实数(2) 课件 初中数学课件
合集下载
人教版《实数》优秀课件初中数学ppt

品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
2019-2020年初中数学湘教版初中八年级上册3.3第2课时实数的运算和大小比较课件 (3).ppt

例3 用计算器计算:2 × (5 精确到小数点后面
第二位). 解: 按键:
显示:3.162 277 66. 精确到小数点后面第二位得:3.16.
2 × 5 ≈3.16 .
二 实数的大小比较
思考:实数怎么比较大小呢?
与有理数规定的大小一样,数轴上右边的点表示的实数 比左边的点表示的实数大.
负实数
原点 正实数 0
此外,前面所学的有关数、式、方程(组)的 性质、法则和解法,对于实数仍然成立.
典例精析
加法结合律
例1 计算下列各式的值:
(1)( 3+ 5)- 5 ;(2)2 3-3 3 .
解: = 3+( 5- 5)
=(2-3) 3
= 3+0
=- 3
=3
乘法对于加法分配律
例2 计算(结果保留小数点后两位):
(1) 5 π ;
(6)(ab)c = a(bc) (乘法结合律);
(7) 1 ·a = a ·1 = a ;
(8)a(b+c) = ab+ac (乘法对于加法的分配律), (b+c)a = ba+ca (乘法对于加法的分配律);
(9)实数的减法运算规定为a-b = a+ (-b) ;
(10)对于每一个非零实数a,存在一个实数b, 满足a·b = b·a =1,我们把b叫作a的__倒_数__;
(1) 12 1 与 3; (2) 10 与 -3. 解 : (1)因为 12 < 42,
所1以2 < 4, 所以 12 -1< 3; 为什么?
(2)因为 10 > 32 , 所以 10 3, 所以- 10 -3.
为什么?
八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

(b+c)a = ba + ca (乘法对于加法的分配律) ;
(9)实数的减法运算规定为 a -b = a + (-b)
;
(10)实数的除法运算(除数b≠ a ÷ b = a·
0)1,规定为 b
;
(11)实数有一条重要性质:如果a≠0,b≠0,那么
ab
≠
0.
4
小提示
实数也可以比较大小:对于实数a,b,如果a-b>0, 则a大于b(或者b小于a),记作a>b(或b<a);
3.
9
2 5(精确到小数点6, 精确到小数点后面第二位得:3.16.
10
用正方形比较
不用计算器,估计 5 与2哪个大.
解: 5 ,2 分别是5,4的正方形的边长. 容易说明,面积大的正方形,它的边长也大. 因此, 5 > 2 .
5
2
11
小提示
在实数运算中,如果遇到无理数,并且要 求出结果的近似值时,可按要求的精确度用相 应的近似有限小数代替无理数,再进行计算.
12
练习
计算(精确到小数点后面第二位).
(1) 2 + 3; (2) 5 -1 ; (3) 5 .
≈1.414+1.732≈3.15.
≈2.236-1≈1.24. ≈2.236×3.14≈7.02.
同样地,如果a-b<0,则a<b.还可以得出:正实数大 于一切负实数;两个负实数,绝对值大的数反而小.
从而数轴上右边的点表示的实数比左边的点表示的 实数大.
负实数
原点
正实数
0
<
5
结论
每个正实数有且只有两个平方根,它们互 为相反数;
初中数学精品课件:实数及其运算

关的:π3,π-1 等;④规律型:1.3232232223…(每两 个“3”之间依次多一个“2”)等有规律但不循环的无 限小数.
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】
在
实
数
-
π 2
,
2
,
22 7
,
0.3333333…
,
0
,
1.732
,
2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的
是
.
【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】
在
实
数
-
π 2
,
2
,
22 7
,
0.3333333…
,
0
,
1.732
,
2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的
是
.
【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.
初中数学北师大版八年级上册第二章实数第2节平方根(二).2平方根(二)

