物理化学
物理化学概述-绪论

现代化学键理论的形成 量子力学的兴起
结构化学形成 量子化学形成
⑶计算化学(Computational chemistry)时期
20世纪60年代,随着大容量高速电子计算机的发展,物理化学 的新生长点诞生——量子化学计算方法的研究。其中严格计算的 从头算方法、半经验计算的全略微分重叠和间略微分重叠等方法 的出现,扩大了量子化学的应用范围,提高了计算精度。
李远哲 J.C.Polanyi
1887年,自物理化学作为一门学科的正式形成后,大体经过了 三个时期的发展。
⑴化学热力学时期
19世纪中后期到20世纪初,物理化学家把热力学第一定律、第二定律 被广泛应用于各种化学体系进行研究,促使化学热力学蓬勃发展。
1867年,美国物理化学家Gibbs 通过对对多相平衡体系的研究提出了 相律。
美国化学家理查德·R·施罗克(Richard R. Schrock )其研究 主要从有机化学及无机化学的角度研究高氧化态金属配合物、相 关的催化反应及其催化机理。因其在烯烃复分解 反应的贡献,成为2005年诺贝尔化学奖获得者之 一。
美国化学家罗杰·科恩伯格(Roger D.Kornberg) 通过一系列的转录相关复合物(RNA聚合酶II、模 板DNA、合成出的mRNA、核苷酸、调控蛋白)的晶 体结构,从分子水平上帮助人们深入地理解真核转 录的分子机制。成为2006年诺贝尔化学奖获得者。
计算化学的发展,使定量的计算扩大到原子数较多的分子,并 加速了量子化学向其它学科的渗透。
1928~1933年,许莱拉斯、詹姆斯和库利奇计 算 He、H2,得到了接近实验值的结果。70 年代 又对它们进行更精确的计算,得到了与实验值几 乎完全相同的结果。
以色列化学家阿龙·切哈诺沃(Aaron Ciechanover)、阿夫拉 姆·赫什科(Avram Hershko)和美国化学家欧文·罗斯(Irwin Rose),在20世纪70—80年代发现泛素调节的蛋白质降解,揭示 了泛素调节的蛋白质降解机理,指明了蛋白质降解研究的方向, 成为2004年诺贝尔化学奖获得者。
成人高考高起本物理化学知识点

成人高考高起本物理化学知识点一、知识概述《成人高考高起本物理化学知识点》①基本定义:- 物理呢,就是研究自然界物质的基本结构、相互作用和运动规律的科学。
简单说,就是探索东西为啥会动、怎么动,像汽车为啥能跑、苹果为啥会掉下来,都是物理研究的范围。
化学就是研究物质的组成、结构、性质以及变化规律的学科。
就好比研究水为啥是透明的,铁为啥会生锈这种。
- 另外,物理化学在成人高考高起本中涵盖很多基础的物理和化学知识,像是物理中的力学、电学,化学中的元素、反应等。
②重要程度:- 在学科中地位超重要。
物理是好多科技发展的基础,像建房子得考虑力学,用电得明白电学。
化学也很牛,制药、化工都离不开。
在成人高考高起本里,这两门学科的成绩会影响你能不能考上以及上啥样的学校。
③前置知识:- 物理需要有点数学基础,像简单的四则运算、方程求解。
化学的话,知道一些常见物质就比较好入手,像盐、水、氧气这些在初中基本就接触过的物质。
④应用价值:- 物理的应用超多。
比如说家电维修,如果懂物理的电学知识就容易得多。
化学方面,日常的清洁用品,像洗衣粉的去污原理就涉及化学,明白这些知识能帮咱们更好地生活。
二、知识体系①知识图谱:- 在整个高起本学科体系里,物理化学就像是大厦的基石。
物理和化学各自有很多分支,在基础知识里像物理中的运动相关知识,化学中的化学物质等都是很重要的组成部分,它们相互交织,物理能给化学提供一些理解能量转化等的基础,化学能为物理在物质变化的理解方面提供素材。
