北师大版七年级下第六章概率初步导学案

合集下载

七年级数学下册 第六章 概率初步 学案(新版)北师大版

七年级数学下册  第六章  概率初步 学案(新版)北师大版

感受可能性【学习目标】1.了解必然事件、不可能事件和不确定事件的概念,并明确概念之间相互联系与区别. 2.理解不确定事件(随机事件)的概念,并体会发生的可能性大小.【预习导航】预习课本136到138页。

有关事件的定义1.预习课本136页事件的有关吧概念,比较必然事件、不可能事件、随机事件的异同,举例说明。

跟踪练习:(1)下列问题必然事件是________;不可能事件是_______;随机事件是_________.①太阳从西边下山;②某人的体温是100℃;③a2+b2=-1(其中a,b都是有理数);④水往低处流;⑤13人中,至少有两人出生月份相同;⑥装有3个球的布袋里摸出4个球小结:确定事件事件(二)感受不确定事件发生的可能性的大小2.完成136页做一做,填在课本上。

3.完成137页议一议,把你的看法写在下面。

跟踪练习:(2)袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。

我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B。

事件A和事件B是随机事件吗?哪个事件发生的可能性大?说明理由.(3)20张卡片上分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?【反思小结】谈谈你预习中的收获及存在的问题吧!【基础过关】1.下列事件中,必然事件是( )A.掷一枚硬币,正面朝上.B.a是实数,lal≥0.C.某运动员跳高的最好成绩是20 .1米.D.从车间刚生产的产品中任意抽取一个,是次品.2.下列事件中,随机事件是()A.没有水分,种子仍能发芽B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张是红桃AD.从13张方块扑克牌中任抽一张是红桃103.(1)下面事件:①掷一枚硬币,着地时正面朝上;②在标准大气压下,水加热到100摄氏度会沸腾;③买一张福利彩票,开奖后会中奖;④明天会下雨.其中,必然事件有() A.1个 B.2个 C.3个 D.4个4.在下列说法中,不正确的为()A.不可能事件一定不会发生;B.必然事件一定会发生;C.抛掷两枚同样大小的硬币,两枚都出现反面的事件是一个不确定事件;D.抛掷两颗各面均匀的骰子(写有1-6),其点数之和大于2是一个必然事件【拓展提升】5.在街头上常常会看到这样的游戏:一元钱转一次转盘,转盘停止后,指针指向几就顺时针再走几格,此时得到的格子里的奖品就归你.你认为这个游戏公平吗?为什么?6.1 从实际问题到从实际问题到方程【教学目标】知识与能力掌握如何设未知。