3. 0的平方根是0,算术平方根也是0.
区别:
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为 ,而算术平方根表示为
出示例1,探索求平方根的方法,教师示范(1),两名学生板演(2)(3),关注学困生的表现,适时进行点拨引导评价。
口算练习,指定学生抢答。引导学生发现并归纳不同类型的数平方根的特点。
板书课题
检查自学情况,展示相关问题的答案。板书平方根的概念、符号表示。引导学生对平方根的概念深度剖析。
分析开平方运算和平方运算的互逆关系
问题引发学生思考,产生探究学习的兴趣.
自学教科书相关内容,独立解决并口答问题1-3。列举事例理解概念,
配合教师检查,对照
完善答案。
复习平方运算的知识,提出问题,为本节课的学习做好知识的预备,并让学生体会知识之间的联系。
出示例2,求各式的值,指导学生先明确各式子的意义再计算,对学生的回答进行点拨评价。
引导学生展开讨论,从区别和联系两方面归纳总结。教师对学生的结论适时点评鼓励。
通过对例1的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.
熟练口算,归纳平方根的性质
口答各式子的意义及计算结果,初步感受平方根与算术平方根的区别与联系。
形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并明白它们之间的互逆关系.
教学环节
教师活动
预设学生行为
设计意图
三、例题示范,应用新知
例1.求下列各数的平方根:
(1)81;(2) ;(3)0.49;
练习:口答下列各数的平方根:
教学环节
区别:
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为 ,而算术平方根表示为
出示例1,探索求平方根的方法,教师示范(1),两名学生板演(2)(3),关注学困生的表现,适时进行点拨引导评价。
口算练习,指定学生抢答。引导学生发现并归纳不同类型的数平方根的特点。
板书课题
检查自学情况,展示相关问题的答案。板书平方根的概念、符号表示。引导学生对平方根的概念深度剖析。
分析开平方运算和平方运算的互逆关系
问题引发学生思考,产生探究学习的兴趣.
自学教科书相关内容,独立解决并口答问题1-3。列举事例理解概念,
配合教师检查,对照
完善答案。
复习平方运算的知识,提出问题,为本节课的学习做好知识的预备,并让学生体会知识之间的联系。
出示例2,求各式的值,指导学生先明确各式子的意义再计算,对学生的回答进行点拨评价。
引导学生展开讨论,从区别和联系两方面归纳总结。教师对学生的结论适时点评鼓励。
通过对例1的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.
熟练口算,归纳平方根的性质
口答各式子的意义及计算结果,初步感受平方根与算术平方根的区别与联系。
形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并明白它们之间的互逆关系.
教学环节
教师活动
预设学生行为
设计意图
三、例题示范,应用新知
例1.求下列各数的平方根:
(1)81;(2) ;(3)0.49;
练习:口答下列各数的平方根:
教学环节
初中数学《实数》优质课2

正整数
正有理数
有理数
0
正分数
负有理数
负整数
负分数
实数的分类
(1)按定义分
整数
有理数:
有限小数或无限循环小数
实
分数
女孩子
含开方开不尽的数
数
无理数:
妈
无限不循环小数
妈
男孩子
π 含有 的数
有规律但不循环的小数
实数的分类
有理数(集合2)按性… 质; 分
(2)按正数、负数与0的关系分类:
实 数 于是:
,
101 001 000 1…(相邻两个1之间的0的个数逐次加1) , , ,
(1)有没有最小的正整数?有没有最小的整数?
正有理数 结论是:这个数不是有理数。
(1)按整数、分数的关系分类:
正无理数
负有理数
(2)有没有最小的有理数?有没有最小的无理数?
负无理数
精典例题
例 将下列各数分别填入下列相应的括号内:
3 9, 1, 7, π, 16, 5, 3 8,
4
4 , 0, 25, 0.3232232223
4 2 … ;
π , ,49, 3, ,1,6 . 6,
.
5 以下各正方形的边长是无理数的是( )
101 001 000 1…(相邻两个1之间的0的个数逐次加1) , , , 对每个数都要进行判断,分类标准不同结果不同.
负数集合 - … . 2 该命题的题设是?结论是?
以下各正方形的边长是无理数的是( )
(3)无理数都是无限小数; ( )
p 例 把下列各数填入相应的集合内: 于是: 2 , 例 把下列各数填入相应的集合内: q 101 001 000 1…(相邻两个1之间的0的个数逐次加1) , , ,
大东区二中八年级数学上册第二章实数2.2平方根第1课时算术平方根教学课件新版北师大版