②关联知识:- 物理里电学和磁学联系紧密,像电磁感应现象。
化学里元素周期表相关知识和元素化学性质也是紧密关联。
而且物理化学知识还和生活常识息息相关,像温度对化学反应速度的影响,这在食品保存方面就和物理化学都有关,温度控制是物理手段,反应速度改变是化学方面的。
③重难点分析:- 物理的重难点在于力学方面一些较为复杂的受力分析,像多个物体重叠时摩擦力和支持力的分析。
电学里电路的复杂连接和计算也不容易。
物理化学简介

• 概论
•物质的聚集状态
气体 V 受 T、p 的影响很大 V 受T、p 的影响较小 (又称凝聚态)
液体
固体
•联系 p、V、T 之间关系的方程称为状态方程 •本章中主要讨论气体的状态方程 理想气体 气体的讨论 实际气体
29
§1.1 理想气体状态方程
1. 理想气体状态方程 低压气体定律: (1)波义尔定律(R.Boyle,1662): pV = 常数 ( n ,T 一定)
解:M甲烷 = 16.04×10-3 kg · -1 mol
m pM ρ V RT 200 103 16.04 103 k g m 3 8.315 (25 273.15) 1.294k g m 3
33
§1.1 理想气体状态方程
2.理想气体模型
(1)分子间力
•相互作用 相互吸引—范德华力(趋向力,诱导力,色散力) 相互排斥—分子间电子云、原子核间排斥力
25
0.3 物理量的表示及运算
3. 量值计算
物理化学的公式中均表示成量方程式的形式, 而在对量的数学运算中,有时涉及数值方程式。
[例如] 计算25℃,100kPa下理想气体的摩尔体积Vm =? •用量方程式运算
RT 8.315J m ol1 K 1 (273.15 25) K Vm 3 p 100 10 Pa
什么叫物理化学

3. 充分重视实验事实
在物理化学研究中, 在物理化学研究中 , 由于其研究 对象的特殊性( 化学现象) 对象的特殊性 ( 化学现象 ) , 所 以应当充分重视实验事实的重要 性.
例如,在化学平衡规律的研究, 例如,在化学平衡规律的研究,物质性 质与外界条件的关系, 质与外界条件的关系,各种物理化学常 数的测定等,除常用的化学方法以外, 数的测定等,除常用的化学方法以外, 更多采用物理手段(例如电磁学, 更多采用物理手段(例如电磁学,光学 等方法)进行实验测试. 等方法)进行实验测试.
三,物理化学与其他化学课程的联系 所谓"四大化学" 无机,有机,分析, 所谓"四大化学"(无机,有机,分析, 物化) 物化),它们均有各自的特殊研究对象 和目的. 和目的. 物理化学是研究化学过程中普遍性的更 物理化学是研究化学过程中普遍性的更 本质的内在规律性,无机化学, 本质的内在规律性,无机化学,有机化 学和分析化学在解决具体问题时, 学和分析化学在解决具体问题时,常常 需利用物理化学知识和方法. 需利用物理化学知识和方法.
2. 化学反应进行的速度和机理
化学反应的速度有多快, 化学反应的速度有多快,反应过程究竟 是如何进行的(即反应的机理) 是如何进行的(即反应的机理),外界 条件(如浓度,温度,催化剂等) 条件(如浓度,温度,催化剂等)对反 应速度,机理有何影响,如何控制反应 应速度,机理有何影响, 的进行( 的进行(快,慢控制). 慢控制) 这些问题的研究, 这些问题的研究,属于物理化学的另一 化学动力学(在下册) 个分支 化学动力学(在下册).
若这种预测能为多方面的实践所证 则这种假说就成为理论或学说. 实,则这种假说就成为理论或学说. 物理化学中的许多理论模型就是这 样得到的. 样得到的.
