直流牵引供电系统
石家庄地铁直流牵引供电系统继电保护

石家庄地铁直流牵引供电系统继电保护石家庄地铁是河北省首条城市轨道交通线路,经过多年的规划和建设,目前已经有多条线路贯通城市各个区域。
地铁运营过程中,保障列车安全运行是至关重要的,而直流牵引供电系统继电保护作为地铁系统中的关键部分,对于确保牵引系统的正常运行和保护列车及乘客安全起着非常重要的作用。
地铁直流牵引供电系统继电保护是指在地铁列车运行过程中,保护列车牵引系统不受外部干扰、保护牵引系统运行的安全可靠性和可靠性。
本文将对石家庄地铁直流牵引供电系统继电保护进行详细分析和介绍。
一、石家庄地铁直流牵引供电系统概述石家庄地铁采用的是直流牵引供电系统,直流电源由变电所提供,通过供电网向轨道供电。
在列车运行时,通过架空线和接触网对列车进行牵引。
直流牵引供电系统主要由供电网、牵引变压器、牵引逆变器、牵引电动机等组成。
牵引变压器负责改变供电网的电压,将其适配给列车牵引系统使用;牵引逆变器则负责将直流电源转换为交流电源,供给电动机使用;牵引电动机则是利用逆变器提供的电能将列车进行牵引。
二、石家庄地铁直流牵引供电系统继电保护的作用石家庄地铁的直流牵引供电系统继电保护主要负责以下几个方面的功能:1. 对电动机的过流、短路等故障进行监测和判断,并采取措施进行保护;2. 对电源线路中可能出现的过压、欠压、短路等故障进行监测和判断,以保障供电系统的安全运行;3. 对于牵引逆变器、牵引变压器等关键设备进行监测和保护,确保这些设备的安全运行;4. 对于供电系统的中继设备、信号设备等进行监测和保护,保障这些设备的正常工作,以确保列车的正常运行。
三、石家庄地铁直流牵引供电系统继电保护的实现方式石家庄地铁直流牵引供电系统继电保护主要通过智能继电保护装置来实现。
这些装置通常包括保护继电器、故障录波器、控制装置等一系列设备。
保护继电器是直流牵引供电系统继电保护中的核心装置,它主要负责对电网和牵引系统各个部分进行监测和保护。
在发生故障时,保护继电器可以及时切断故障电路,防止故障扩大,保障列车的安全运行。
地铁直流牵引供电系统(GB10411--89)

地铁直流牵引供电系统GB 10411--891 主题内容与适用范围1.1 主题内容本标准规定了地铁直流牵引供电系统中供电制式、牵引电压等级、变电所及接触网德各项性能指标和设备运行指标等。
1.2 本标准适用于城市地铁德直流牵引供电系统。
2 引用标准GB 5951 城市无轨电车供电系统GBJ 54 低压配电装置及线路设计规范GBJ 62 工业与民用电力装置德继电保护和自动装置设计规范GBJ 64 工业与民用电力装置德电压保护设计规范3 术语3.1 供电、馈电在城市地铁牵引供电系统中,通常将交、直流配电系统称为供电,仅直流配电称为馈电。
3.2 系统最高电压指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。
不包括系统德暂时状态和异常电压。
3.3 系统最低电压指系统正常运行时,在任何时间内,系统中任何一点上出现德最低电压。
不包括系统德暂时状态和异常电压。
3.4 设备最高电压指系统正常运行时,设备所承受德最高运行电压。
3.5 供电制式指系统中采用的电流制、馈电方式及电压等级等。
3.6 牵引变电所供给地铁一定区段内直流牵引电能的变电所。
3.7 整流机组整流器与牵引变压器组合在一起的电流变换设备。
3.8 整流机组负荷等级根据负荷曲线的性质特征所划分的整流机过载能力等级。
3.9 接触网最小短路电流在最小运行方式下,接触网中离馈入点最远端发生正负极间短路的电流。
