物理化学与化工原理
化工原理考研知识点总结

化工原理考研知识点总结一、化工热力学热力学是化工工程中最基本的理论之一,它研究能量转化和能量转化的规律。
化工热力学包括热力学基本概念、热力学过程、热力学第一定律和第二定律、热力学性质等内容。
1. 热力学基本概念热力学是研究物质的能量转化和能量转化的规律的科学。
它包括能量的概念、系统的概念、外界和内界、热力学平衡等基本概念。
2. 热力学过程热力学过程是物质在外界条件下的能量转化过程。
热力学过程包括等温过程、等容过程、等压过程和绝热过程。
等温过程是在恒温条件下进行的能量转化过程,等容过程是在恒容条件下进行的能量转化过程,等压过程是在恒压条件下进行的能量转化过程,绝热过程是在绝热条件下进行的能量转化过程。
3. 热力学第一定律和第二定律热力学第一定律是能量守恒定律,它描述了热力学系统中能量的变化。
热力学第二定律是能量转化定律,它描述了热力学系统中能量转化的规律。
这两个定律是热力学的基本定律。
4. 热力学性质热力学性质是描述物质在热力学条件下的性质。
包括物质的焓、熵、热容、热膨胀系数、压缩系数等性质。
这些性质对于热力学过程和热力学系统的分析和计算是十分重要的。
二、流体力学流体力学是研究流体运动和流体静力学的学科。
在化工工程中,流体力学是非常重要的理论基础之一。
流体力学包括流体的基本性质、流体静力学、流体动力学等内容。
1. 流体的基本性质流体的基本性质包括密度、粘度、表面张力、压力等。
这些性质对于描述和研究流体的运动和静力学是非常重要的。
2. 流体静力学流体静力学是研究流体在静力条件下的性质和规律。
它包括流体静力平衡条件、流体压力、浮力等内容。
3. 流体动力学流体动力学是研究流体在运动状态下的性质和规律。
它包括流体动力学基本方程、流体的流动性质、流动的基本规律等内容。
三、物理化学物理化学是化学和物理学的交叉学科,它研究物质的结构、性质和变化规律。
在化工工程中,物理化学是非常重要的理论基础之一。
物理化学包括化学热力学、化学动力学、电化学等内容。
化工基础入门知识资料

化工基础入门知识资料化工基础是学习化工的第一步,它主要包括化工原理、化学反应、物理化学、化学工程等方面的知识。
以下是化工基础入门知识资料的详细介绍。
一、化学反应基础1.化学反应类型化学反应根据反应物和生成物的物质状态可以分为气态反应、液态反应和固态反应。
根据反应的速率又可以分为瞬时反应、缓慢反应和爆炸反应。
2.化学反应平衡化学反应在接近一定时间后往往会趋于平衡状态。
平衡时反应物与生成物浓度、压力、温度等物理量保持不变。
同时,反应物与生成物浓度的比例也始终保持不变,这就是化学平衡常数。
3.化学平衡常数对于一般的化学反应,可以用化学平衡常数来描述反应物与生成物之间的平衡状态。
化学平衡常数与温度有关,一般情况下,化学平衡常数随着温度的升高而增大。
4.化学平衡的影响因素影响化学平衡的因素很多,比如反应物浓度、温度、压力、催化剂等等。
根据不同的反应而言,不同的影响因素可能会产生不同的效应。
二、化工原理1.物质分类化工原理的基础是物质分类,物质可以按照化学成分的不同进行分类,通常分为无机物和有机物两大类。
其中,有机物是由碳、氢、氧、氮、硫等元素组成的化合物,无机物则不包含碳或者只包含极少量的碳元素。
2.化学反应化学反应是化学工业中最基本的操作之一,大部分化学工业生产过程都离不开化学反应。
化学反应包括酸碱反应、氧化还原反应、配位反应等多种形式。
3.化学平衡化学反应平衡是化学反应中一种非常重要的现象,它决定了反应的方向、反应速率以及反应最终达到的状态。
化学平衡可以通过平衡常数来描述反应物和生成物之间的关系。
三、物理化学1.物理化学基础物理化学是物理和化学的交叉学科,它主要研究物质在热学、热力学、电磁学、光学等多个方面的物理性质和化学性质。
2.热力学基础热力学主要研究物质在热力学平衡状态下的状态变化和热量交换。
热力学的核心是热力学第一定律和第二定律。
3.化学动力学基础化学动力学研究化学反应的速率及其影响因素,包括反应物浓度、温度、催化剂等。
主要课程物理化学、化工原理、化学反应工程和一门必选的专业方向课程

主要课程物理化学、化工原理、化学反应工程和一门必选的专业方向课程(最新版)目录1.引言2.主要课程介绍3.物理化学4.化工原理5.化学反应工程6.专业方向课程7.结论正文1.引言在我国的化工教育体系中,理论知识与实践操作相结合是非常重要的。
为了培养学生的专业素养和实际操作能力,化工专业的课程设置涵盖了多个领域。
本文将介绍化工专业的主要课程,包括物理化学、化工原理、化学反应工程和一门必选的专业方向课程。
2.主要课程介绍(1)物理化学:物理化学是一门研究物质的宏观性质与微观结构、化学过程与物理过程之间关系的学科。
学生在学习物理化学时,需要掌握物质的组成、结构、性质、变化等方面的知识,以及相关的实验技能。
(2)化工原理:化工原理是化工专业的基础课程,主要研究化学工程的基本原理和方法。
课程内容包括化学工程热力学、化学反应动力学、传质过程、分离过程等。
(3)化学反应工程:化学反应工程是研究化学反应的工程技术学科,旨在实现化学反应的工业化生产。
学生在学习化学反应工程时,需要掌握化学反应的基本原理、反应器设计、反应条件的优化等方面的知识。