物理化学名词解释

名词解释1.热:由系统与环境之间的温度差而引起的能量传递。
2.功:系统与环境之间其他一切被传递的能量称为功。
3.热力学能:是系统中物质的所有能量的总和。
4.热容:在无化学反应和相变化且非体积功为零的条件下,封闭系统吸收的热δQ与温度的升高dT成正比,比例系数为系统的热容,用C表示。
5.系统:将一部分物质从其他部分划分出来,作为研究的对象,称为系统。
6.环境:与系统密切相关的物质和空间称为环境。
7.敞开系统:系统环境之间既有物质的交换,又有能量的传递。
8.封闭系统:系统与环境之间没有物质的交换,只有能量的传递。
9.孤立系统:系统与环境之间既无物质的交换,也无能量的传递。
10.电子导体:也称为第一类导体,通过自由电子的定向迁移来实现其导电的目的。
11.离子导体:也称为第二类导体,依靠正、负离子的定向迁移来实现其导电的目的。
12.电解池:将电能转化为化学能的装置叫电解池。
13.原电池:将化学能转化为电能的装置叫原电池。
14.化学动力学:研究反应速率和各种因素(例如浓度、压力、温度)对反应速率的影响。
15.基无反应:由反应物微粒(分子、原子或自由基等)一步直接生成产物的反应。
16.总包反应:由多个基无反应组成的反应称为总反应。
17.反应速率:化学反应进行的快慢程度,用单位时间内反应物或生成物的物质的量表示。
18.催化作用:一种或多种少量的物质,能使化学反应的速率显著增大,而这些物质本身在反应前后的数量及化学性质都不改变。
19.自催化作用:催化剂可以是有意识的加入反应体系的,也可以是在反应过程中自发产生的。
后者是一种或几种反应产物的中间产物,称为自催化剂,这种现象称为自催化作用。
20.相界面:将两种分开的界面21.表面张力:在液体表面存在一种使液面收缩的力,称表面张力。
22.液面铺展:液体在另外一种与其不互溶的液体表面自动展开成膜的过程。
23.胶束:当浓度增加到一定程度时,表面活性剂分子的疏水基通过疏水相互作用缔合在一起而远离水环境向内、亲水基朝向水中向外形成了多分子聚集体,称为胶束。
物理化学的主要内容包括

物理化学的主要内容包括
:
1. 动力学:运动的原理,能的定义,熵的概念,热力学,动力学等。
2. 化学平衡:溶液的溶解度、能量障碍及改变,静态及动态平衡,平
衡常数及平衡常数的改变,萃取平衡,反应化学平衡,皿热反应等。
3. 电离和离子竞争:电解反应、离子竞争、活性空穴及电荷构型的调节,吸附反应及calvin- wheeler竞争,体系电荷分布及滴定反応等。
4. 化学催化:催化原理及作用机制,原位及连续催化,非权衡催化反
应的特性,络合催化,分子催化等。
5. 固体表面和电场:表面状态及表面电荷,消散电荷谱,电场及偏振,极化材料及表面电荷型复合物等。
6. 分子量和热力学:分子量及其热力学特性,热力学不平衡性及能量
分配,分子结构,热量放射,热电材料等。
物理化学课件

热力学第一定律在物理学和化学 领域中具有重要地位,它为解释 许多自然现象提供了基础。
热力学第二定律
内容
热力学第二定律指出,热量总是从高 温物体传导到低温物体,而不能反过 来。也就是说,热量传递的方向总是 从高到低,不能反过来。
意义
热力学第二定律表明了自然界的某种 方向性,它限制了某些自然过程的进 行方式。
VS
详细描述
光化学第一定律指出,在一定温度和压力 下,光化学反应的速率与辐射能量成正比 。这个定律对于研究光化学过程和设计光 化学设备具有重要意义。
光化学第二定律
总结词