北师大版数学七年级下册第六章《概率初步》复习教案

北师大版数学七年级下册第六章《概率初步》复习教案

第六章概率初步教学目标(一)教学知识点1.回顾本章的内容,梳理本章的知识结构,建立有关概率知识的框架图.2.用所学的概率知识去解决某些现实问题,再自我回忆和总结出实验频率与理论概率的关系.(二)能力训练要求1.初步形成评价与反思的意识.2.通过举例,进一步发展学生随机观念和统计观念.3.学会与人合作,并能与他人交流思维的过程和结果.4.形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求1.积极参与回顾与思考的过程,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.3.形成实事求是的态度.教学重点引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图.教学难点结合实例,理解实验频率和理论概率的关系.教学方法交流——引导——反思的方法.教具准备多媒体演示.教学过程Ⅰ.根据问题,回顾本章内容,梳理知识结构.1,这意味着在两次重复试验中,该事件必有一次发[问题1]某个事件发生的概率是2生吗?1,是指当实验次数很大时,这个事件的实验频率稳定[生]某个事件发生的概率是2于它的理率概率,但我们在前面做过的大量实验中还发现,实验频率并不一定等于理论概率,虽然多次实验的频率逐渐稳定于其理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的,经常的.[师]这位同学通过大量的实验,真正理解了事件发生的频率与概率之间的关系,真正体会到了概率是描述随机现象的数学模型,而数学频率与理论概率不能等同,两者存在着一定的偏差,例如,在理论上,“随意抛掷一枚硬币,落地后国徽朝上”发生的概1,但实验100次,并不能保证50次国徽朝上、50次国徽朝下,事实上,做100率是2次掷币实验恰好50次国徽朝上,50次国徽朝下的可能性仅有80%左右,因此,概率的实验估算、理论计算以及频率及概率的偏差等应是理解概率不可分割的整体.现代社会中有很多的抽奖活动,其中一个抽奖活动的小奖率是1%,是否买100张奖券,一定会中奖呢?[生]不一定,这和刚才的道理是一样的.[问题2]你能用实验的方法估计哪些事件发生的概率?举例说明.[生]例如可以用实验的方法估计50个人中有2个人生日相同的概率.[生]还可以用实验的方法估计6个人中有2个人生肖相同的概率.[生]著名的投针实验,就是用实验的方法估计针与平行线相交的概率,而且通过此实验还有一个伟大的发现,针与平行线相交的概率P与π有关系,于是人们用投针实验来估计π的值,而且我们把这种用投针实验来估计π的值的方法叫蒙特卡罗方法,随着计算机等的现代技术的发展,这一方法已广泛应用到现代生活中.[生]我们还可以用实验的方法估计从一定高度掷一个啤酒瓶盖盖面朝上的概率.[生]用实验的方法来估计从一定高度落下的图钉,落地后针尖朝地的概率.……[师]可以说这样的例子举不胜举,而我们通过实验的方法估计这么多事件发生的概率的目的是理解“当实验次数很大时,实验频率是稳定于理论概率,由此来估计理论概率”这一事实的,从而也培养了同学们合作交流的意识和能力.[问题3]有时通过实验的方法估计一个事件发生的概率有一定难度,你是否通过模拟实验来估计该事件发生的概率?举例说明.[生]例如用实验的方法估计50个人中有2个人生日相同的概率需要做大量的调查获得数据,既费时又费力,因此我们可以利用计算器模拟实验来估计此事件的概率.可以两人组成一个小组,利用计算器产生1~366之间的随机数,并记录下来.每产生50个随机数为一次实验,每组做5次实验,看看有几次实验中存在2个相同的整数,将全班的数据集中起来,估计出50个1~366之间的整数中有2个数相同的概率就估计出了50个人中有2个人生日相同的概率,是个很好的方法.[问题4]你掌握了哪些求概率的方法?举例说明.[生]我们从七年级开始学习概率,求概率的方法有如下几种:(1)用概率的计算公式,当实验的结果是有限个,并且是等可能的时.(2)用实验的方法,当实验次数很大时,实验频率稳定于理论概率.(3)可用树状图,求某随机事件发生的概率.(4)用列表法,求某随机事件发生的概率.(5)用计算器模拟实验的方法求某随机事件发生的概率.[师]谁能举例说明上面这几种求概率的方法呢?[生]例如掷一枚均匀的骰子,点数为奇数的概率,就可以用概率的计算公式,即 P(点数为奇数)=63=21. [生]掷一枚均匀的骰子,每次实验掷两次,两次骰子的点数和为6的概率既可以用树状图,也可以用列表法求其概率.[师]其他几种方法前面的3个问题中已涉及到,我们在此就不一一说明了.下面我们看一练习题:(多媒体演示).(1)连掷两枚骰子,它们的点数相同的概率是多少?(2)转动如图所示的转盘两次,两次所得的颜色相同的概率是多少?(3)某口袋里放有编号率.为1~6的6个球,先从小摸出一球,将它放回到口袋中后,再摸一次,两次摸到的球相同的概率是多少?(4)利用计算器产生1~6的随机数(整数),连续两次随机数相同的概率是多少?[分析]本题的4个小题具有相同的数学模型,旨在通过多题一解,让学生体会到它们是同一数学模型,培养学生的抽象概括能力,解:(1)列表如下:根据表格,共有36种等可能的结果,其中点数相同的有(1,1),(2,2),(3,3),(4,),(5,5),(6,6)共六种,因此点数相同的概率是61366 . (2)此题只是将(1)题的1、2、3、4、5、6换成了红、白、蓝、黑、黄、绿而已,因此,两次所得的颜色相同的概率也是61 (3)将第(1)题中的1,2,3,4,5,6换成编号为1~6的6个球,两次摸到的球相同的概率为61. (4)将第(1)题中的1.2,3,4,5,6换成计算器中1~6随机数,连续两次随机数相同的概率为61. Ⅱ.建立有关概率知识的统计图在学生充分思考和交流的基础上,引导学生共同建立以下有关概率的知识框架图如下:Ⅲ.课时小结本节我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概知识的框架图,在自我回忆和总结中找出实验频率与理论概率的关系.Ⅳ.课后作业复习题知识技能1,3,4,5题 数学理解6,7,9题Ⅴ.活动与探究17世纪的一天,保罗与著名的赌徒梅尔睹钱,每人拿出6枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这时一件意外的事中断了他们的赌博,于是他们商量这12枚金币应怎样分配才合理. 保罗认为,根据胜的局数,他应得总数的31,即4枚金币,梅尔得总数的32,即8枚金币;但精通赌博的梅尔认为他赢的可能性大,所以他应得全部赌金,于是,他们请求数学家帕斯卡评判,帕斯卡又求教于数学家费尔马,他们一致的裁决是:保罗应分3枚金币,梅尔应分9枚.帕斯卡是这样解决的:如果再玩一局,或是梅尔胜,或是保罗胜,如果梅尔胜,那么他可以得全部金币(记为1);如果保罗胜,那么两人各胜两局,应各得金币的一半(记为21).由这一局中两人获胜的可能性相等,因此梅尔得金币的可能性应该是两种可能性大小的一半,即梅尔为(1+21)÷2=43,保罗为(0+21)÷2=43.所以保罗为(0+21)÷2=41.所以梅尔分9枚,保罗分3枚.费尔马是这样考虑的:如果再玩两局,会出现四种可能的结果:(梅尔胜,保罗胜);(保罗胜,梅尔胜);(梅尔胜,梅尔胜);(保罗胜,保罗胜).其中前三种结果都是梅尔胜,只有第四种结果保罗才能取胜.所以梅尔取胜的概率为43,保罗取胜的概率为41,所以梅尔分9枚,保罗分3枚.帕斯卡和费尔马还研究了有关这类随机事件的更一般的规律,由此开始了概率论的早期研究工作.板书设计。