3.专业方向课程化工专业涵盖了多个方向,如石油化工、精细化工、生物化工等。
学生需要在这些方向中选择一个进行深入学习。
例如,石油化工方向的学生需要学习石油炼制、石油化工工艺等课程,而精细化工方向的学生则需要学习精细化学品合成、高分子材料等课程。
4.结论总之,化工专业的课程设置旨在培养学生的专业素养和实际操作能力。
通过学习物理化学、化工原理、化学反应工程等课程,学生可以掌握化工专业的基本理论和技能。
化工原理和物理化学

化工原理和物理化学化工原理和物理化学是化学工程领域中的两个基础学科,它们相互交叉、相辅相成,为化学工程师的学习和实践提供了重要的理论基础和实验支持。
本文将从两个学科的定义、重要性、研究内容以及在实践中的应用等方面进行探讨。
一、化工原理化工原理是研究化学反应工程的基本规律和化学过程的宏观行为的学科。
它主要涉及化学反应、热力学、质量传递等方面的基本理论和实验方法。
化工原理的研究旨在揭示化学反应和传递过程的规律,为化学工程的设计和调控提供理论指导。
化工原理的重要性体现在以下几个方面:首先,化工原理是化学工程师理解和分析化学反应体系的基础。
通过学习化工原理,可以了解化学反应的动力学过程、平衡原理以及反应产物的生成机制,为分析和解决实际问题提供依据。
其次,化工原理是化学过程优化和设备设计的理论基础。
合理地设计化学反应装置和工艺流程,需要考虑化学反应的热力学和动力学特性,化工原理提供了相应的计算方法和模型,有助于实现化学过程的优化和经济性改善。
最后,化工原理对于化工工程能源消耗和环境保护等方面也具有重要意义。
通过研究化工原理,可以探索新的反应工艺和能源利用方式,减少资源浪费和环境污染,实现绿色化工的目标。
化工原理的研究内容涉及多个方面,例如化学反应动力学、反应平衡、传质过程、能量传递等等。
通过实验、数学模型和计算方法的综合运用,可以深入研究化学反应的速率规律、反应平衡的相互关系、物质在不同介质中的传递机制等。
二、物理化学物理化学是研究物质性质及其与能量的关系的学科。
它主要围绕着物质的结构、性质和变化规律展开研究,涉及了热力学、电化学、光谱学、动力学等多个领域。
物理化学的研究内容广泛,为化学工程的理论和实践提供了重要支持。
物理化学的重要性体现在以下几个方面:首先,物理化学为理解和解释化学现象提供了基础理论。
通过研究物质的结构和性质,可以揭示化学反应的动力学和热力学规律,为化学过程的控制和调控提供理论依据。
其次,物理化学在化学工程中具有重要的应用价值。
物理化学和化工原理

物理化学和化工原理物理化学是研究物质的基本性质和变化规律的学科,它与化学工程紧密相关,两者相辅相成,共同推动着化工行业的发展。
在物理化学和化工原理的学习过程中,我们需要掌握一定的基本知识和理论,才能更好地应用于实际工程中。
首先,我们需要了解物理化学的基本概念和原理。
物理化学是通过物理方法来研究化学现象的学科,它涉及到热力学、动力学、量子化学等多个方面的内容。
热力学是研究能量转化和传递规律的学科,它对化工过程中的能量平衡和热力学参数的计算具有重要意义。
动力学则是研究化学反应速率和机理的学科,它对于化工反应器的设计和优化具有重要意义。
量子化学则是研究原子和分子的结构和性质的学科,它对于理解化工原料的性质和反应机理具有重要意义。
其次,我们需要了解化工原理的基本知识和应用。
化工原理是研究化工过程和设备的基本原理和应用的学科,它涉及到流体力学、传热学、质量传递等多个方面的内容。
流体力学是研究流体运动规律的学科,它对于化工设备的设计和运行具有重要意义。
传热学则是研究热量传递规律的学科,它对于化工设备的热交换和节能具有重要意义。
质量传递则是研究物质传递规律的学科,它对于化工设备的分离和提纯具有重要意义。
最后,我们需要将物理化学和化工原理的知识应用于实际工程中。
在化工生产过程中,我们需要根据物理化学和化工原理的知识,设计合理的工艺流程和设备结构,保证产品的质量和产量。
同时,我们还需要根据物理化学和化工原理的知识,进行反应条件和操作参数的优化,提高生产效率和降低能耗。
此外,我们还需要根据物理化学和化工原理的知识,进行产品的分析和检测,确保产品符合标准和规定。
综上所述,物理化学和化工原理是化工工程师必须掌握的基本知识和理论,它对于化工行业的发展具有重要意义。
我们需要不断学习和掌握物理化学和化工原理的知识,不断提高自己的理论水平和实践能力,为化工行业的发展做出更大的贡献。
化工原理

dp gdz 0
dp
g dz 0
设流体不可压缩,即密度ρ 与压力无关,可将上式积 分得:
p
gz 常数
对于静止流体中任意两点1和2,如图1-7所示:
p1
或
gz1
p2
gz2
p2 p1 g ( z1 z2 ) p1 gh
(1)位能
在重力场中,液体高于某基准面所具有的能量称为 液体的位能。液体在距离基准面高度为z时的位能相
当于流体从基准面提升高度为z时重力对液体所作的 功。
单位质量流体所具有的位能gz
[ gz ] m m m Nm m=Kg 2 = =J/Kg 2 s s Kg Kg
(2)动能
避免混淆,p=0.5atm(表压
或真空度)。
PB,绝
1.2.4压强的测量
两类: 利用机械原理制成的;应用流体静力学原理
设计的。 (1)简单测压管
pa R A 1• ..