3.10 接触网最大短路电流在最大运行方式下,接触网馈入点处发生正负极间短路时的电流。
3.11 末端电压接触网中离馈入点最远端的电压。
3.12 馈线从牵引变电所向接触网输送直流电的馈电线。
3.13 双边馈电一个馈电区间由相邻牵引变电所各经一路馈线同时馈电。
3.14 单边馈电一个馈电区间由相邻两牵引变电所各经一路馈线同时馈电。
3.15受电器电动客车上用以从接触网上取得电流的装置。
3.16接触网经过受电器向电动客车供给电能的导电网。
3.17架空接触网置于车辆限界的上限平面以上(或位于改平面),通过受电弓向电动客车输送电能的接触网。
地铁直流牵引供电系统保护

地铁直流牵引供电系统保护地铁直流牵引供电系统保护是地铁运营中的关键环节,其功能是防止系统的电气故障和管线故障,确保系统的安全稳定运行。
下文将从保护原理、保护措施和保护应用三个方面,进行详细介绍。
保护原理地铁直流牵引供电系统保护主要是针对系统的电气故障进行保护。
保护原理是依据牵引供电系统的运行特点和故障情况,通过检测、判断和调节等技术手段,对系统进行快速自动保护。
具体来说,保护系统需要完成以下几项任务:1. 检测设备状态:通过对电气设备进行监测,判断设备是否正常工作,如果发现故障,就要及时采取措施,避免事故的发生。
2. 检测运行状态:通过检测电气系统的电压、电流和频率等参数,了解系统的运行状态,以便及时采取措施予以调整。
3. 快速分析故障:通过分析电气系统的故障情况,判断故障的类型和具体位置,并尽快采取应对措施,以避免事故的发生。
4. 自动保护处理:通过通过设置保护设备和保护电路等措施,将发生故障的线路自动断开,实现故障的隔离和保护。
保护措施地铁直流牵引供电系统的保护措施一般包括以下几个方面:1. 电源保护:地铁直流牵引供电系统需要有可靠的保护方案,能够及时检测和隔离电源发生的电气故障,保障系统的供电安全。
2. 电缆保护:地铁直流牵引供电系统的电缆也需要进行保护,以避免电缆的故障对整个系统产生负面影响。
主要包括电缆头保护、电缆穿过隧道保护、电缆接地保护等。
3. 输电线路保护:地铁直流牵引供电系统输电线路需要保护,主要包括过流保护、过载保护、接地保护、距离保护、差动保护等。
4. 电力电子设备保护:地铁直流牵引供电系统中的电力电子设备非常重要,需要采取相应的保护措施,以避免电力电子器件故障对整个系统产生负面影响。
主要包括温度保护、过流保护、过压保护、欠压保护等。
保护应用在地铁运营中,保护应用非常重要,通常需要采用一些现代化的保护技术。
具体包括以下几个方面:1. 微机保护技术:采用微处理器、检测、保护等技术,实现电气设备的保护和维护。
石家庄地铁直流牵引供电系统继电保护

石家庄地铁直流牵引供电系统继电保护摘要随着城市轨道交通的不断发展,地铁牵引供电系统的安全稳定运行越来越受到关注。
直流牵引供电系统是地铁提供动力的核心部件,其电路中采用了大量的继电保护装置,以保障系统运行的可靠性和安全性。
本文基于石家庄地铁1号线牵引供电系统,从继电保护的原理、保护装置和应用实例三个方面,对直流牵引供电系统的继电保护进行了系统的介绍和分析。
一、继电保护原理1.1 继电保护概述继电保护是指利用电气参数(电流、电压、功率、频率等)或的变化来检测元件或设备的状态,从而实现对电气设备实现及时准确地保护的一种电气保护方式。
其基本原理是将电气故障或障碍通过检测等手段转化为电信号信息,并通过继电器、触发器等元件间接控制开关进行自动或手动保护。
