浅谈地铁直流牵引供电系统保护
地铁直流牵引供电系统保护配合的探讨

地铁直流牵引供电系统保护配合的探讨在地铁牵引供电系统的运行过程中,保护配合是非常必要的,可以有效保证系统的可靠性和安全性。
本文就地铁牵引供电系统保护配合的探讨进行阐述。
1.地铁牵引供电系统的概述地铁牵引供电系统是地铁的核心运行系统,主要由电源系统、接触网系统、集电系统、牵引变流器、马达等组成。
其中,接触网系统和集电系统是牵引供电的两个关键环节,电源系统则是为牵引供电系统提供电能的基础设施。
地铁牵引供电系统需要采取多种保护措施,以确保系统的稳定运行。
其中,保护措施主要分为以下几种类型。
(1)过电压保护过电压保护是指通过合理的过电压保护措施,避免电压超过系统承受能力而对设备造成的损害。
主要用于保护牵引变流器等设备。
欠电压保护是指在电网电压骤减或突然中断时,将系统设备的负载从电网上隔离,以避免系统的崩溃。
主要用于保护牵引马达和牵引变流器等设备。
电流保护是指在电流异常或超额时,对设备进行保护,避免其烧毁或损坏。
主要用于保护接触网系统等设备。
地铁牵引供电系统的保护配合,主要是指各种保护措施在整个系统中的相互配合和整合。
保护配合主要分为以下两个方面。
(1)保护相互配合保护相互配合是指各种保护措施在系统中相互配合,协同作用。
例如,在过电压保护和欠电压保护之间,需要建立相应的调节装置,在电网电压超载或低电时,将自动切断电源,保护系统设备。
(2)保护统一整合保护统一整合是指将各种保护措施整合到一起,方便系统的操作和维护。
例如,各种保护措施在接地电阻等方面应统一标准,以便于操作和维护。
地铁牵引供电系统直流馈线保护技术探讨

地铁牵引供电系统直流馈线保护技术探讨地铁作为城市中重要的公共交通工具,承载着大量乘客的出行需求,因此地铁的安全运行显得格外重要。
地铁牵引供电系统直流馈线保护技术作为保障地铁线路安全运行的重要组成部分,受到越来越多的关注和重视。
本文将探讨地铁牵引供电系统直流馈线保护技术的相关内容,并对其进行深入分析。
一、地铁牵引供电系统直流馈线的特点地铁牵引供电系统是指为地铁牵引系统提供电能的系统,通常采用直流供电。
直流供电系统具有电流大、电压高、线路长等特点,因此在运行过程中需要保持供电系统的稳定性和安全性。
而地铁牵引供电系统的直流馈线作为供电系统的核心部分,更是需要特别的保护措施来确保其安全运行。
二、直流馈线保护的原理直流馈线保护是指对直流馈线故障进行检测和隔离,以保护供电系统的安全运行。
直流馈线保护系统通常包括过电压保护、过流保护、接地保护等功能。
过电压保护是指当直流馈线出现过电压情况时,保护装置可以及时检测并隔离故障区段,以防止故障扩大。
过流保护则是指当直流馈线出现过大的电流时,保护装置可以及时切断电源,避免过载损坏线路设备。
接地保护则是指当直流馈线出现接地故障时,保护装置可以及时对故障线路进行隔离,保护设备和人员的安全。
三、直流馈线保护技术的现状目前,地铁牵引供电系统直流馈线保护技术已经取得了很大的进步。
采用了数字化、智能化的保护装置,能够实现对直流馈线各种故障的快速检测和精准定位,大大提高了供电系统的可靠性和稳定性。
保护装置的自动化和远程监控功能也使得整个保护系统更加智能化,减少了人为操作的失误,保证了地铁供电系统的安全运行。
四、直流馈线保护技术的挑战与展望虽然地铁牵引供电系统直流馈线保护技术已经取得了显著的进步,但仍然面临着一些挑战。
一是随着地铁线路的不断扩建和运营规模的不断扩大,供电系统的复杂性和多样性也在不断增加,对保护技术提出了更高的要求;二是在城市密集区域,地铁线路往往与其他设施交叉,导致地铁供电系统的影响因素更加复杂,对保护技术的鲁棒性提出了更高要求。
地铁牵引供电系统直流馈线保护技术探讨