p1=pa+ρ gR
1点表压:p1-pa=ρ gR
装置简单,只适用于测高于大气压的液体,不 适合测气体,且p1很大,R很高,不方便。
欧拉平衡方程 左边表示单位质量流体所受的力
若将该微元流体移动dl距离,此距离对x,y,z轴的分量 为dx、dy、dz,将上列方程组分别乘以dx、dy、dz并
相加得:
1 p p p ( dx dy dz ) ( Xdx Ydy 2=(ρ 0-ρ )gR
(4)倒U形管压差计 A—空气 B—被测液 pa=p1-ρ Bg(R+m) pa, =p2-ρ Bgm-ρ 空gR 因 pa= pa, 故 p1-ρ Bg(R+m)=p2-ρ Bgm-ρ p1-p2=(ρ B-ρ 空)gR =ρ BgR
物化跟化工原理的区别在哪

物化跟化工原理的区别在哪物化和化工原理都是化学工程专业的基础课程,它们之间虽然有一定的联系,但又有一些明显的区别。
首先,物化(物理化学)是研究物质的物理性质和化学性质以及它们之间的关系的学科。
物化主要研究物质的状态、热力学、化学动力学、量子化学等内容,以及与之相关的实验技术。
物化的目标是通过对物理和化学原理的研究,揭示物质的性质和变化规律,以及解释和预测各种化学现象和过程。
物化通常是概念性和理论性较强的课程,注重分析、推导和定性定量的处理,对于化学工程专业的学生来说是必修的基础课程。
在物化的基础上,化工原理则是将物化的原理和方法应用到化学工程实际问题中的课程。
化工原理主要学习化学工程中的基本原理、基本过程和基本计算方法。
它涉及到化工流程的设计、传热、传质、反应工程、分离与提纯、反应器设计等内容。
化工原理的目标是培养学生运用物化的理论知识,解决和分析化学工程领域中的实际问题,以及掌握一些基本的实验技术和操作方法。
化工原理是一个实践性和应用性较强的课程,注重应用和计算,对于化学工程专业的学生来说也是非常重要的基础课程。
可以说,物化是化工原理的基础,化工原理是物化的应用。
通过物化学习和理解物质的性质和变化规律,为化工原理提供了理论基础。
而化工原理则将物化的理论知识应用到实际化学工程问题中,并培养学生运用所学知识解决问题的能力。
此外,物化和化工原理在内容上也存在一些明显的区别。
物化更加注重物质基本的性质和物理化学原理的研究,包括固体、液体和气体的物理性质、热力学和化学动力学的规律、分子结构和光谱分析等内容。
而化工原理则更加注重化学工程中的基本原理和过程,包括传热、传质、反应工程、分离与提纯等内容。
总结起来,物化和化工原理都是化学工程专业的基础课程,物化主要研究物质的物理性质和化学性质以及它们之间的关系,而化工原理则将物化的理论知识应用到实际化学工程问题中。
它们之间既有联系又有区别,在培养学生的理论基础和实际应用能力方面起着不可替代的作用。
化工原理知识点总结

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取;2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率;3.牛顿粘性定律:F=±τA=±μAdu/dy,F:剪应力;A:面积;μ:粘度;du/dy:速度梯度;4.两种流动形态:层流和湍流;流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流;当流体层流时,其平均速度是最大流速的1/2;5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C;6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dgλ:摩擦系数;层流时λ=64/Re,湍流时λ=FRe,ε/d,ε:管壁粗糙度;局部阻力hf=ξu2/2g,ξ:局部阻力系数,情况不同计算方法不同7.流量计:变压头流量计测速管、孔板流量计、文丘里流量计;变截面流量计;孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用;其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定;转子流量计的特点——恒压差、变截面;8.离心泵主要参数:流量、压头、效率容积效率v:考虑流量泄漏所造成的能量损失;水力效率H:考虑流动阻力所造成的能量损失;机械效率m:考虑轴承、密封填料和轮盘的摩擦损失;、轴功率;工作点提供与所需水头一致;安装高度气蚀现象,气蚀余量;泵的型号泵口直径和扬程;气体输送机械:通风机、鼓风机、压缩机、真空泵;9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m31atm =101325Pa====760mmHg1被测流体的压力 > 大气压 表压 = 绝压-大气压2被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳蜗壳形和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体;半闭式和开式效率较低,常用于输送浆料或悬浮液;气缚现象:贮槽内的液体没有吸入泵内;汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压;原因①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体12. 往复泵的流量调节1正位移泵流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵;222'2e 2e 2u d l l u d l l u d l h h h f f f ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=∑∑∑∑∑∑ζλλζλ往复泵是正位移泵之一;正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏;2往复泵的流量调节第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵的流量是不变的;第二,改变曲柄转速和活塞行程;使用变速电机或变速装置改变曲柄转速,达到调节流量,使用蒸汽机则更为方便;改变活塞行程则不方便;13.