【七年级】七年级下册数学第六章概率初步导学案(北师大版)

【七年级】七年级下册数学第六章概率初步导学案(北师大版)

【七年级】七年级下册数学第六章概率初步导学案(北师大版)科目数学内容等可能事件的概率(1)课时七年级编辑杨卫轩讲师评论员班级小组学生姓名时间学习目标1了解其他可能事件的重要性;2.理解等可能事件的概率p(a)=(在一次试验中有n种可能的结果,其中a包含m种)的意义;3.应用P(a)=解决一些实际问题重点应用p(a)=解决一些实际问题。

难点:应用P(a)=解决一些实际问题。

过程:因材施教以学定教学习过程:先入为主自主学习学习课本p147-150,思考以下问题:1.从一副牌中任意抽出一张,p(抽到王)=_____,p(抽到红桃)=_____,p(抽到3)=_____2.掷一个偶数骰子,P(掷“2”向上)==_________3.有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4。

现将它们的背面朝上,从中任意摸到一张卡片,则p(摸到1号卡片)=_______,p(摸到2号卡片)=_____,P(触摸卡号3)=触摸卡号4)=触摸卡号,P(触摸奇数卡)=,p(摸到偶数号卡片)=_____。

个案补充1.报告:展示学习成果2。

指导:明确学习目标3、交流:合作探求新知1:从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的号码有种可能,即,由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性,都是。