继电保护可分为定值保护和差动保护两大类:1、定值保护:指固定阈值保护,按照故障电流的阈值进行判断,当电路中出现的电流大于设定值时,继电器将动作切断故障电路,以实现保护的目的。
2、差动保护:指通过比较不同设备电流之间的差值,来实现保护。
其原理是将各设备的电流进行量比,取得其差值并判断,当差值超过一定范围时,继电器会动作,从而实现保护的目的。
石家庄市地铁1号线为地铁系统的首条线路,全线共设站22个,设计时速为80 km/h,目前已建成并具备运营条件。
直流牵引供电系统是地铁系统中的核心设备之一,其主要作用是通过供电线路向列车提供动力,使列车发动机能够启动,实现列车的正常运行。
石家庄市地铁1号线直流牵引供电系统供电电压为750V,总功率为28.8MW。
1、过流保护:当牵引系统中的电流超过设定值时,过流保护装置将触发电路开关,切断电路,以避免设备损坏或人身伤害。
4、温度保护:对于涉及到电器元件的电路,温度保护装置可对其进行监控,当温度超过设定值时,保护装置将触发电路开关,停止供电。
2.3 应用实例——过流保护过流保护是石家庄地铁牵引供电系统中最基本、最常用的继电保护装置之一。
浅析地铁直流牵引供电系统中框架保护

浅析地铁直流牵引供电系统中框架保护在地铁直流牵引供电系统中,为了给机车提供DC1500V电源,每个牵引降压变电所内设有两套整流机组(整流变压器+整流器),将电压等级为35kV的交流电源转换为DC1500V电源送到直流母排,直流母排通过馈线断路器向接触网供电。
而接触网采用双边供电方式,在每个区间内的接触网由两个变电所供电。
地铁直流牵引供电系统的安全可靠运行是列车安全运行的前提和保证。
而直流牵引供电系统设的框架保护其主要功能是将直流设备内发生的短路故障迅速切除,防止故障点以外的部位受牵连,确保列车、设备、乘客的人身安全。
一、框架保护的作用地铁直流供电系统设备采用绝缘安装,当直流设备内的1500V正极对设备外壳发生泄漏或直流带电设备对直流柜柜体发生泄漏以及绝缘损坏闪络时,如不及时切除,容易造成短路电流达几万安的正极对负极间的短路事故,不仅会对直流设备造成严重危害,而且也威胁到人身安全。
基于直流设备安全供电的考量,将直流设备内发生的短路故障迅速切除,直流供电系统设置了直流框架保护,框架保护就是当正极对柜体外壳发生绝缘损坏时,及时切除故障,保证系统的安全运行。
一般情况下,框架泄漏保护动作后,将使本牵引变电所直流断路器及相邻牵引变电所向相同供电区段供电的馈线断路器跳闸,并闭锁合闸。
此时,为了恢复地铁列车的供电,应及时退出本牵引变电所直流设备,复归框架泄漏保护动作信号,通过接触网越区隔离开关合闸,实现相邻牵引变电所对故障变电所供电区域接触网的供电。
因此,框架泄漏保护动作会造成大面积的牵引网停电,且隔离故障恢复送电时间长,对地铁运营影响大。
二、框架保护的应用地铁直流供电系统均设置有框架保护。
框架泄漏保护装置由电流元件和电压元件组成。
电流元件可检测直流设备由外壳至接地网的故障泄漏电流;电压元件测量直流设备外壳与直流设备负极之间的电压,一端接直流设备外壳,另一端接直流系统负极,即电流型框架保护。
电压元件检测到的电压等价于钢轨和地之间的电压,即电压型框架保护。
城市轨道交通直流牵引供电系统接触网残压

城市轨道交通直流牵引供电系统接触网残压城市轨道交通直流牵引供电系统是现代城市轨道交通的重要组成部分,而接触网残压是这一系统中的一个关键问题。
接触网作为城市轨道交通的电气化供电系统,其功能是向运行中的列车提供直流牵引电能,保障列车正常运行。