流体输送机械分类14.离心泵特性曲线:O qv qHH1 管路h e ~ 图2-10 离心泵的工作泵H ~ 泵 ~ ηg Pz A ρ∆+∆= A15.流体输送机械特点:•速度式流体输送机器的特点•1由于速度式流体输送机械的转动惯量小,摩擦损失小,适合高速旋转,所以速度式流体输送机械转速高、流量大、功率大;•2运转平稳可靠,排气稳定、均匀,一般可连续运转1~3年而不需要停机检修;•3速度式流体输送机械的零部件少,结构紧凑;•4由于单级压力比不高,故不适合在太小的流量或较高的压力>70MPa下工作;• 2.容积式流体输送机械的特点•1运动机构的尺寸确定后,工作腔的容积变化规律也就确定了,因此机械转速改变对工作腔容积变化规律不发生直接的影响,故机械工作的稳定性较好;•2流体的吸入和排出是靠工作腔容积变化,与流体性质关系不大,故容易达到较高的压力;•3容积式机械结构复杂,易于损坏的零件多;而且往复质量的惯性力限制了机械转速的提高;此外,流体吸入和排出是间歇的,容易引起液柱及管道的振动;16.流体体积随压力变化而改变的性质称为压缩性;二、非均相机械分离1.颗粒的沉降:层流沉降速度Vt=ρp -ρgdp2/18μ,ρp -ρ:颗粒与流体密度差,μ:流体粘度;重力沉降沉降室,H/v=L/u,多层;增稠器,以得到稠浆为目的的沉淀;离心沉降旋风分离器;2.过滤:深层过滤和滤饼过滤常用,助滤剂增加滤饼刚性和空隙率;分类:压滤、离心过滤,间歇、连续;滤速的康采尼方程:u=Δp/Lμε3/5a21-ε2,ε:滤饼空隙率;a :颗粒比表面积;L :层厚;3.过滤介质:过滤过程所用的多孔性介质称为过滤介质,过滤介质应具有下列特性:多孔性、孔径大小适宜、耐腐蚀、耐热并具有足够的机械强度;4.助滤剂:若滤浆中所含固体颗粒很小,或者所形成的滤饼孔道很小,又若滤饼可压缩,随着过滤进行,滤饼受压变形,都使过滤阻力很大而导致过滤困难;可采用助滤剂以改善滤饼的结构,增强其刚性;常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等5. 过滤速率基本方程恒速过滤,恒压过滤 6.过滤设备:板框压滤机间歇操作,构造简单,过滤面积大而占地省,过滤压力高可达左右,便于用耐腐蚀性材料制造,便于洗涤;它的缺点是装卸、清洗劳动强度较大;、叶滤机叶滤机也是间歇操作设备,具有过滤推动力大、单位地面所容纳的过滤面积大、滤饼洗涤较充分等优点;其生产能力比板框压滤机大,而且机械化程度高,劳动力较省,密闭过滤,操作环境较好;其缺点是构造较复杂、造价较高;、厢式压滤φμr p K ∆=2)(2e q q K d dq u +==ττK qq q e =+22τ222KA VV V e=+机、转筒真空过滤机操作连续、自动7.自由沉降:单个颗粒在流体中的沉降过程称;干扰沉降:若颗粒数量较多,相互间距离较近,则颗粒沉降时相互间会干扰,称为干扰沉降;8.影响因素:当颗粒浓度增加,沉降速度减少;容器的壁和底面,沉降速度减少;非球形的沉降速度小于球形颗粒的沉降速度;9. 流态化是一种使固体颗粒通过与流体接触而转变成类似于流体状态的操作;分三个阶段:1固定床阶段:流体通过颗粒床层的表观速度u较低,使颗粒空隙中流体的真实速度u1小于颗粒的沉降速度ut,则颗粒基本上保持静止不动,颗粒层为固定床;流化床阶段:在一定的表观速度下,颗粒床层膨胀到一定程度后将不再膨胀,此时颗粒悬浮于流体中,床层有一个明显的上界面,与沸腾水的表面相似,这种床层称为流化床;散式流态化,聚式流态化;3颗粒输送阶段:如果继续提高流体的表观速度u,使真实速度u1大于颗粒的沉降速度ut,则颗粒将被气流所带走,此时床层上界面消失,这种状态称为气力输送;10. 气力输送的优点1系统封闭,避免物料飞扬,减少物料损失,改善劳动条件;2输送管路不限制,即使在无法铺设道路或安装输送机械的地方,使用气力输送更加方便;3设备紧凑,易于实现连续化、自动化操作,便于同连续化工生产相衔接;4在气力输送过程中可同时进行粉料的干燥、粉碎、冷却、加料等操作;三、传热1.传热方式:热传导傅立叶定律、对流传热牛顿冷却定律、辐射传热四次方定律;热交换方式:间壁式传热、混合式传热、蓄热体传热对蓄热体的周期性加热、冷却;2.傅立叶定律:dQ= -λdA ,Q:热传导速率;A:等温面积;λ:比例系数;:温度梯度;λ与温度的关系:λ=λ01+at,a:温度系数;3.不同情况下的热传导:单层平壁:Q=t1-t2/b/CmA=温差/热阻,b:壁厚;Cm=λ1-λ2/2;多层平壁:Q=t1-tn+1/ bi /λiA;单层圆筒:Q=t1-t2/b/λAm,A:圆筒侧面积,C= A2-A1/lnA2/A1;多层圆筒:Q=2πLt1-t n+1/ 1/λi lnri+1/ri ;4.对流传热类型:强制对流传热外加机械能、自然对流传热、温差导致、蒸汽冷凝传热冷壁、液体沸腾传热热壁,前两者无相变,后两者有相变;牛顿冷却定律:dQ=hdAΔt,Δt>0;h:传热系数;5.吸收率A+反射率R+透射率D=1;黑体A=1,镜体R=1,透热体D=1,灰体A+R=1;总辐射能E=Eλdλ,Eλ:单色辐射能;λ:波长;四次方定律:E=CT/1004=εC0T/1004,C:灰体辐射常数;C0:黑体辐射常数;ε=C/C0:发射率或黑度;两物体辐射传热:Q1-2=C1-2φAT1/1004-T2/1004,φ:角系数;A :辐射面积;C1-2=1/1/C1+1/C2-1/C06.总传热速率方程:dQ=KmdA,dQ :微元传热速率;Km :总传热系数;A :传热面积; 1/K=1/h1+bA1/λAm+A1/h2A2,h1,h2:热、冷流体表面传热系数;7.