光化学第二定律是描述光化学过程中辐射能 量与化学反应途径关系的物理化学定律。
详细描述
光化学第二定律指出,在一定温度和压力下 ,一个光化学反应的速率与反应途径中各个 步骤的辐射能量差成正比。这个定律对于研 究光化学反应机理和设计光化学合成路线具 有重要意义。
化学平衡
内容
化学平衡是指化学反应中反应物和生成物之间的平衡状态。在一定条件下,反 应物和生成物之间的浓度不再发生变化,达到动态平衡。
意义
化学平衡是化学反应中一个重要的概念,它帮助我们了解反应进行的程度和方 向。
化学反应速率
内容
化学反应速率是指单位时间内反应物消耗或生成物产生的速率。通常用单位浓度 的变化量表示。
复杂系统与跨尺度研究
总结词
跨学科、多尺度研究
详细描述
物理化学在复杂系统和跨尺度研究方面具有独特的优势 。复杂系统研究涉及多个相互作用因素,需要综合运用 物理、化学和生物等学科的知识来理解和预测系统的行 为。跨尺度研究则要求科学家从原子、分子到纳米、宏 观等不同尺度上理解和控制化学过程,物理化学为解决 这些问题提供了有效的方法和工具。
物理化学(上册)

绪论
第一章 第二章 第三章 第四章 第五章 第六章 气 体 热力学第一定律 热力学第二定律 多组分系统热力学 化学平衡 相平衡
第一章 气 体
• • • • • • • 本章基本要求: 掌握理想气体状态方程 掌握理想气体的宏观定义及微观模型 掌握分压、分体积概念及计算。 理解真实气体与理想气体的偏差、临界现象。 掌握饱和蒸气压概念 理解范德华状态方程、对应状态原理和压缩因子 图,了解对比状态方程及其它真实气体方程。
2、压缩因子
真实气体的 pVT 行为偏离理想气体行为,引入压缩(校正)因子Z:
Z=pV/(nRT) 或 Z=pVm/(RT) p 0,Z 1;
Z
1.0
CH4 Z=1真实气体与理 H2 想气体没有偏差 NH3 Z>1真实气体比理 理想气体 想气体难压缩 Z<1真实气体比理 想气体易压缩 p/[Pa]
引言
• 物 质 的 三 态: 气态、液态、固态。 • 从微观看,分子不停地作无规则的热运动。使之 有分散的倾向;分子之间有相互作用力,除非足 够靠近,主要表现为引力。使之有聚集的倾向。 • 物质处于那种状态,取决于两者的相对大小。 • 气体是三态中最简单的状态,为热力学研究提供 了最方便的体系。 • 气相化学反应具多项优点,为现代化工生产广泛 采用。 • 本章从讨论气体的性质入手。
§1-4真实气体的 pVT 性质
• 1、分子间力
分子间有相互作用力,则分子势能将随分子间距离变化。 以两个分子构成的“分子对”为例,得如下兰纳德-琼斯(Lennard-Jone)势 能曲线
U(R)
0
R
U ( r ) U 引( r ) U 斥( r ) A / r 6 B / r 1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物 理 化 学
化学热力学基础
表面现象
化学反应动力学
化学平衡
物理化学概论
• 物理化学:
应用物理学的 基本原理和方法研 究化学变化、相变 化和 p 、V、T 变化 规律和本质,及了 解物质的结构与性 质之间规律的科学。
• 物理化学组成: 化学热力学 化学动力学 结构化学 • 物理化学研究方法
方向和限度 速率和机理 结构和性质
C10H8 ( s,pᶱ,T) + 12O2( g,p ᶱ ,T) → 4H2O( l,pᶱ,T) + 10CO2( g,pᶱ ,T) Qp,m= ΔrHᶱ m =?