x
乙 =__1_5_____
______7_5_____≈_____
样本数据的方差分别是 :
s2
甲=____74___75__2_
74
752
…
15
72___75__2 ___73___7_5_2___≈__3___
s2 乙 =_7_5___75__2___7_3__7_5__2 _…_ 71 752 _7_5__7_5__2 __≈_8____ 15
非负数
a 0 (a≥0)
算术平方根具有双重非负性
例2 假设|m-1| + n =03,求m+n的值.
解: 因为|m-1| ≥0 ,
≥0n, 又 3|m-1| +
=0,
所以 |m-1| =0 ,
=0 n, 所 以3 m=1,n=-3,
所以m+n=1+(-3)=-2.
n3
归纳 几个非负数的和为0,则每个数均为0,初中阶段学过的非负数 有绝对值、偶次幂及一个数的算术平方根.
乙 6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21
你认为应该选择哪名运动员参赛 ?为什么 ?
解:我认为应该选择甲运动员参赛。
理由是: 甲、乙运动员10次测验成绩的平均数分别为:
x甲 =
5.85
5.93 … 6.00
10
6.19Biblioteka 6.016.11 6.08 …5.85 6.21
(2)因为12=1 , 所以1的算术平方根是1 , 即 ;
1 1
(3)因为 ( 7 )2 , 所49以
8
64
(4)14的4算9 术平7方根是
鲁教版初中数学七年级上册《实数(2)》教学课件ppt课件