地铁牵引供电系统直流馈线保护技术探讨地铁是现代城市的重要交通工具之一,在大城市中扮演着重要的角色。
地铁运行过程中,安全问题尤其重要。
而其中牵引供电系统的保护更是不可忽视的因素。
本文将就地铁牵引供电系统直流馈线保护技术进行探讨。
一、地铁牵引供电系统概述地铁牵引供电系统是地铁运行必须的交流变直流设备,它是将市电交流电源通过变电设备,经过直流线路、配电系统提供给地铁车辆牵引用的直流电源装置。
地铁车辆牵引一般都采用直流电机。
地铁牵引供电系统通常由变电所、接触网、牵引变压器、整流装置、直流馈线、配电设备等组成。
其中直流馈线作为地铁的供电主干线,保护起着至关重要的作用。
馈线保护系统能够确保地铁牵引供电系统的正常运行,避免电力故障引起的设备损坏和安全隐患。
地铁牵引供电系统的直流馈线保护系统一般采用保护继电器。
常见的直流保护继电器有过流保护、接地保护、短路保护、过电压保护等多种技术。
1、过流保护技术过流保护是最基本的保护技术之一,通常采用电流互感器直接检测馈线电流进行保护。
当馈线出现短路等故障时,馈线电流会明显增大,超过设定值时,保护继电器会立即动作,切断故障点与其它设备的电源。
接地保护是指当馈线出现电气绝缘失效导致板车接地时需要保护的措施。
地铁牵引供电系统中的接地保护,一般采用地线电流互感器及差动电流互感器,检测馈线接地电流,实现对输电线路上的单相接地短路故障的精确定位。
短路保护是指当馈线发生短路、地接短路等故障时,通过短时距保护装置尽快把故障隔离,以避免故障扩大。
地铁牵引供电系统短路保护通常采用速断器、接触器等设备。
当馈线发生短路时,速断器迅速切断馈线电路,保护系统隔离。
过电压是指直流馈线的电压超过规定值的情况,这种情况下可以采用过电压保护技术进行保护。
过电压保护技术一般采用过电压继电器,通过检测馈线电压,当馈线电压超过规定阀值时,保护继电器会自动动作,切断馈线电路,隔离设备。
以上介绍了地铁牵引供电系统直流馈线保护技术的一些基础内容,它们的应用可以确保地铁的正常运行和安全。
地铁直流牵引供电系统保护

地铁直流牵引供电系统保护地铁直流牵引供电系统保护是地铁运营中的关键环节,其功能是防止系统的电气故障和管线故障,确保系统的安全稳定运行。
下文将从保护原理、保护措施和保护应用三个方面,进行详细介绍。
保护原理地铁直流牵引供电系统保护主要是针对系统的电气故障进行保护。
保护原理是依据牵引供电系统的运行特点和故障情况,通过检测、判断和调节等技术手段,对系统进行快速自动保护。
具体来说,保护系统需要完成以下几项任务:1. 检测设备状态:通过对电气设备进行监测,判断设备是否正常工作,如果发现故障,就要及时采取措施,避免事故的发生。
2. 检测运行状态:通过检测电气系统的电压、电流和频率等参数,了解系统的运行状态,以便及时采取措施予以调整。
3. 快速分析故障:通过分析电气系统的故障情况,判断故障的类型和具体位置,并尽快采取应对措施,以避免事故的发生。
4. 自动保护处理:通过通过设置保护设备和保护电路等措施,将发生故障的线路自动断开,实现故障的隔离和保护。
保护措施地铁直流牵引供电系统的保护措施一般包括以下几个方面:1. 电源保护:地铁直流牵引供电系统需要有可靠的保护方案,能够及时检测和隔离电源发生的电气故障,保障系统的供电安全。
2. 电缆保护:地铁直流牵引供电系统的电缆也需要进行保护,以避免电缆的故障对整个系统产生负面影响。
主要包括电缆头保护、电缆穿过隧道保护、电缆接地保护等。
3. 输电线路保护:地铁直流牵引供电系统输电线路需要保护,主要包括过流保护、过载保护、接地保护、距离保护、差动保护等。
4. 电力电子设备保护:地铁直流牵引供电系统中的电力电子设备非常重要,需要采取相应的保护措施,以避免电力电子器件故障对整个系统产生负面影响。