换热器:夹套换热器、蛇管式换热器、套管式换热器、列管式换热器;8、1强化传热 为了使物料满足所要求的操作温度进行的加热或冷却,希望热量以所期望的速率进行传递;2削弱传热 :为了使物料或设备减少热量散失,而对管道或设备进行保温或保冷;9.热传导 物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为热传导,又称导热;10.对流传热:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程 ; 11. 12.传热的基本方式:1热传导2对流传热—热对流 3辐射传热 13.影响冷凝传热的因素和冷凝传热的强化① 流体物性:冷凝液 、、 ;潜热r →② 温差:液膜层流流动时,t=ts -tW,, ③ 不凝气体:不凝气体的存在会导致1%不凝气可使60%,所以应该定期排放④ 蒸汽流速与流向u>10m/s :蒸汽与液膜同向时u,;反向时u,;u 时无论方向;因此蒸汽进口一般设在换热器上部,以避免蒸汽与液膜逆向流动使;⑤ 蒸汽过热:包括冷却和冷凝两个过程;⑥ 冷凝面的形状和⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧管内冷凝管外冷凝冷凝传热管内沸腾大容器沸腾沸腾传热有相变混合对流传热有限空间自然对流大空间自然对流自然对流传热外部流动内部流动强制对流传热无相变对流传热位置:以减少冷凝液膜的厚度并作为目的;垂直板或管:可开纵向沟槽;水平管束:可采用错列;14. 导热系数的物理意义:表示温度梯度为1K/m 或1℃/m 时,单位时间通过单位面积的热量;即:单位温度梯度下的热通量; 0为固体在0℃时的导热系数,k 为温度系数,1/℃, 对大多数金属材料为负值,对大多数非金属固体材料为正值;15.在物体边界上,传热边界条件可分为以下三类:1已知物体边界壁面的温度,称为第一类边界条件;2已知物体边界壁面的热通量值,称为第二类边界条件;已知物体壁面处的对流传热条件,称为第三类边界条件;16.准数的定义与物理意义:努塞尔准数Nusselt, Nu : 对流传热与厚度为L 的流体层内的热传导之比;努塞尔数越大,对流传热的传热强度也越大;它反映了固体壁面处的无因次温度梯度的大小;雷诺准数Reynold, Re : 惯性力与粘性力之比;雷诺数小,表示流体的粘性力起控制作用,抑制流层的扰动,随着雷诺数的增大,流体中流体微团的扰动加剧,壁面处的温度梯度增大,对流传热系数增大;普朗特准数Prandtl, Pr : 动量扩散与热量扩散之比;它表征了流体的动量传递能力与热量传递能力的格拉晓夫准数Grashof, Gr :浮升力与粘性力之比 ; )1(0kt +=λλλαLνμρuL uL =a c p νλμ=它反映了由于流体中温度差引起密度差所导致的浮升力对对流传热的影响;它在自然对流中的作用与强制对流中雷诺数的作用相当;17.蒸汽与低于饱和温度的壁面接触时有膜状冷凝和珠状冷凝两种18. 影响沸腾传热的因素及强化途径:① 液体的性质:② 温差:③ 操作压强:④ 加热面:19.辐射:物体通过电磁波来传递能量的过程;热辐射:物体由于热的原因以电磁波的形式向外发射能量的过程;20.热辐射=反射+吸收+穿透 黑体,白体,透热体,灰体 21.物体的黑度:指同温度下物体与黑体辐射能力之比; 仅与自身特性有关;22. 斯蒂芬—波尔茨曼定律 0──黑体辐射常数,=× 10-8W/m2 .K4; 克希霍夫定律 :C0──黑体辐射系数,=m2 .K4 角系数23.气体的热辐射具有以下两个主要特点:1气体的辐射和吸收对波长具有强烈的选择性2气体的辐射和吸收是在整个容积内进行24.传热三步: 1热流体以对流传热方式将热量传给固体壁面;2热量以热传导方23223νβμρβt gL tL g ∆=∆0E E =ε4040)100(T C T E o ==σ(11f E E Eb ===αα发出的总辐射能由表面发出的辐射能上的由表面落到表面i i j ij A A A =ϕ式由间壁的热侧面传到冷侧面;3冷流体以对流传热方式将间壁传来的热量带走;25. 热量衡算方程反映了冷、热流体在传热过程中温度变化的相互关系;根据能量守恒原理,在传热过程中,若忽略热损失,单位时间内热流体放出的热量等于冷流体所吸收的热量;热量衡算方程26.传热过程的平均温差计算:恒温差传热,变温差传热27.按照冷、热流体之间的相对流动方向,流体之间作垂直交叉的流动,称为错流;如一流体只沿一个方向流动,而另一流体反复地折流,使两侧流体间并流和逆流交替出现,这种情况称为简单折流;28.不同流动排布型式的比较:进出口温度条件相同时,逆流的平均温差最大,并流的平均温差最小,对于其他的流动排布型式,其平均温差介于两者之间;在实际的换热器中应尽量采用逆流流动,而避免并流流动;但是在一些特殊场合下仍采用并流流动,以满足特定的生产工艺需要;采用折流和其他复杂流动的目的是为了提高传热系数,然而其代价是减小了平均传热温差;29.换热器传热效率e 的定义为实际传热速率Q 与理论上可能的最大传热速率Q max 之比四、质量传递基础1.质量传递简称传质是指物质从一处向另一处转移,包括相内传质和相际传质两类,前者发生在同一个相内,后者则涉及不同的两相;)()(1221c c c h h h H H m H H m Q -=-=max Q Q=ε2.1气汽-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程;解吸:为吸收的逆过程;蒸馏:不同物质在气液两相间的相互转移;气体增减湿:湿分由液相气相向气相液相转移;2液-液系统:萃取:溶质由一液相转入另一液相;这是在液体混合物中加入另一不相溶的液相物质,使原混合物组分在两液相中重新分配的过程;3气汽-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程;解吸:为吸收的逆过程;蒸馏:不同物质在气液两相间的相互转移;气体增减湿:湿分由液相气相向气相液相转移;4气-固系统:干燥:加入热量使液体气化,从固体的表面或内部转入气相;吸附:物质由气相趋附于固体表面主要是多孔性固体的内表面,吸附平衡是过程进行的极限;3.