询问2:掷一个骰子,向上一面的点数有种可能,即,由于骰子的构造、质地均匀,又是随机掷出的,所以我们断言:每种结果的可能性,都是。

上述两项测试有两个共同特征:一.一次试验中,可能出现的结果有限多个.2.在测试中,各种结果的概率是相等的对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.相等可能事件概率的定义:一般地,如果一个试验有n种等可能的结果,并且它们发生的可能性都相等,事件a 包含其中的m种结果,那么事件a发生的概率为:p(a)=注:≤ P(a)≤.4、检测:强化变式训练5.扩展:评估、扩展和改进案1.掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)分数为4分;(2)分数是偶数;(3)分数大于3但小于5;巩固练习:教材p148随堂练习和习题1至3.2.一个袋子里有两个红色的球和三个白色的球。

新北师大版数学七下第六章《概率初步》word教案

新北师大版数学七下第六章《概率初步》word教案

昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案科目数学内容等可能事件的概率(3)课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习目标1.在实验过程中了解几何概型发生概率的计算方法,能进行简单计算;并能联系实际设计符合要求的简单概率模型。

2.在实验过程中学会通过比较、观察、归纳等数学活动,选择较好的解决问题的方法,学会从数学的角度研究实际问题,并且初步形成用数学知识解决实际问题的能力。

重点概率模型概念的形成过程。

难点分析概率模型的特点,总结几何概型的计算方法。

教学过程:因材施教以学定教学习过程:先入为主自主学习学习课本P151-154,思考下列问题:1.如图所示是一个可以自由转动的转盘,转动这个转盘,当转盘停止转动时,指针指向可能性最大的区域是________色。

2.如图是一个可以自由转动的转盘,当转盘转动停止后,下面有3个表述:①指针指向3个区域的可能性相同;②指针指向红色区域的概率为31;③指针指向红色区域的概率为21,其中正确的表述是________________(填番号)个案补充1.汇报:展示学习成果2、导学:明确学习目标预习案3、交流:合作探求新知探下图是卧室和书房地板的示意图,图中每一块地砖除颜色外完全相同,一个小球在卧室和书房中自由地滚动,并随机的停留在某块方块上。

(1)在哪个房间里,小球停留在黑砖上的概率大?究案(2)你觉得小球停留在黑砖上的概率大小与什么有关?假如小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?请说明你的理由。

4、检测:强化变式训练5、延伸:评价拓展提升检测案1. 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会。

如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券(转盘等分成20份)。

19-20学年七年级数学下册第六章概率初步教案新版北师大版

19-20学年七年级数学下册第六章概率初步教案新版北师大版

1 感受可能性【教学目标】1.知识与技能(1)理解不确定事件(随机事件)的概念,能区分确定事件与不确定事件;(2)并感受不确定事件发生的可能性有大有小。

2.过程与方法通过骰子活动,经历猜测、试验、收集试验结果等过程,体会数据的随机性。

3.情感态度和价值观初步培养以科学数据为依据分析问题、解决问题的良好习惯。

【教学重点】体会事件发生的确定性与不确定性。

【教学难点】理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件、骰子若干。

【课时安排】1课时【教学过程】一、情景导入【过渡】在生活中,我们总会遇到不同的事情,这些事情,有的是一定会发生的,有的则是一定不会发生的。

更多的则是我们不确定是否能发生的事情。

现在,我来展示几个事件,大家来判断一下这些事件是否是一定能发生,或一定不能发生。

下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)在一个装着白球和黑球的袋中摸球,摸出红球;(3)a2+b2=-1(a,b都是有理数);(4)水往低处流;(5)实心铁球投入水中会沉入水底。

【过渡】这些都是日常生活中的常见现象,大家一起来判断一下吧。

(学生回答)【过渡】今天我们就来学习一下,在数学中,如何定义这些一定会发生的,一定不会发生的以及可能会发生的事件。

二、新课教学1.感受可能性【过渡】在日常生活中,骰子是大家常见的,在电视中,我们也经常能看到通过掷骰子得到点数的大小决定游戏的顺序等等。

现在,我们来思考这样几个问题。

如果随机投掷一枚均匀的骰子,那么(1)掷出的点数会是10吗?(2)掷出的点数一定不超过6吗?(3)掷出的点数一定是1吗?(学生讨论)【过渡】我们先来看一下第一个问题,掷出的点数会是10吗?(学生回答)【过渡】我们知道,骰子的最大点数是6,因此,是不可能出现10的。