在实际运行中,接触网残压问题却时常出现,给城市轨道交通运行安全和电网运行稳定带来一定的隐患。
研究接触网残压问题,分析其影响和解决方案,对于城市轨道交通的安全运营及电力供应保障至关重要。
一、接触网残压的形成及危害在城市轨道交通直流牵引供电系统中,接触网残压是指地面回流的电流经过接触网系统后,在未移去的列车端线路上残余的电压。
通俗来讲,就是列车停止运行后,接触网系统上仍残留有一定的电压。
接触网残压的形成既与供电系统的结构特点有关,也与牵引系统的运行模式等有关。
城市轨道交通的复杂运行环境和多变的气候条件使得接触网残压问题尤为突出。
接触网残压对城市轨道交通的危害主要表现在以下几个方面:1. 安全隐患:残压存在使得接触网系统具有了一定的电气危险性,一旦人员误接残压区域,会造成严重的安全事故。
2. 设备损坏:接触网残压超过规定范围,长期作用于设备和线路将会引起绝缘老化和设备损坏,严重影响设备寿命和运行可靠性。
3. 牵引能耗:残压的存在对列车停靠位置的电能进行了消耗,对供电系统能效也会产生一定的影响。
二、接触网残压问题分析1. 牵引变流器的控制策略:在列车制动过程中,牵引变流器对接触网的电流输出难以即时停止,导致残压的产生。
2. 接触网系统设计:接触网系统的设计与维护保养情况,以及接触网与地下水位的关联等都会影响接触网残压的产生。
3. 气候环境:潮湿的气候环境会导致设备绝缘性能下降,使得接触网残压难以有效消除。
4. 线路电抗器:线路电抗器的设计及参数设置是否科学合理也与接触网残压问题有一定关联。
接触网残压的产生是由于诸多复杂因素的综合作用所致,其解决需要从驱动装置、接触网系统、气候环境、线路电抗器等多个方面进行综合考虑和研究。
北京地铁直流牵引供电系统主接线及运行方式分析

180数字技术与应用·理论探索·1 概述城市轨道交通供电系统,担负着为电动列车和各种运营设备提供电能的重要任务。
城轨供电系统一般划分为以下几个部分:城网中压系统、牵引供电系统和动力照明系统。
其中,牵引供电系统的功能主要是将交流中压电压经降压、整流变成直流1500V 或直流750V 电压,为电动列车提供牵引供电。
北京地铁采用的是直流750V 供电系统。
2 直流牵引供电系统主接线2.1 系统组成750V 直流供电系统是由牵引变压器、整流柜、直流快速开关与牵引网构成的。
牵引网由馈出线、750V 直流配电柜(隧道柜)、接触轨(三轨)、缓冲箱、走行轨、均流箱、回流箱和回流线等组成。
牵引变压器和整流装置整体称为整流机组,整流机组通过总闸给750V 正母线供电,然后经分闸和馈出电缆接到直流配电柜。
直流配电柜大多安装在隧道内,故也称隧道柜或上网柜。
直流配电柜内装设了一台750V 单极隔离开关,它通过电缆,一端连接牵引变电站分闸开关,另一端通过电缆接至接触轨。
机车从接触轨受电,电流由牵引电机流出后通过轮对接到走行轨上,经回流电缆引至回流箱,然后通过电缆接到负母线,再经负极柜流回整流柜的负极,完成回流。
750V 接触轨不是一个整体,而是由断电区分开了,是分段供电的,每段称为一个供电区间。
2.2 系统主接线形式直流牵引系统的主接线由牵引整流机组、直流开关设备等几部分组成,主接线应满足可靠性、灵活性和经济性的要求。
北京地铁750V 系统主接线如图1所示,主要采用双母线系统,设有直流工作母线和直流旁路母线(备用母线),母线由两路进线供电。
75V 系统与整流器之间,正极连接为直流快速断路器,负极连接为负极柜(电动隔离开关)。
电动隔离开关为实现自动化、远方调度提供了条件。
750V 直流母线上设置四路馈出线,分别向上、下行接触轨供电。