议一议
工人师傅用某种钢筋制作直角边长分别为 1m,2m的直角三角形工件,如下图,制作这样的 一个工件需要钢筋多少米?制作100个这样的工 件呢?(精确到0.001m)
方法小结
在实数运算中,当遇到无理数,并且需要求出 结果的近似值时,可以根据精确度用相应的近似 有限小数去代替无理数,再进行计算.
在中间的计算过程,所取的近似值要比要求的 精确度多取一位小数;计算出最后结果,再将最 后结果按精确额度取近似值.
例题演示
例1 计算:
(1) 5+ 3 (精确到0.01);
(2) 2 (精确到0.1).
解:(1) 5 3 2.236 1.732 3.97
(2) 2 1.:
(1) 5 ,2.2
(2)- 7,-2.7
解:(1)由 5 2.236,可知 5 2.2 (2)由 7 2.646,可知 7 2.7 7 2.7
第四章 实数
6. 实数(2)
目录
Contents
01 旧知回顾
02 新知探究
03 例题演示
04 随堂练习
05 课堂小结
旧知回顾
1.在实数范围内 ,相反数、倒数、绝对值的 意义 ,和有理数范围内的相反数、倒数、绝对值 的意义是否一样?
完全一样
2.有理数的运算及运算律对实数是否适用? 完全适用
新知探究
随堂练习 1.计算:
(1)2 3 7(精确到0.1);
(2)3 6 (精确到0.01).
2.比较下列各组数的大小:
(1) ,3.14 (2) 2 5,4.5
3.如图,图中小正方形的边长为1,试求 图中四边形ABCD的周长.
课堂小结
通过今天的学习,说说你的收获和体会?
作业: 课本习题4.9 知识技能
工人师傅用某种钢筋制作直角边长分别为 1m,2m的直角三角形工件,如下图,制作这样的 一个工件需要钢筋多少米?制作100个这样的工 件呢?(精确到0.001m)
方法小结
在实数运算中,当遇到无理数,并且需要求出 结果的近似值时,可以根据精确度用相应的近似 有限小数去代替无理数,再进行计算.
在中间的计算过程,所取的近似值要比要求的 精确度多取一位小数;计算出最后结果,再将最 后结果按精确额度取近似值.
例题演示
例1 计算:
(1) 5+ 3 (精确到0.01);
(2) 2 (精确到0.1).
解:(1) 5 3 2.236 1.732 3.97
(2) 2 1.:
(1) 5 ,2.2
(2)- 7,-2.7
解:(1)由 5 2.236,可知 5 2.2 (2)由 7 2.646,可知 7 2.7 7 2.7
第四章 实数
6. 实数(2)
目录
Contents
01 旧知回顾
02 新知探究
03 例题演示
04 随堂练习
05 课堂小结
旧知回顾
1.在实数范围内 ,相反数、倒数、绝对值的 意义 ,和有理数范围内的相反数、倒数、绝对值 的意义是否一样?
完全一样
2.有理数的运算及运算律对实数是否适用? 完全适用
新知探究
随堂练习 1.计算:
(1)2 3 7(精确到0.1);
(2)3 6 (精确到0.01).
2.比较下列各组数的大小:
(1) ,3.14 (2) 2 5,4.5
3.如图,图中小正方形的边长为1,试求 图中四边形ABCD的周长.
课堂小结
通过今天的学习,说说你的收获和体会?
作业: 课本习题4.9 知识技能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-4
-3
-2
-1
0
1
2
﹒
3O’ 4
你能把 2 在数轴上表示出 来吗?请与同桌一起试一试.
问题:边长为1的正方形,对角线长为多少?
2
-2 -1 0 1
2
2 3 4
也就是说:每一个无理数都可以用数轴上 的一个点来表示.数轴上的点有些表示有 理数,有些表示无理数.
有理数能不能将数轴排满?
练习
一、判断下列说法是否正确: 1. 实数不是有理数就是无理数. ( )
5 1 , , 4 2
4 , 9
(相邻两个3之间的7的个数逐次加1)
3 8,
3
2,
7,
,
2,
20 , 3
0,
5,
0.3737737773
有理数集合
无理数集合
π
每个有理数都可以用数轴上的点表示, 那么无理数是否也可以用数轴上的点表示 出来吗?
能在数轴上找到表示π的点吗?
8,
有理数有
无理数有 实数有
小结
这节课你有什么新发现? 知道了哪些新知识?
有理数和无理数统称实数.
分类
整数
有理数
实 数 无理数 正实数 实 数
有限小数或无 限循环小数
分数
无限不循环小数 正有理数 正无理数
0
负实数
负有理数 负无理数
练习:把下列各数分别填入相应的集合内:
3
2,
20 , 3
1 , 4
4 , 9
7,
,
0,
5 , 2 5,
2,
3 8,
0.3737737773
实 数
探究
观察下列有理数写成小数的形式,你有 什么发现?任何有理数都能写成有限小数 和无限循环小数吗?
3 47 9 11 5 3, , , , , 5 8 11 90 9
我们发现:上边的有理数都可以写成有 限小数或者无限循环小数的形式,即
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
事实上,任何一个有理数都可以写成有限小数或无限循环小数.
反过来,任何有限小数或无限循环小数也都是有理数.
无限不循环的小数 ---------- 叫做无理数.
你能举出一些无理数吗?
,
7,
2
,
2 1
3, 12
0.1010010001…〔两个1之间依次多1个0〕
—168.3232232223…〔两个3之间依次多1个2〕
2. 无限小数都是无理数.
3. 无理数都是无限小数.
(
(
)
)
4. 带根号的数都是无理数.
(
)
)
5. 两个无理数之和一定是无理数. (
6. 所有的有理数都可以在数轴上表示,反过来, 数轴上所有的点都表示有理数.( )
练习
二、填空
在实数
22 , 7
3
1 , 3
0
,
中,
3
2,
0. 3,
9,
整数有