4、Qpm与Qvm之间的关系
(1)图形法
dp=0 dT=0 1 Qpm= ΔrHm ᶱ
产物 T Pᶱ
3
aA + dD
反应物
dV=0 dT=0 2 QVm= ΔrUm ᶱ
2.热力学第一定律的数学表达式 ΔU=Q+W 对于微小的变化 :dU = δQ + δW
三、恒容热(Qv)、恒压热(Qp )
1.恒容热(Qv)
Qv=ΔU,δQv=dU 适用条件:① 封闭系统 ② δW′ = 0 非体积功为0 ③ dV = 0 恒容过程
2.恒压热(Qp )
H=U+pV、Qp=ΔH,δQ=dH (H:焓,ΔH:焓变) 适用条件: ❶ 封闭系统 ❷ δW′ = 0 非体积功为0 ❸ dP = 0 恒压过程
十一、自发过程
1、方向与限度
定义:不需要借助任何外力就能自动发的
过程
氢加氧生成水的反应
十二、热力学第二定律
两种经典表述:
1.It’s impossible to flew of heat from a cold body to a hot one without any other change.(不可 能把热从低温物体转移到高温 物体而不留下任何改变) 2. It’s impossible that heat be turned compeletly into work without any other change.(不可 能从单一热源吸收热使之完全 转化为功而不留下任何改变)
2
T1
ΔCp= ∑νiCpmi
ΔrHm(T2) = ΔrHm(T1)+ ΔCp(T2-T1)
应用条件:① 恒压 ② ΔCp= 常数 ③ Cp=f(T) T ΔrHm(T)= ΔrHm(298.15K)+∫T ΔCpdT
1 2
温度对热效应的影响:
d(ΔH) ( dT )= ΔCp >0 =0 <0
十、非等温反应
ΔrHm =dH1+ΔrHm+d(ΔH)+dH2 d(ΔH)=-(dH1+dH2)
dH1=aCpmAdT+bCpmBdT =-∑νRCpmRdT dH2=dCpmD(-dT)+eCpmE(-dT) =-∑νpCpmpdT d(ΔH)= ∑νiCpmidT= ΔCpdT 两边同时 积分得
ΔCpdT ΔrHm(T2)-ΔrHm(T1)= ∫ T
3.理想气体的内能和焓
(1) U=f(T,V) , U=f(T,p) 热力学能或内能只是温度的函数
(2) H=f(T,V) , H=f(T,p) 焓只是温度的函数
四、热容
1、热容(C)
(1)平均热容
(2) 真热容 系统的热熔:对于稳定的热力学、均相、封 闭系统升高单位热力学温度时吸收的热 (3)、Cvm(摩尔恒容热容)、Cpm(摩尔定压热容)
系统的分类:
敞开系统:既有物质的交换 又有能量的交换
封闭系统:只有能量的交换 没有物质的交换
隔离系统:既没有物质的交 换又没有能量的交换
2.系统的性质、状态和状态函数
系统的性质:包 括系统一切的物理性 质和化学性质 状态:系统所有 性质的综合表现 状态函数:系统 的宏观性质
• 状态函数的特点: ❶ 状态函数是状态的单一函数 ❷ 状态函数的变化只取决于始态和终态 ❸ 全微分用来表示状态函数的变化 • 系统的性质分类: 强度性质:与系统中所含 物质的量无关
(4) 绝热可逆过程(功)、过程方程
dU Q W
dQ = 0,
(封闭系统 w’=0)
dU=dW,
理想气体 dU = nCV, mdT 过程可逆 dW=-pdV nCV, mdT =-pdV
dT R dV T CV ,m V
RT CvmdT dV 0 dV
dlnT = (1-γ) dlnV
(4)
可逆过程的定义: 设系统按照过程L由始态A变到终态B, 环境由 始态Ⅰ变到终态Ⅱ,假如能够设想一过程L′使系统 和环境都恢复原来的状态, 则原来的过程L称为可 逆过程。反之, 如果不可能使系统和环境都完全 复原,则原过程L称为不可逆过程 可逆过程特点: ❶动力和阻力相差无穷小量 ❷可逆膨胀时,系统对环境做最大功。可逆 压缩时,环境对系统做最小功 ❸经历可逆循环,系统和环境都恢复原状, 没有任何改变
七、盖斯定律
定义:一个化学反应,不管是一步完成或经 数步完成, 反应的总标准摩尔焓变是相同的 1、图形法
ᶱ(T) = ΔrHᶱ ΔrHm m1(T) + ΔrHᶱ m2(T)