主要包括温度保护、过流保护、过压保护、欠压保护等。
保护应用在地铁运营中,保护应用非常重要,通常需要采用一些现代化的保护技术。
具体包括以下几个方面:1. 微机保护技术:采用微处理器、检测、保护等技术,实现电气设备的保护和维护。
地铁牵引供电系统直流馈线保护技术探讨

地铁牵引供电系统直流馈线保护技术探讨随着城市交通的发展,地铁成为了现代城市交通的重要组成部分。
地铁的牵引供电系统是地铁系统中的重要组成部分,直流馈线是地铁牵引供电系统中的一个重要部分,其保护技术的研究和应用对于地铁系统的安全运行具有重要意义。
本文将对地铁牵引供电系统直流馈线保护技术进行探讨,旨在进一步提高地铁系统的安全性和可靠性。
一、地铁牵引供电系统直流馈线概述地铁牵引供电系统是为了满足地铁列车的牵引、制动和辅助设备的用电需求而设计的,它是地铁牵引系统的重要组成部分。
而直流馈线则是地铁牵引供电系统中的一种供电方式,主要用于地铁列车的牵引和制动。
直流馈线一般由接触网、馈线和地下隧道等部分组成,通过接触网向列车提供电能,通过馈线和地下隧道将电能输送到地铁列车上,从而满足地铁列车的牵引和制动需求。
地铁牵引供电系统直流馈线的特点是电压高、电流大、线路长,因此面临着一系列保护问题。
过流、过压、短路、接地故障等故障是直流馈线常见的故障类型。
为了确保地铁系统的安全稳定运行,保护直流馈线的安全和可靠性显得尤为重要。
二、直流馈线保护技术现状目前,地铁牵引供电系统直流馈线的保护技术已经获得了长足的发展。
主要体现在以下几个方面:1. 故障检测技术故障检测技术是保护直流馈线的关键技术之一。
目前常用的故障检测技术包括差动保护、远方终端保护、故障传输及单相自复位技术等。
差动保护是应用最为广泛的一种技术,通过对比两端电流的差值来判断故障位置,能够快速准确地定位故障点。
远方终端保护则是通过远方终端的电压和电流信息来判断故障位置,可以有效地提高保护的速度和准确性。
而故障传输及单相自复位技术则是通过传输故障信息和自动恢复技术来提高保护的可靠性和自动恢复能力。
故障处理技术是保护直流馈线的重要组成部分。
目前,常用的故障处理技术包括自动断电技术、手动断电技术、远程切换技术等。
自动断电技术是应用最为广泛的一种技术,通过对故障信息的判断,自动进行断电处理,能够减少故障对系统的影响,提高系统的可靠性。
浅析地铁直流牵引供电系统中框架保护

浅析地铁直流牵引供电系统中框架保护在地铁直流牵引供电系统中,为了给机车提供DC1500V电源,每个牵引降压变电所内设有两套整流机组(整流变压器+整流器),将电压等级为35kV的交流电源转换为DC1500V电源送到直流母排,直流母排通过馈线断路器向接触网供电。
而接触网采用双边供电方式,在每个区间内的接触网由两个变电所供电。
地铁直流牵引供电系统的安全可靠运行是列车安全运行的前提和保证。
而直流牵引供电系统设的框架保护其主要功能是将直流设备内发生的短路故障迅速切除,防止故障点以外的部位受牵连,确保列车、设备、乘客的人身安全。
一、框架保护的作用地铁直流供电系统设备采用绝缘安装,当直流设备内的1500V正极对设备外壳发生泄漏或直流带电设备对直流柜柜体发生泄漏以及绝缘损坏闪络时,如不及时切除,容易造成短路电流达几万安的正极对负极间的短路事故,不仅会对直流设备造成严重危害,而且也威胁到人身安全。
基于直流设备安全供电的考量,将直流设备内发生的短路故障迅速切除,直流供电系统设置了直流框架保护,框架保护就是当正极对柜体外壳发生绝缘损坏时,及时切除故障,保证系统的安全运行。
一般情况下,框架泄漏保护动作后,将使本牵引变电所直流断路器及相邻牵引变电所向相同供电区段供电的馈线断路器跳闸,并闭锁合闸。