费可定律:实验表明,在二元混合物A+B中,组分的扩散通量与其浓度梯度成正比,这个关系称为费克Fick定律;4.化学反应可分为两类:一类是在整个相内均匀发生的反应,称为均相反应;另一类则是局限在某个特定区域内的反应,它可以是在相的内部,也可以在边界上,称为非均相反应;5.对流传质通常指运动流体与固体壁面或两股直接接触的流体之间间的质量传递,是相际传质的基础;一般情况下,传质设备中流体的流动形态多为湍流;6.传质过程应用的设备有多种类型,其主要功能是给传质的两相或多相提供良好的接触机会,包括增大相界面面积和增强湍动强度,主要有填料塔和板式塔;7.板式塔:有害因素:空间上的反向流动:泡沫夹带增大板间距、气泡夹带增大降液管长度;空间上的不均匀流动:气体,液体;如何提高效率:1合理选择塔板孔径和开口率造成适宜气液接触状态2设置倾斜的进气装置塔板压降:塔板上下对应位置的压力差新型:泡罩塔板、浮阀塔板、筛孔塔板、舌型塔板、网型塔板、垂直塔板8.填料塔:主要特性数据:比表面积、孔隙率、添填料的几何形状拉西环、鲍尔环、矩鞍型填料、阶梯环添料9.填料塔操作范围小,对液体负荷变化敏感;不易处理易聚合或含有固体悬浮物的物料;反应过程中需要冷却时,填料塔复杂,有侧线出料时,填料塔不如板式塔方便;板式塔设计简便安全;填料塔小时结构简单,造价低;易起泡物系、腐蚀性物系、热敏性物系,填料塔更合适;填料塔压降比板式塔小,真空操作方便;五、气体吸收1.吸收是将气体混合物与适当的液体接触,利用个组;分在液体中溶解度的差异而使气体中不同组分分离的操作;混合气体中,能够溶解于液体中的组分称为吸收质或溶质;不能溶解的组分称为惰性气体;吸收操作所用的溶剂称为吸收剂;溶有溶质的溶液称为吸收液或简称溶液;派出的气体称为吸收尾气;分物理吸收——煤气脱苯,化学吸收——二氧化碳碳酸钾2.吸收操作是气体混合物的主要分离方法,化工生产;中它有以下几种具体的应用:1.化工产品2.分离气体混合物3.从气体中回收有用组分4.气体净化原料气的净化和尾气、废气的净化5.生化工程;一个完整地吸收分离过程一般包括吸收和解吸两部分;3.溶剂的选择:1溶剂应对气体中被分离组分有较大溶解度;2溶剂对其他组分的溶解度要小3溶质在溶剂中的溶解度对温度变化敏感4容积蒸汽压低,减少回收时的损失5溶剂有较好的化学稳定性6溶剂有较低的粘度7溶剂价廉,无腐蚀性、无毒不易燃;吸收率η=mA除/mA进×100%≈ y1-y2/y1×100%,y1,y2:进塔和出塔混合气中A的摩尔分数;4..稀溶液中亨利定律:cA=HpA,cA:溶解度;H:溶解度系数;pA:气相分压;pA=ExA,xA:液相中溶质摩尔分数;E:亨利系数;y=mx,平衡常数m=E/p;E=ρs/HMs,ρs,Ms:纯溶剂密度和相对分子质量;5. 费克定律:jA=-DABdcA/dz,jA:扩散速率;DAB:组分A在组分B中的扩散系数;dcA/dz:组分A在扩散方向z上的浓度梯度;等分子扩散速率:NA= jA=DpA,1-pA,2/RTz;单向扩散:NA=DpA,1-pA,2p/RTz pB,m,p/pB,m:漂流因子,pB,m= pB,2-pB,1/lnpB,2/pB,1,即对数平均值;同理,NA=DcA,1-cA,2c/zcB,m;6. 吸收塔操作线方程:qnL/qnV=y1-y2/x1-x2,qnV:二元混合气摩尔流量;qnL:液相摩尔流量;x,y:任意一截面液气相摩尔流量;最小液气比qnL/qnVmin=y1-y2/x1-x2,qnL/qnV= — qnL/qnVmin;低浓度时填料塔高度h=qnV dy/y-y/KyaS=qnL dx/x-x/KxaS=NOGHOG=NOLHOL,K:传质系数;S:塔截面积;a:单位体积填料有效接触面积;NOG= dy/y-y:气相总传质单元数;HOG =qnV/KyaS:气相总传质单元高度;相平衡线为直线时:NOG=ln1-S’y1-mx2/y2-mx2+S’/1-S’,NOL=ln1-Ay1-mx2/y2-mx2+A/1-A,吸收因数:A=1/S’= qmV/mqmV;7.填料塔:液体上进下出,气体下进上出,其中设有液体在分布器,可使其均匀分布于填料表面,塔顶可按转除末器;填料塔是一种应用广泛的气液两相接触并进行传热、传质的塔设备,可用于吸收解吸、精馏和萃取等分离过程;填料塔不仅结构简单,而且具有阻力小和便于用耐腐蚀材料制造等优点,尤其适用于塔直径较小地情形及处理有腐蚀性的物料或要求压强较小的真空蒸馏系统,此外,对于某些液气比较大的蒸馏或吸收操作,也宜采用填料塔;气液逆流流动,增加传质推动力表征填料特性的主要参数有:1.比表面积;2.空隙度;3.单位堆体积内的填料数目n;4.堆积密度;5.干填料因子及填料因子;6.机械强度及化学稳定性8.六、蒸馏1.蒸馏分类:操作方式:连续蒸馏、间歇蒸馏;对分离的要求:简单蒸馏、平衡蒸馏闪蒸、精馏、特殊精馏精馏还包括水蒸气精馏、间歇精馏、恒沸精馏、萃取精馏、反应精馏;压力:常压蒸馏、加压蒸馏、减压蒸馏;组分:双组分蒸馏和多组分蒸馏精馏,常用精馏塔;精馏,加压提高蒸汽冷凝温度,降压降低沸点温度;2.双组分溶液气液相平衡:液态泡点方程:xA=p-pBt/pAt-pBt,xA:液态组分A的摩尔分数;p t:压强关于温度的函数;气态露点方程:yA=pA/p=pAt/p×p-pBt/pAt-pBt;平衡常数KA=yA/xA ,理想溶液:KA=p°A/p,即组分饱和蒸气压和总压之比;挥发度:υA=pA/xA,相对挥发度:αAB=υA/υB,最终可导出气液平衡方程:y=αx/1+a-1x;气液平衡相图:p-x图等温、t-xy图等压、x-y图;3.