我们把这样的事件称为不可能事件。

有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。

【精选】北师版七年级数学下册第六章《概率初步》优秀教案

【精选】北师版七年级数学下册第六章《概率初步》优秀教案

【精选】北师版七年级数学下册第六章《概率初步》优秀教案6.1 感受可能性【学习目标】1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点) 2.知道事件发生的可能性是有大小的.(难点)【教学过程】一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?二、合作探究探究点一:必然事件、不可能事件和随机事件【类型一】必然事件一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( ) A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.【类型二】不可能事件下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.太阳从西边升起解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型三】随机事件下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°.其中是随机事件的是________(填序号).解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件.故答案是①③.探究点二:随机事件发生的可能性掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数( )A.一定是6B.是6的可能性大于是1~5中的任意一个数的可能性C.一定不是6D.是6的可能性等于是1~5中的任意一个数的可能性解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数.要求可能性的大小,只需求出各自所占的比例大小即可.第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B 错,D对.故选D.方法总结:不确定事件的可能性有大有小.骰子在掷的过程中,每个点数出现的可能性是一样的.三、板书设计1.必然事件、不可能事件和随机事件必然事件:一定会发生的事件;不可能事件:一定不会发生的事件;必然事件和不可能事件统称为确定事件;随机事件:无法事先确定一次试验中会不会发生的事件.2.随机事件发生的可能性【教学反思】教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去6.2 频率的稳定性【学习目标】1.理解频率和概率的意义;2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点) 【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率的稳定性在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有( )A.5个 B.10个 C.15个 D.45个解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).故选C.方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率”计算即可.探究点二:用频率估计概率【类型一】用频率估计概率为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是( )A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的概率约为0.4D.前20次试验结束后,钉尖着地的次数一定是8次解析:A.钉尖着地的频率是0.4,故此选项说法正确;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项说法正确;C.∵钉尖着地的频率是0.4,∴钉尖着地的概率大约是0.4,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.故选D.【类型二】利用频率估计球的个数王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保留两位小数):(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数.解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.解:(1)251÷1000≈0.25.∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11+x=0.25,x =3. 答:估计袋中有3个白球.方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .【类型三】 利用频率折线图估计概率一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下(结果保留两位小数):相应的0.700.450.630.590.520.550.56____频率(1)请将表中数据补充完整,并画出折线统计图中剩余部分;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,试验频率为0.70,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.解:(1)120×0.55=66,88÷160=0.55,故所填数字为66,0.55;补全折线图如下;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.【类型四】利用概率解决实际问题某批篮球质量检验结果如下:抽取的篮球数n 40060080010001200优等品频数m 3765707449401128优等品频率m/n 0.94________________(1)填写表中优等品的频率;(2)这批篮球优等品的概率估计值是多少?解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94;(2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.【教学反思】教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系6.3 等可能事件的概率第1课时与摸球相关的等可能事件的概率【学习目标】1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)【教学过程】一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为( )A.23B.12C.13D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为( )A.15B.310C.12D.35解析:共有10个数,满足条件的有6个,则可得到所求的结果.∵m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,只有(-3)4=81,(-2)4=16,34=81,24=16小于100,∴P(m4>100)=610=35.故选D.探究点二:利用概率分析游戏规则是否公平在一个不透明的袋中有6个除颜色外其他都相同的小球,其中3个红球,2个黄球,1个白球.(1)小明从中任意摸出一个小球,摸到的白球机会是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否则小亮胜,问该游戏对双方是否公平?为什么?解析:(1)由题意可得共有6种等可能的结果,其中从口袋中任意摸出一个球是白球的有1种情况,利用概率公式即可求得答案;(2)游戏公平,分别计算他们各自获胜的概率再比较即可.解:(1)∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中3个红球,2个黄球,1个白球,∴P(摸出一个白球)=1 6;(2)该游戏对双方是公平的.理由如下:由题意可知P(小明获胜)=36=12,P(小亮获胜)=1+26=12,∴他们获胜的概率相等,即游戏是公平的.方法总结:判断游戏是否公平,关键是看双方在游戏中所关注的事件所发生的概率是否相同.三、板书设计1.等可能事件的概率计算2.等可能事件的概率的应用【教学反思】教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1,通过适当的练习,及时巩固所学知识,引导学生从练习中总结解题规律,培养学生独立思考与归纳总结的能力6.3 等可能事件的概率第2课时与面积相关的等可能事件的概率【学习目标】1.了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算;(重点)2.能够运用与面积有关的概率解决实际问题.(难点)【教学过程】一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若图①指针所指数字为奇数,则甲获胜;若图②指针所指数字为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:与面积有关的概率如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为( )A.14B.15C.38D.23解析:根据题意,AB、CD是水平放置的轮盘上两条互相垂直的直径,即圆面被等分成4个面积相等的部分.分析图示可得阴影部分面积之和为圆面积的1 4,可知该小钢球最终停在阴影区域的概率为14.故选A.方法总结:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件A ,然后计算阴影区域的面积在总面积中占的比例,这个比例即事件A 发生的概率.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( ) A.13 B.12 C.34 D.23解析:观察这个图可知阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A. 方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,∴圆形转盘被等分成10份,其中B 区域占2份,∴P (落在B 区域)=210=15.故答案为15. 三、板书设计1.与面积有关的等可能事件的概率2.与面积有关的概率的应用【教学反思】本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题。