此时,为了恢复地铁列车的供电,应及时退出本牵引变电所直流设备,复归框架泄漏保护动作信号,通过接触网越区隔离开关合闸,实现相邻牵引变电所对故障变电所供电区域接触网的供电。
因此,框架泄漏保护动作会造成大面积的牵引网停电,且隔离故障恢复送电时间长,对地铁运营影响大。
二、框架保护的应用地铁直流供电系统均设置有框架保护。
框架泄漏保护装置由电流元件和电压元件组成。
电流元件可检测直流设备由外壳至接地网的故障泄漏电流;电压元件测量直流设备外壳与直流设备负极之间的电压,一端接直流设备外壳,另一端接直流系统负极,即电流型框架保护。
电压元件检测到的电压等价于钢轨和地之间的电压,即电压型框架保护。
地铁牵引供电系统直流馈线保护技术探讨

地铁牵引供电系统直流馈线保护技术探讨地铁作为大城市的主要交通工具之一,在城市建设和发展中具有非常重要的作用。
而地铁的牵引供电系统则是地铁运行的关键部分,直流馈线保护技术是地铁牵引供电系统安全运行的基础。
本文将探讨地铁牵引供电系统直流馈线保护技术的相关问题。
地铁牵引供电系统的直流馈线保护技术主要包括过流保护、短路保护、接地保护和过电压保护等方面。
过流保护是指当馈线上出现过大的电流时,保护装置将断开故障回路,以防止设备损坏和事故发生。
短路保护是指当馈线出现短路故障时,保护装置能够及时检测到故障,并迅速切除故障部分,保证系统的安全运行。
接地保护是指当馈线接地故障发生时,保护装置能够及时检测到故障,并切除接地故障点,避免电气设备损坏和人身伤害。
过电压保护是指当馈线上出现过高的电压时,保护装置将断开故障回路,以保护设备安全。
在具体实施中,地铁牵引供电系统直流馈线保护技术需要结合地铁牵引变电所的具体情况来设计。
首先需要考虑到地铁牵引变电所的技术性能和规模,确保保护装置的准确性和可靠性。
其次还需要考虑到地铁线路的复杂性和长度,以确定保护装置的类型和数量。
还需要考虑到不同故障类型的可能性,例如短路、接地等故障,以选择合适的保护方法和装置。
在保护装置的选择和设置过程中,需要遵循相关的国家标准和规范。
地铁牵引供电系统直流馈线保护技术的研究对于提高地铁系统的运行安全性具有非常重要的意义。
只有保护装置能够及时准确地检测故障并切除故障回路,才能避免设备损坏和事故发生。
需要加强对直流馈线保护技术的研究和应用,提高地铁系统的安全性和可靠性。
还需要加强对保护装置的定期检测和维护,确保其性能和可靠性。
还需要保持与其他系统的同步配合,以实现整个地铁系统的安全运行。
地铁直流牵引供电系统保护配合的探讨

地铁直流牵引供电系统保护配合的探讨【摘要】地铁直流牵引供电系统的保护配合是确保地铁运行安全和稳定的重要环节。
本文首先分析了地铁直流牵引供电系统保护配合的重要性,强调其在确保列车安全运行中的关键作用。
接着对目前地铁直流牵引供电系统保护配合的现状进行了深入分析,指出存在的问题和挑战。
然后详细探讨了地铁直流牵引供电系统保护配合的关键技术,包括智能监控和故障诊断等方面。
在此基础上,提出了地铁直流牵引供电系统保护配合的应对措施,包括加强设备维护和提高人员培训等方面。
对地铁直流牵引供电系统保护配合的效果进行评估,总结出必须持续改进和完善保护配合措施。
通过本文的研究,可以更好地了解并优化地铁直流牵引供电系统的保护配合,为地铁运行提供更加安全可靠的保障。
【关键词】地铁直流牵引供电系统,保护配合,重要性,现状分析,关键技术,应对措施,效果评估,结论1. 引言1.1 引言地铁直流牵引供电系统是地铁运行中至关重要的一个系统,它为地铁列车提供了稳定的电力供应。
在地铁直流牵引供电系统中,保护配合是至关重要的一环。
保护配合可以有效地保护系统免受电力故障或者其他外部因素的影响,确保地铁列车的安全运行。
本文将对地铁直流牵引供电系统保护配合进行探讨,分析其重要性、现状、关键技术、应对措施以及效果评估。