平衡蒸馏:qnF,xF加热至泡点以上tF,减压气化,温度达到平衡温度te,两相平衡qnD,yD和qnW,xW;物料衡算:yD=qxW/q-1-xF/q-1,液化率:q=qnW/qnF;热量衡算:tF=te+1-qγ/Cp,m,Cp,m:原液的摩尔定压热容;γ:原液的摩尔气化潜热;平衡关系:yD=αxW/1+α-1xW;4.简单蒸馏:持续加热至釜液组成和馏出液组成达到规定时停止;关系式:lnnF/nW= {lnxF/xW-αln1-xF/1-xW}/α-1;总物料衡算:nF=nW+nD;易挥发组分衡算:nFxF =nWxW+nDxD;推出:xD= nFxF-nWxW/nF-nW;5.精馏:多次部分气化部分冷凝连续、间歇,泡点不同采取不同的压力操作,塔板数从上至下记;塔顶易挥发组分回收率:ηD=qnDxD/qnFxF×100%,釜中不易挥发组分回收率:ηW=qnW1-xW/qnF1-xF×100%;精馏段总物料衡算:qnV=qnD+qnL;精馏段易挥发组分衡算:qnVyn+1=qnDxD+qnLxn;V:各层上升蒸汽量;D:塔顶馏出液量;L:各板下降的液量;yn+1:第n+1块板上升的蒸汽中易挥发组分的摩尔分数;xn:第n块板下降的液体中易挥发组分的摩尔分数,精馏段操作线方程:yn+1=Rxn/R+1 +xD/R+1,回流比R= qnL/qnD;提馏段总物料衡算:qnL’=qnV’+qnW;提馏段易挥发组分衡算:qnL’x’m=qnV’y’m+1 +qnWxW ;W:釜液量,提馏段操作线方程:y’m+1= qnL’x’m/qnV’-qnWxW/qnV’;总的物料衡算:qnF+qnV’+qnL=qnV+qnL’,乘上各焓值Hx即为热量衡算,qnV=qnV’+1-nF,精馏进料热状态参数q=HV-HF/HV-HL,即单位原料液变为饱和蒸汽所需要的热量与单位原料液潜热之比;进料方程:y=qx/q-1-xF/q-1;理论塔板的计算逐板法和图解法,回流比R增大理论塔板数减小,解析法:全回流理论塔板数Nmin={lgxD1-xw/xw1-xD}/lgam-1,am:全塔平均挥发度;最小回流比Rmin=xD-yq/yq-xq,xq,yq:进料时,R实=— Rmin;全塔效率ET为理论塔板数与实际塔板数之比;间歇精馏:分批精馏,一次进料待釜液达到指定组成后,放出残液,再次加料,用于分离量少而纯度要求高的物料,每批精馏气化物质的量nV = R+1nD,所需时间τ=nV/qnV;特殊精馏:恒沸精馏加第三组分,形成新的低恒沸物,增大相对挥发度、萃取精馏加第三组分,增大相对挥发度、加盐萃取精馏、分子蒸馏针对高分子量、高沸点、高粘度、热稳定性极差的有机物;6.根据溶液的蒸汽压偏离拉乌尔定律的方向,一般可将非理想溶液分成两大类:1、正偏差溶液,2、负偏差溶液7.精馏回流中,下降也体重的轻组分向气相传递,上升正其中的重组分向液相传递,塔下半部分完成了重组分的提浓,叫做提馏段;完整的精馏塔包括精馏段和提馏段;增加回流量,提高了上升蒸汽的量,但增加了能耗,突出最小回流比,回流比是塔顶回流量比塔顶产品量的比值;板式塔加料位置在第五块板效率最高;只有提馏段没有精馏段的叫回收塔;8.加入第三组分和原溶液中的某一组份形成最低恒沸物,以新恒沸物的形式从塔顶蒸出叫做恒沸蒸馏糠醛-水,若加入的第三组分仅改变各组分的相对挥发度叫做萃取精馏乙醇-水;恒沸精馏的挟带剂要符合能与混合组分钟至少一个形成最低恒沸物,新形成的恒沸物要便于分离,恒沸物中挟带剂的含量要少;萃取精馏添加剂要选择性高、挥发性小,与原溶液可以很好的互溶;相比较,萃取精馏添加剂的选择范围广,不用形成汽化物从塔顶蒸出能耗少,但其需要连续不断的加入,不能用于间歇精馏;9.多组分精馏,获得n个产物需要n+1个塔;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
815物理化学A
一、绪论
物理化学的发展史、研究对象和研究方法,物理量的表示及运算。
二、气体的pVT关系
气体分子动理论、速率分布、能量分布、碰撞频率与平均自由程;理想气体状态方程、摩尔气体常数;实际气体的范德华方程;对比状态原理、压缩因子图。
三、热力学第一定律
基本概念(系统与环境、强度性质与容量性质、状态、状态函数、状态方程、过程、途径、过程量、热、功、内能、焓、热容、反应进度、热效应、标准生热、标准燃烧热、可逆过程和不可逆过程、过程方向与限度等);热力学第一定律;卡诺循环与热机效率的计算;Hess定律与基尔霍夫定律;化学反应焓的计算;简单状态变化过程、相变过程和化学变化过程中Q、W、△U、△H等热力学量的计算;节流膨胀和焦耳-汤姆逊效应。
四、热力学第二定律
热力学第二定律;卡诺定理、克劳修斯不等式、熵增加原理、热温商和熵的概念;熵变的计算;热力学第三定律;Helmholtz自由能和Gibbs自由能(Helmholtz 函数和Gibbs函数)的概念和计算;热力学基本方程、麦克斯韦方程、热力学函数间的关系;克拉佩龙方程、克-克方程。
五、多组分系统热力学
偏摩尔量与化学势;Gibbs-Duhem方程;理想气体和理想稀溶液中组分的化学势;实际气体中和实际溶液中组分的化学势;Raoult定律和Henry定律;稀溶液的依数性及计算;理想液态混合物的定义和性质;化学势的应用。
六、相平衡
相律;单组分体系的相图;二组分体系的相图;杠杆规则;三组分体系的液-液相图;蒸馏和精馏的原理、相图分析、二元相图的绘制及其应用。
七、化学平衡
化学反应的方向和平衡条件;化学反应的平衡常数和等温方程式;△r G mθ和Kθ的计算;温度、压力和其他因素对化学平衡的影响和范特霍夫公式;平衡组
成和平衡产率的计算;同时反应化学平衡和复相反应化学平衡。
八、统计热力学基础
基本概念:定位、非定位粒子系统、独立、相依粒子系统、统计热力学的基本假定、系统的微观状态数Ω、最概然分布和平衡分布、熵的统计意义等;玻尔兹曼分布律、粒子配分函数与热力学函数的关系、平动、转动、振动配分函数的计算;用配分函数计算理想气体反应的平衡常数。
九、电化学
Faraday定律应用;电导、电导率、摩尔电导率、离子淌度、离子迁移数、离子摩尔电导率、电解质活度、离子平均活度、平均质量摩尔浓度、平均活度因子和离子强度的概念及其求算;电导的测定及应用;Debye-Hückel离子互吸理论和离子氛模型。