七年级数学下册(新版北师大版)精品导学案【第六章 概率初步】

七年级数学下册(新版北师大版)精品导学案【第六章 概率初步】

第六章概率初步第一节感受可能性【学习目标】1、经历“猜测—试验—并收集试验数据—分析试验结果”的活动过程。

2、了解必然事件、不可能事件和不确定事件发生的可能性大小。

【学习方法】自主探究与小组合作交流相结合.【学习重难点】了解事件发生的等可能性及游戏规则的公平性【学习过程】模块一预习反馈一.学习准备生活中有哪些事情一定会发生,哪些事情一定不会发生,哪些事情可能会发生?思考:1. 随机投掷一枚均匀的骰子,掷出的点数会是10吗?______2. 随机投掷一枚均匀的骰子,掷出的点数一定不超过6吗?______3. 随机投掷一枚均匀的骰子,掷出的点数一定是1吗?________二.解读教材1.思考1: 下列事件一定发生吗?⑴玻璃杯从10米高处落到水泥地面上会破碎;______⑵太阳从东方升起;________⑶今天星期天,明天星期一;__________★这些事情我们事先肯定它一定会发生,这些事件称为__________.⑷太阳从西方升起;__________⑸一个数的绝对值小于0;____________★这些事情我们事先肯定它一定不会发生,这些事件称为___________.★必然事件和不可能事件都是_______事件。

2. 思考2:下列事件一定发生吗?⑴掷一枚硬币,有国徽的一面朝上。

________⑵买彩票恰好中奖。

__________⑶从商店买的饮料中奖. _____________⑷通过点名器找同学回答问题,“³³”被选中. ___________★这件事情我们事先无法肯定它会不会发生,这样的事件称为______________,也称为_____________。

模块二合作探究1.甲袋中有10个白球,乙袋中有10个红球,丙袋中有红球、白球共10个,且三个袋中所有的球出颜色外,完全相同.(1)判断下列事件各是什么事件:1)从甲袋中摸到一球是红球。

() 2)从甲袋中摸到一球是白球。

北师大版七年级数学下册教案(含解析):第六章概率初步尖子生成长计划7概率中的代数问题

北师大版七年级数学下册教案(含解析):第六章概率初步尖子生成长计划7概率中的代数问题

北师大版七年级数学下册教案(含解析):第六章概率初步尖子生成长计划7概率中的代数问题一. 教材分析本节课的内容是北师大版七年级数学下册第六章概率初步中的代数问题。