通过本文的研究,我们可以更加全面地了解地铁直流牵引供电系统保护配合的关键技术和应对措施,为地铁运行的安全提供更加有效的保障。
我们将对地铁直流牵引供电系统保护配合的效果进行评估,总结出结论,并提出未来的发展建议。
2. 正文2.1 地铁直流牵引供电系统保护配合的重要性地铁直流牵引供电系统是地铁运行的重要组成部分,直流牵引供电系统的保护配合工作至关重要。
地铁直流牵引供电系统需要稳定的电力供应才能保障地铁列车的正常运行,而保护配合系统可以及时检测并处理电力系统的故障,确保系统的可靠性和稳定性。
地铁直流牵引供电系统保护配合系统可以有效地预防事故的发生,减少可能的安全隐患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈地铁直流牵引供电系统保护◆岳宏波 南京地下铁道运营分公司 【摘 要】随着地铁系统的快速发展,直流牵引供电系统得到了越来越广泛的应用,研制高性能和可靠的直流保护是十分紧迫的。
本文介绍了地铁直流牵引供电系统中采用的几种直流馈线保护方法。
【关键词】直流 保护 地铁 随着我国国民经济的持续发展,城市交通日趋紧张。
而地铁成为解决大中城市交通拥挤问题的最佳方案。
在地铁牵引供电系统中有以下几种主要的直流馈线保护:大电流脱扣保护、di/dt电流上升率及电流增量保护、过流保护、双边联跳保互、接触网热过负荷保护、自动重合闸保护。
针对目前国内地铁直流馈线保护方法不是很成熟,本文介绍了地铁直流牵引供电系统中采用的几种直流馈线保护方法,详细分析了大电流脱扣保护。
di/dt电流上升率及电流增量保护、过流保护、双边联跳保护、接触网热过负荷保护,自动重合闸保护的基本保护原理,并举例说明了如何通过对电流上升率,电流增量I和电流上升持续时间t的测量来区分故障情况和正常运行情况。
地铁直流牵引供电系统的保护,可以分为两部分:牵引整流机组保护和直流馈线保护。
牵引供电系统保护的最大特点就是系统的“多电源”和保护的“多死区”。
所谓多电源,既当牵引网发生短路时,并非仅双边供电两侧的牵引变电所向短路点供电,而是全线的牵引变电所皆通过牵引网向短路点供电。
所谓多死区,是因牵引供电系统本身构成的特点和保护对象的特殊性而形成保护上的“死区”。
任何保护的最基本要求就是当发生短路故障时,首先要迅速“切断电源”、“消除死区”,针对这两点,牵引供电系统除交流系统常用的保护外,还设置了牵引变电所内部联跳、牵引网双边联跳、di/dt△I等特殊保护措施,这就可以完全满足牵引供电系统发生故障时切断电源、消除死区的要求。
一、大电流脱扣保护牵引供电系统可能发生各种故障和不正常运行状态,最常见的、同时也是最危险的故障就是发生各种形式的短路。
当被保护线路上发生短路故障时,其主要特征就是电流增加和电压降低。
利用这两个特征,可以构成电流电压保护。
本文重点介绍馈线保护的主保护及后备保护。
该保护属于开关自带,用于切断大的短路电流。
大的短路电流对线路会造成巨大的损坏,故大的短路电流一出现应立即切断,其切断时刻应在其达到电流峰值之前。
二、电流上升率保护(di/dt)和电流增量保护(A I)该保护作为地铁馈线保护的主保护,他既能切除近端短路电流,也能切除大电流脱扣保护不能切除的故障电流较小的远端短路故障。
该保护克服了单独di/dt保护受干扰而误动,以及保护存在拒动现象的缺点。
保护动作特性分为两部分,瞬时跳闸和延时跳闸,其中谁较早激活就由谁决定跳开高速直流断路器。
延时跳闸元件主要起识别远端短路电流并跳闸的作用。
保护原理是在运行当中,保护装置不断检测电流上升率。
当电流上升率在给定的时间T1内高于保护设定的电流上升率F时,di/dt保护启动,进入延时阶段。
若在整个延时阶段,电流的上升率都高于保护的整定值,则保护动作;若在延时的阶段,电流上升率回落到保护整定值之下,则保护返回。