电池符号的书写;根据化学反应设计电池,电极电势和电池电动势的计算;可逆电池热力学和能斯特方程;热力函数和平衡常数的计算,电动势测定的其它应用如pH测定、活度因子测定、难溶盐溶度积测定等。
分解电压和电极的极化;极化曲线和超电势;超电势测定方法、电化学极化塔菲尔公式、实际析出电势的计算及由电极反应析出物质先后顺序的判断,金属腐蚀的原因和各种防腐的方法。
十、化学动力学
化学反应的反应速率和速率方程;基元反应、质量作用定律、反应级数和反应分子数;具有简单级数反应的速率方程的积分形式;反应速率方程的确定;温度对总反应速率的影响、活化能和阿伦尼乌斯方程;各类典型复杂反应和复杂反应速率的近似处理法;链反应、溶液中的反应;光化学反应;催化反应;气体反应简单碰撞理论要点及基本公式,过渡态理论要点及基本公式。
十一、界面物理化学
表面张力及表面吉布斯自由能;弯曲液面的附加压力、Young-Laplace公式和Kelvin公式;溶液表面吸附和吉布斯吸附等温式;固体表面吸附、弗兰德里希吸附等温式、朗格缪尔吸附理论、BET多分子层吸附理论;固-液界面吸附、接触角与杨氏方程、粘湿、润湿、铺展;表面活性剂。
十二、胶体化学
分散系统的分类;溶胶的制备与净化;溶胶的基本特征与胶团结构;溶胶的
动力学性质、布朗运动、扩散和沉降;溶胶的光学性质、丁铎尔效应和瑞利公式;溶胶的电学性质、电动现象、扩散双电层理论和电动电位;胶体的稳定性与聚沉规律;乳状液;悬浮液;凝胶;泡沫;大分子溶液。
十三、物化实验部分
(一)基础知识
实验数据的测量和处理;物理化学实验安全知识;
(二)常用仪器的知识与操作
测温系统、真空系统;压力系统;酸度计、分光光度计等;
(三)重要的物理化学实验
燃烧热的测定、液体饱和蒸汽压的测定、电导的测定、电动势的测定、蔗糖的转化、乙酸乙酯皂化反应、溶液表面张力的测定、双液系的平衡相图等。
化工原理
一、流体流动
流体流动的两种考察方法;牛顿粘性定律。
流体静力学;压强和势能的分布;静力学原理的工程应用。
质量守恒;流动流体的机械能守恒(柏努利方程);机械能守恒原理的应用。
层流和湍流的基本特征;沿程阻力损失;局部阻力损失;管路计算(常用流速);阻力损失对流动的影响。
毕托管、孔板流量计、转子流量计的原理和计算方法。
二、流体输送机械
管路特性方程;离心泵的输液原理;影响离心泵压头的主要因素(流量、密度及气缚现象等);泵的功率、效率和实际压头;离心泵的工作点和流量调节方法;离心泵的并联和串联;离心泵的安装高度,汽蚀余量;离心泵的选用。
容积式泵的工作原理、特点和流量调节方法(以往复泵为主)。
气体输送的特点及全风压的概念;气体输送机械的主要特性。
三、机械分离与固体流态化
颗粒和床层的基本特性;影响压降的主要因素。
表面曳力和形体曳力;球形颗粒
的曳力系数及斯托克斯定律。
自由沉降速度及其计算;降尘室的流量、沉降面积和粒径的关系;旋风分离器的工作原理及影响性能的主要因素,粒级效率的概念。
过滤过程数学描述(物料衡算和过滤速率方程),过滤速率、推动力和阻力的概念;过滤速率方程的积分应用;洗涤时间;过滤机的生产能力;加快过滤速率的途径。
流化床的主要特性;流化床的操作范围(起始流化速度和带出速度)。
四、传热
传热的三种基本方式及机理、傅利叶定律;一维导热的计算。
牛顿冷却定律;自然对流的起因和影响因素;管内强制对流(湍流)给热系数经验式;沸腾给热和沸腾曲线;蒸汽冷凝给热。
热量衡算和传热速率式;传热平均温度差,热阻和传热系数;垢层热阻,壁温计算。
传热设计型问题的参数选择和计算方法;传热操作型问题的讨论和计算方法。
单个物体的辐射和吸收特性(Stefan Boltzmann定律,Kirchhoff定律);黑体和灰体。
常用换热器的结构;换热设备的强化和其它类型。
五、气体吸收
气体吸收的目的、原理及实施方法;吸收过程的经济性与吸收剂的选择原则。
亨利定律,温度、总压对平衡的影响;相平衡与吸收过程的关系。
对流传质与传质分系数;对流传质与有效膜模型(双膜理论)。
相际传质速率方程,传质分系数和总系数的关系;传质推动力与传质系数的关系溶解度对两相传质阻力分配的影响。
低浓度气体吸收的假定;物料衡算、传质速率; HOG,NOG的分解;计算NOG 的对数平均推动力法和吸收因数法;物料衡算及操作线的含义。
吸收过程设计中参数的选择,指定分离要求下的最小液气比;返混及其对过程的影响。
影响吸收结果的操作因素分析。
六、精馏
蒸馏操作的目的、原理及实施方法,蒸馏操作的经济性。
理想溶液的汽液相平衡及泡、露点计算;相对挥发度;平衡蒸馏与简单蒸馏。
精馏原理;恒摩尔流的简化假设,理论板和板效率;加料板上的过程分析;控制体物料衡算和操作线方程。
理论板数的逐板计算法;用图解法分析精馏过程的方法;全回流和最少理论板数,最小回流比;加料热状态和回流比的选择。
精馏操作型问题的命题;分离能力和物料衡算对精馏操作的制约和调节;灵敏板
的概念。
间歇精馏过程的特点及应用场合。
恒沸精馏与萃取精馏的基本概念。
七、气液传质设备
气液传质过程对塔设备的要求。
板式塔板上的气液接触状态;塔内非理想流动及其改善;漏液、液泛及有效操作范围(负荷性能图);常用塔板型式及其主要特性;板式塔的效率。
常用填料及其特性(比表面、空隙率、填料因子等);气液两相在填料塔内的流动、压降、最小喷淋密度和液泛现象;HETP。
八、干燥
干燥的目的、原理及实施方法。
热、质同时传递过程的主要特点;湿空气的状态参数及其计算; I-H图及其应用;水分在气固两相间的平衡。
恒定气流条件下物料的干燥速率及临界含水量。
间歇干燥过程的干燥时间;连续干燥过程的特点,物料衡算,热量衡算及热效率。
常用干燥设备的主要组成部分及特性。
九、其它传质分离方法
结晶原理;溶解度曲线;形成过饱和度的方法;物料衡算和热量衡算;结晶设备。
反渗透原理及工业应用;超滤原理及工业应用;电渗析原理及工业应用;气体膜分离原理;膜分离设备。