, 14}, R1 是由A 到B 的关系,R2 是由B到C原关系,分别定义为Rl={<2, 6>, <3, 4>, <0, 7>} ;R2={<4, 8>, <4, 12>, <6, 12>,〈7, 14〉},则复合关系RloR2 为:13.设A= {<i)}, B={<t>, (<!>}},贝i]P(A) nP(B)= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学填空题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
谓词公式x(P(x)yR(y))→Q(x)中量词x的辖域是()。
答:P(x)yR(y)
2
)
(
)))
(
(
(S
R
P
R
Q
P⌝
∨
→
⌝
∧
→
∨
⌝的真值= ()。
题
10公式P
R
S
R
P⌝
∨
∧
∨
∧)
(
)
(的主合取范式为()。
答:)
(
)
(R
S
P
R
S
P∨
⌝
∨
⌝
∧
∨
∨
⌝填
空
题
2 2.
3 4
11设A={1,2,3,4},A上关系为{<1,2>,<2,1>,<2,3>,<3,4>}则R2 = ( )。
答:{<1,1>, <1,3>, <2,2>, <2,4> } 填
空
题
2 4.1;
4.2
3
12设A={a,b,c,d},其上偏序关系R的哈斯图为
则 R= ()。
答:{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A填
空
题
2 4.4 4
13树是不包含树是不包含()的()图的。
答:环;无向填
空
题
2 8.1 3
14设A={1,2,3},则A上既不是对称的又不是反对称的关系R= ( )。
答:R={<1,2>,<1,3>,<2,1>} 填
空
题
2 4.
3 3
15设 f,g是自然数集N上的函数x
x
g
x
x
f
N
x2
)
(
,1
)
(
,=
+
=
∈
∀,则=
)
(x
g
f ()。
答:2(x+1) 填
空
题
2 5.2 3
16设A={a,b,c},A上二元关系R={< a, a > , < a, b >,< a, c >, < c,
c>} , 答:
}
a,c
,
a,b
,
c,c
,
c,a
,
b,a
,
a,a
{>
<
>
<
>
<
>
<
>
<
>
<
填
空
题
2 4.4 5
3
4
24
有向图中从v1到v2长度为2的通路有()条。
答:2 填
空
题
2 6.
3 3
25设]
,
,
[⊕
⊗
L是代数系统,则]
,
,
[⊕
⊗
L满足幂等律,即对L
a∈
∀有()。
答:a
a
a
a
a
a=
⊕
=
⊗且填
空
题
2 8.2 4
26任何(n,m) 图G = (V,E) , 边与顶点数的关系是()。
答:∑
∈
=
V
v
m
v
d2
)
(填
空
题
2 6.4 3
27当n为()时,非平凡无向完全图K n是欧拉图。
答:奇数填
空
题
2 6.2 3
28已知一棵无向树T有三个3顶点,一个2度顶点,其余的都是1度顶点,则T中有()个1度顶点。
答:5 填
空
题
2 7.1 3
29集合A={Φ,{Φ}}的幂集P(A) =()。
答:}}}
{,
{
}},
{{
},
{,
{Φ
Φ
Φ
Φ
Φ填
空
题
2 1 3
30设|A|=3,则A上有()个二元关系。
答:29填
空
2 4.1 3
5
6
7
8
9
10
P(G-S)( )S 成立,
63 某班有学生50人,有26人在第一次考试中得优,有21人在第二次考试中得优,有17人两次考试都没有得优,那么两次考试都得优的学生人数是( )。
答:14
填空题 2 1 3
64 给命题变元p 、s 和r 指派真值1,q 指派真值0,公式p →(┐(s ∧r)→┐q)∧s)的真值为( )。
答:1
填空题 2 2.1;2.2 3 65 设p :我生病,q :我去上课,命题“我虽然生病但我还是去上课”符号化为:( )。
答:q p ∧
填空题
2 2.1;2.2
3 66 公式∀xA(x)→∃x B(x)的前束范式为( )。
答:))()(())()((x B x A x x B x A x ∨⌝∃→∃或
填空题
2 3.2
4 67 若{1,2,3,4}上的二元关系R={<1,1>,<1,2>,<2,4>},则R 的自反闭包r(R )=( )。
答:r(R)={<1,1>,<1,2>,<2,4>,<2,2><3,3>,<4,4>}
填空
题 2 4.1;4.2 4
68 有向图D 如下,则D 的邻接矩阵A(D) =( )。
答:⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡0010100011001010 填空题 2 6.3 3 69 5阶的群有( )个不同的子群。
答:2
填空
2 8.3
4
11
79若集合A={1, 2, 3}上的二元关系R1和R2的关系图如下所示,则R1oR2 =()。
答:r(R)=
{<1,1>,<1,2>,<2,4>,<2,2><3,3>,<4,4>}
填
空
题
2 4.1;
4.2
3
80树是平面图,它有()个面。
答:1 填
空
题2 6.1;
7.1
3
81哈密尔顿回路要求经过图中()一次且仅一次。
答:每个顶点填
空
题
2 6.4 3
82有向图D如下:D的邻接矩阵A=(aij)3×3,则a11=(),a32=()。
答:1,0 填
空
题
2 6.
3 3
83在一棵根树中,仅有一个结点的入度为(),称为树根,其余结点的入度均为()。
答:0,1 填
空
题
2 7.2 3
84合式公式Q→(P∨(P∧Q))与Q→P的关系是_______的。
(等价或蕴含选一)答:等价填
空
题
2 2.2;
2.3
3
85设R为非空集合A上的二元关系,如果R满足(),则称R 为A上的一个偏序关系。
答:自反、反对称、传递填
空
题
2 4.
3 3
86设R为A上的关系,则R的自反闭包r(R)=(),对称闭包答:R⋃I x, R⋃R c填
空
2 4.
3 4
12
13
14。