在di/dt保护启动的同时△I保护也启动进入保护延时阶段,从△I保护启动的时刻开始继电器以启动时刻的电流作为基准点计算相对电流增量。
若电流上升率一直维持在di/dt保护整定值之上,在达到△I延时值后,电流增量达到△I保护整定值,则保护动作。
在计算电流增量的过程中允许电流上升率在相对较短的时间内回落到di/dt保护整定值之下。
只要这段时间不超过di/ dt返回延时整定值,则保护不返回;反之保护返回。
是保护的动作特性。
为△I延时整定值。
当检测到的电流增量小于K时,可以肯定不是故障情况;若大于K则有可能是故障情况,需检测其他参数(如t或)来进一步判断。
对于远端故障电流由于其上升的速率比近端的慢,峰值也小很多,通常与列车启动或通过接触网分段时的电流瞬时峰值相近,甚至小于该电流。
所以远端故障电流与列车启动电流的区分是变电所直流保护的难点。
三、过流保护可作为上述两种保护的后备保护。
在保护控制单元预先整定电流值和时间值。
当通过直流馈线短路的电流值在预先设定的时间内超过预订值时,过流保护装置动作使直流馈线断路器跳闸来清除故障。
四、双边联跳保护双边联跳保护是为了更加安全的向接触网供电,在故障情况下确保相邻变电所可靠跳闸而增设的后备跳闸装置。
在无故障的情况下,两变电所同时向接触网供电,如果有短路情况发生,则距离短路点较近变电所A的馈线保护的出/dt瞬时保护或速断保护先动作,同时向本站联跳装置发一个跳闸信号,并通过站间联络向另一变电所联跳装置发送跳闸信号,较远变电所B经过一段延时,通过di/df延时保护或过流保护也动作,但是比联跳装置的跳闸信号先动作。
这种情况联跳作为后备保护。
在故障情况下,变电所B退出运行并通过隔离开关由相邻变电所C越区供电时,同样还是上述情况,变电所A的保护先动作,由于短路点距变电所C较远,该变电所相应保护可能不动作(视短路情况),而联跳装置则比较可靠,只要变电所A保护跳闸,变电所C经变电所B接收跳闸信号,使开关跳闸,此时双边联跳保护就比较重要。
五、接触网热过负荷保护该保护作为电流上升率保护的辅助保护,当直流线路处于过负荷状态时,即使没有任何短路故障发生,接触线或进线电缆的温度也会上升,当热过负荷电流流过时,该电流虽不至引起巨大的破坏,但此电流持续时间长了,其产生的热量会超过某些薄弱设备所允许的发热量,引起这些设备不同程度的损坏。
动作原理是接触网热过负荷保护主要是根据接触网的电阻率、电阻率修正系数、长度、横截面积、电流,计算出接触网的发热量,再根据接触网和空气的比热等热负荷特性及通风量等环境条件,由经验公式给出接触网的电缆温度。
当测量的电缆温度超出规定值便发出报警,跳闸命令,从而达到保护接触网的目的。
该保护的对象是接触网。
接触线有其自身固有的热特性,是一条以电流为变量的反时限曲线。
这就要求保护装置整定的曲线与接触线的固有曲线进行配合。
同时,保护装置的整定曲线还应与馈线的电流保护进行配合。
六、自动重合闸使用自动重合闸的目的是为了在瞬时性故障消除后使线路重新投入运行,从而在最短的时间内恢复整个系统的正常运行状态。
对于直流牵引系统,经常会发生短路而使过流脱扣器经常动作。
但由于大部分短路故障是短暂的,所以使用自动重合闸系统可提高系统的可靠性。
断路器每隔一段时间(时间长短可调节)重合闸一次。
如果重合闸的次数超过预定的次数,合闸仍不成功,则认为是永久性故障,闭锁重合闸回路。
综上所述,地铁直流馈线保护还可能有框架泄漏保护、定时限过流DMT保护,反时限过流保护、低电压保护、过电压保护、AU保护等。
对于一个具体的直流牵引供电系统,应根据系统的实际情况考虑各种因素来设计直流馈线保护方案。