馈线开关采用直流快速断路器,经上网柜后于接触轨相连,上网柜内装设了直流750V 单极隔离开关,可以起到隔离电源的作用。
石家庄地铁直流牵引供电系统继电保护

石家庄地铁直流牵引供电系统继电保护1. 直流牵引供电系统概述直流牵引供电系统是地铁列车动力系统的核心部件之一,主要由直流电源装置、继电保护装置、输电线路、接触网等组成。
其基本工作原理是通过将交流电源转换为直流电源供给地铁列车,以实现地铁列车的牵引和制动。
由于地铁运行环境的特殊性,直流牵引供电系统的稳定性和可靠性对地铁的安全运行至关重要。
继电保护是直流牵引供电系统中的重要组成部分,其作用是在系统发生故障时及时切除故障点,保护设备和线路不受进一步损坏,保障地铁列车的安全运行。
典型的继电保护装置包括过流保护、接地保护、短路保护等。
目前石家庄地铁直流牵引供电系统的继电保护系统相对较为完善,采用了先进的数字化继电保护装置,能够实现对直流牵引供电系统的各项参数进行精准监测和保护。
石家庄地铁还建立了完善的继电保护管理体系,对继电保护装置进行定期检测和维护,确保其稳定性和可靠性。
尽管石家庄地铁直流牵引供电系统的继电保护系统现状较为完善,但仍然存在一些问题需要解决。
随着地铁线路的不断延伸和运营里程的增加,对直流牵引供电系统的负荷也在不断增加,继电保护系统的容量和功能也需要不断改进和提升。
地铁运营中可能出现的异常情况和人为因素也对继电保护系统提出了更高的要求,需要通过技术手段和管理手段提高继电保护系统的智能化和可靠性。
5. 解决方案针对石家庄地铁直流牵引供电系统继电保护存在的问题,可以提出如下解决方案。
加强对继电保护系统的技术更新和升级,引入先进的数字化继电保护装置,提高系统的容量和功能,以满足地铁运营的需求。
加强对继电保护系统的管理,建立健全的维护体系,定期对继电保护装置进行检测和维护,确保其稳定性和可靠性。
加强对地铁运营人员的培训和管理,提高运营人员对继电保护系统的操作和维护意识,减少人为因素对继电保护系统的影响。
6. 结语地铁的安全运行对于城市的交通和社会稳定具有重要意义,而直流牵引供电系统作为地铁的核心设备之一,其继电保护系统的稳定性和可靠性对地铁的运行安全至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
使命:加速中国职业化进程专业知识分享版
我国地铁供电系统中唯一未国产化的设备——直流牵引供电系统,有望结束国外产品垄断的历史。
昨日,由中船重工712研究所与武汉地铁集团开发的直流牵引供电系统,通过省科技厅的鉴定。
评审专家认定,这是我国首套具备完全自主知识产权的直流牵引供电系统,整体技术性能达到了国际同类产品先进水平。
地铁是高密集载客交通工具,列车靠电力牵引。
电力驱动列车前行需将交流电降压为直流电,再由直流电驱动车辆行驶。
作为地铁供电系统的最后一道卡,直流牵引供电系统为列车提供直接动力和安全保护,确保列车不意外停电或电路发生故障时及时断电,是地铁的“动力源”和“保护器”。
目前,地铁供电系统中的交流开关设备等系统均已国产化,但直流牵引系统国际上只有少数国家掌握其关键技术。
2009年,712研究所与武汉地铁集团联手攻关,2010年7月,首套产品投入武汉轻轨1号线二期东湖大道站运行。
经过一年以上的运行考核,其安全性、稳定性与国外产品处于同一水准。
目前我国已有30多个城市修建地铁,已建成1500公里的轨道线,据悉,直流牵引供电系统的市场份额每年超过10亿元。
武汉研发的系统价格比进口产品便宜1/3,市场前景广阔。