这部分内容是学生在学习了概率的基本概念和求法之后,进一步探究概率与代数之间的关系。

通过本节课的学习,学生能够掌握概率中的代数问题的解法,提高解决问题的能力。

二. 学情分析学生在学习了概率的基本概念和求法之后,对概率有了初步的认识。

但代数问题的解决方法对他们来说是一个新的挑战。

因此,在教学过程中,教师需要引导学生将概率知识与代数知识相结合,引导学生通过自主学习、合作交流等方式,掌握解题方法。

三. 教学目标1.知识与技能:使学生掌握概率中的代数问题的解法,提高解决问题的能力。

2.过程与方法:培养学生运用概率知识解决实际问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:概率中的代数问题的解法。

2.难点:如何将概率与代数知识相结合,灵活运用解题方法。

五. 教学方法1.引导法:教师引导学生思考,激发学生的求知欲。

2.自主学习法:学生通过自主学习,提高解决问题的能力。

3.合作交流法:学生分组讨论,共同解决问题,培养团队合作精神。

六. 教学准备1.教材:北师大版七年级数学下册。

2.课件:教师根据教材内容制作的课件。

3.练习题:针对本节课内容的练习题。

七. 教学过程1.导入(5分钟)教师通过一个简单的概率问题引出本节课的内容,激发学生的兴趣。

2.呈现(10分钟)教师通过课件展示本节课的内容,引导学生了解概率中的代数问题。

3.操练(10分钟)教师给出一个具体的概率中的代数问题,学生分组讨论,尝试解决问题。

4.巩固(10分钟)教师针对学生解决问题的过程进行讲解,引导学生总结解题方法。

5.拓展(10分钟)教师给出几个类似的概率中的代数问题,学生独立解决,提高解决问题的能力。

6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个案补充
1.汇报:展示学习成果2、导学:明确学习目标



3、交流:合作探求新知



1:
从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的号码有种可能,即,由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性,都是。
探究2:
掷一个骰子,向上一面的点数有种可能,即,由于骰子的构造、质地均匀,又是随机掷出的,所以我们断言:每种结果的可能性,都是。
试验总次数
钉尖朝上的次数
钉尖朝下的次数
钉尖朝上的频率
钉尖朝下的频率
抛掷次数
20
40
60
80
100
120
350
400
450
500
“钉尖向上”的频数
“钉尖向上”的频率
1.下表记录了一名球员在罚球线上投篮的结果
投篮次数(n)
50
100
150
200
250
300
500
投中次数(m)
28
60
78
104
123
152
3、能设计符合要求的简单概率模型.
重点
概率模型概念的形成过程。
难点
分析概率模型的特点,总结概率的计算方法。
教学过程:因材施教以学定教
学习过程:先入为主自主学习
1、10个乒乓球中有8个一等品,2个二等品,从中任取一个是二等品的概率是_____.
2、把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是______.
学习目标
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
2.在具体情境中了解概率的意义
3.让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.
重点
1.在具体情境中了解概率意义;
2.对频率与概率关系的初步理解。
以上两个试验有两个共同的特点:
1.一次试验中,可能出现的结果有限多个.
2.一次试验中,各种结果发生的可能性相等.
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.
等可能事件概率的定义:
一般地,如果一个试验有n种等可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)=
教学过程:因材施教以学定教
学习过程:先入为主自主学习
学习课本P147-150,思考下列问题:
1.从一副牌中任意抽出一张,P(抽到王)=_____,P(抽到红桃)=_____,P(抽到3)=_____
2.掷一枚均匀的骰子,P(掷出“2”朝上)=_______,P(掷出奇数朝上)=________,P(掷出不大于2的朝上)=_________
3.有5张数字卡片,它们的背面完全相同,正面分别标有1,2,2,3,4。现将它们的背面朝上,从中任意摸到一张卡片,则P(摸到1号卡片)=_______,P(摸到2号卡片)=_____,
P(摸到3号卡片)=_____,P(摸到4号卡片)=_____,P(摸到奇数号卡片)=_____,
P(摸到偶数号卡片)=_____。
3.中国象棋红方棋子按兵种小同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( )
(A) (B) (C) (D)
4、检测:强化变式训练
5、延伸:评价拓展提升