参考文献:[1]张秀峰.王毅非.地铁馈线电流增量保护[J]西南(上转337页)太阳能替代锅炉在洗浴系统节能改造◆肖伟杰 周全智 王林涛 张 珉 山东黄金矿业(莱州)三山岛金矿 【摘 要】本文介绍了三山岛金矿利用太阳能替代锅炉加热在洗浴系统进行的节能改造。
改造后,冬春季采用蒸汽锅炉加热,夏秋季采用太阳能加热,阴雨天配合电加热。
既保证了职工洗浴的需要,又达到了节能减排、安全生产的目的。
本项目既节约能源,又减少废气废渣的排放量,属于清洁能源应用。
每年产生可观的经济效益。
可以在相关的矿山企业推广应用,推动节能减排工作的开展。
【关键词】太阳能 洗浴系统 节能改造 一、三山岛金矿洗浴系统现状1.锅炉情况。
矿区锅炉房共有3台锅炉,正常情况下2台4吨锅炉供暖及洗澡水加热,1台2吨锅炉用于夏季洗澡水加热。
2.供汽管路及加热设施。
从锅炉房出来一条主管路,主管路都带有办公场所和工作厂房,这样的结果是需要供暖的同时供洗澡用汽,产生管路热量资源浪费。
蒸汽直接加热洗澡水,造成水质不洁净,不符合洗澡水卫生要求。
二、系统节能改造构思利用太阳能供热水满足洗浴用水,淋浴用热水要求按45℃设计,定时供水。
采用真空管太阳能中央热水工程,阴雨天利用电加热辅助,利用原有热水箱,新增一个水箱采用温差循环太阳能热水,通过智能化的控制器,实现太阳能系统的非定温直接供水、循环加热等。
全自动运行,无须专人值守,管路利用原管路加以改造。
三、设计方案①正常情况下,太阳能温差循环加热;②太阳能不足时,辅助电加热与太阳能非定温供水,P LC控制器将随时监测、控制储热水箱水位、水温;③采用加压供水循环供热水或自然压力供热水系统;④通过电控箱显示仪随时观察到储热水箱的热水温度和水量;⑤具有自动上水(水位控制、定时控制)、故障自动检测排除、自动电加热(温控加热、定时加热)、防干烧保护、自动控制热交换循环泵、增加泵、管道循环泵等功能。
四、设计简要计算1.太阳能采光面积产水量确定。
按华北地区每㎡太阳能,在正常晴天无云的条件下(太阳辐射量≥17MJ/㎡),每㎡太阳能每天可产45℃热水(16℃冷水时),夏季80—120kg;春秋季60—80kg;真空管冬季30—40kg。
按春秋季用热水量设计,每人每天按50kg水计算,600人须用热水30吨,须配置375㎡太阳能集热器。
2.储热水箱容量及电加热的确定。
使用北京天普GZ—2.4工程用真空管集热器模块共需156块;储热水箱按30吨设计,可利用原有水箱,新增一个20吨储热水箱。
电加热功率按90K W设计。
正常情况下,若使1吨水在1小时内水温升高10℃需配置12K W 的电加热,温升30℃须3小时,考虑到电加热功率越大启动电流越大,对配电设备造成的危害越大,故配置电加热的功率较低,并延长加热时间。
电加热元件采用不绣钢加热管,控制柜使用优质电控元件,并加装防漏电防干烧装置,确保系统的安全行和使用寿命,电器安装严格按照国家标准进行操作。
3.太阳集热水器选型。
目前国内使用的太阳能集热器主要有平板集热器、真空管集热器、热管集热器。
平板集热器不防冻,一般只在春、夏、秋三季使用;真空管集热器在零18℃条件下,仍可产生热水,可一年四季使用,是目前普遍使用的产品;热管集热器可在零下40℃条件下使用但其冷凝端(加热端)表面积仅是真空管的百分之一,易结水垢,换热效果不如真空管,适合在北方高寒地区使用。
莱州地区冬季虽结冰,但一般在零下18℃以上,全年使用,选择真空管集热器。
采用真空管集热器竖置摆放,容易解决真空玻璃管的易破碎问题。
根据经验,当采用¢5831800真空管竖放时,真空玻璃管不易破碎,切四季能自动跟踪阳光,因此,选用北京天普生产的GZ—2.4工程用真空管集热器模块,它已实现标准化、模块化,由12支¢5831800真空管组成。
4.水泵、电磁阀。
循环水泵选用国产优质系列热水泵,安装时加装旁通管道及手动阀进行流量调节,水泵应注意防潮。