1、盆中装有各色小球12只,其中5只红球、4只黑球、2只白球、1只绿球,求:
红土中学七年级数学学科导学案
科目
数学
内容
6.1感受可能性
学习目标
1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确判断。
2.历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
3.通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
④现将三个口袋中的小球放在一个口袋中,搅匀从中任取一球,是黑球的概率_____.
1.汇报:展示学习成果2、导学:明确学习目标



3、交流:合作探求新知



1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.
2.袋中有5个黑球,3个白球和2个红球,每次摸一个球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______.
重点
1.随机事件的特点并能对生活中的随机事件做出准确判断;
2.对随机事件发生的可能性大小的定性分析。
难点
1.随机事件的特点并能对生活中的随机事件做出准确判断;
2.对随机事件发生的可能性大小的定性分析。
教学过程:因材施教以学定教
学习过程:先入为主自主学习
学习课本P136-138,思考下列问题:
1.在一定条件下一定发生的事件,叫做;在一定条件下一定不会发生的事件,叫做;和统称为确定事件。
251
投中频率(m/n)
计算表中投中的频率(精确到0.01)并总结其规律。
1.汇报:展示学习成果2、导学:明确学习目标



3、交流:合作探求新知



4、检测:强化变式训练
5、延伸ห้องสมุดไป่ตู้评价拓展提升



我的
收获
红土中学七年级数学学科导学案
科目
数学
内容
6.2频率的稳定性(2)
学习目标
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值
教学过程:因材施教以学定教
学习过程:先入为主自主学习
1:你能理解频率的稳定性吗?如何利用频率估计概率?
试验总次数
20
正面(壹圆)朝上的次数
正面朝下的次数
正面朝上的频率
正面朝下的频率
1、同桌两人做20次掷壹圆硬币的游戏,并将数据填在右表中:
2、各组分工合作,分别累计进行到20、40、60、80、100、120、140、160、180、200次正面朝上的次数,并完成右表:
(2)任意摸出1个球,摸到红球小明胜,摸到白球小凡胜,这个游戏对双方公平吗?如果不公平,怎样改变袋中球的数量才对双方公平?
我的
收获
红土中学七年级数学学科导学案
科目
数学
内容
6.3等可能事件的概率(2)
学习目标
1、在具体情境中进一步了解概率的意义,体会概率是描述不确定现象的数学模型;
2、了解一类事件发生概率的计算方法,并能进行简单的计算;
(3)如果再抽取1000个乒乓球进行质量检查,对比上表记录下数据,两表的结果会一样吗?为什么?
4、检测:强化变式训练
5、延伸:评价拓展提升



2.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:
实验次数
20
40
60
80
100
注:≤P(A)≤。
4、检测:强化变式训练
5、延伸:评价拓展提升



1.掷一个骰子,观察向上的一面的点数,求下列事件的概率:
(1)点数为4;(2)点数为偶数;(3)点数大于3小于5;
巩固练习:教材P148随堂练习和习题1至3.
2.一个袋中有2个红球和3个白球,每个球除颜色外其余特征均相同。
(1)任意摸出1个球,摸到红球的概率是;
3、根据已填的表格,完成下面的折线统计图:
总次数
20
40
60
80
100
120
140
160
180
200
正面朝上的次数
正面朝上的频率
正面朝下的次数
正面朝下的频率
观察上面的统计表,你发现了

1.汇报:展示学习成果2、导学:明确学习目标



3、交流:合作探求新知



1、某事件发生的可能性如下:请选择:
(1)有可能,但不一定发生;( )⑵发生与不发生的可能性一样;( )
3.填空:
确定事件
事件
个案补充
1.汇报:展示学习成果2、导学:明确学习目标



3、交流:合作探求新知



1、5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题:
⑶发生可能性极少;( )⑷不可能发生。( )
A、0.1% B、50% C、0 D、99.99
2、对某批乒乓球的质量进行随机抽查,结果如下表所示:
随机抽取的乒乓球数n
10
20
50
100
200
500
1000
优等品数m
7
16
43
81
164
414
825
优等品率m/n
(1)完成上表;(2)根据上表,在这批乒乓球中任取一个,它为优等品的概率是多少?
120
140
160
180
200
3的倍数的频数
5
13
17
相关文档
最新文档