八、各种热效应
ᶱ (标准摩尔生成焓变) ΔfHm 1、 ᶱ ,由参考状态单质生 定义:在温度T、P 成B(νB = 1)时的标准摩尔焓变叫做B物质的标 m(T、B、β) 准摩尔生成焓变 表示ΔfHᶱ
2、 ΔcHm ᶱ (标准摩尔燃烧焓变)
ᶱ ,完全氧化成相同温 定义:在温度T、P 度下指定产物时的标准摩尔焓变叫做B的标准 m(T、B、β) 摩尔燃烧焓变 表示 ΔcHᶱ
反应物 ΔH1
ΔrHᶱ m
产物 ΔH2
反应物 ΔH1
ΔrHᶱ m
产物 ΔH2
指定 单质 ΔH1=-∑νB ΔfHᶱ mR mp ΔH2= ∑νB ΔfHᶱ
v1
B
w2 w2 w1 1 1.5 3
W6 =-P外(V2-V1)=607.8(J)
L
n mol 303.9kpa 1L T1
(1) P外=101.3KPa
(6) (2) P外=202.6KPa 202.6KPa (5) (3) P外= P内-ap P外=101.3KPa
n mol 101.3kpa 1L T1
2、理想气体膨胀功的计算
(1) 恒温可逆膨胀
Wr pdV
V1 V2 V2 V1 V2 dV nRT dV nRT V1 V V
积分得
Wr nRT ln(V2 / V1 ) nRT ln( p2 / p1 )
(2)恒压可逆膨胀 W=-P外(V2-V1) (3)恒容可逆膨胀 W=-P外(V2-V1)=0
定义:反应物和产物的温度不同 ΔrHm C A + B 1800K 298K 1800k ΔH3 ΔH1 ΔH2 ΔrHm(298K) C A + B 298K 298K 298k ΔH1=0 ΔH2=CpmB(298-1800) ΔH3=CpmC(298-1800) ΔrHm =ΔH1+ΔH2+ΔrHm(298K)+ΔH3
产物 T V
ΔrUᶱ m1 +Δ(pv) m1= ΔrHᶱ m1 =Qpm1=Δr(U+PV)ᶱ Qpm= Qvm + RT∑νB(g)
(2)、代数法 C(s) + CO2(g) = 2CO (g) ΔrHm ᶱ1 C(s) + O2(g) = CO2(g) ΔrHm ᶱ2 C(s) + 1/2O2(g) = CO (g) ΔrHm ᶱ3 ½ (ΔrHᶱ m1 +ΔrHᶱ m2 )= ΔrHᶱ m3
指定 产物 ᶱR ΔH1=-∑νB ΔcHm ΔH2= ∑νB ΔcHᶱ mp
m ΔrHᶱ m ΔrHᶱ m = ΔH2-ΔH1=∑νBΔfHᶱ m = ΔH1-ΔH2=-∑νBΔcHᶱ
九.热效应与温度的关系—基希霍夫公式
P、T aA+bB
dH1
ΔrHm
dD+eE
dH2
ΔrHm+d(ΔH) dD+eE P、T+dT aA+bB
P
十三、卡诺循环
1 .A(P1,V1,T1) B(P2,V2,T1) 2 ΔU1=0 W1=-Q1=- nRTIn V V1
2 .B(P2,V2,T1) C(P3,V3,T2) Q2=0 ΔU2=W2=-nCvm(T2-T1) dTR=0 3 .C(P3,V3,T2) D(P4,V4,T2) V 4 nRTIn ΔU3=0 W3=-Q3=V3 δQR=0 4 .D(P4,V3,T2) A(P1,V1,T1) Q4=0 ΔU4=W4=nCvm(T1-T2)
二、热力学第一定律
1.两种经典表述 The first kind of motivemachine can not be made.(第一种 永动机不能被制造) Internal energy keeps constent in isolated system.(热力 学能在热力学系统中 保持不变)
广度性质: 与系统中所含 物质的量有关
3.热力学能(内能) U、热 Q、功 W 热力学能(U):系统内部所储存的总能量
热(Q):由于系统与环境间存在温度差而引起 的能量传递形式 符号规定: Q > 0 表示系统从环境吸 热, Q < 0 系统向环境放热 分类:反应热、相变热(潜热)、显热
功:由于系统与环境间压力差 或其他机电 “ 力”的存在而引起的能量传递形式 功的分类 体积功:系 统发生体积变 化时与环境传 递的功 非体积功:体积功以外的所有其他功, 用 符号 W′ 表示 , 如电功、 表面功等 功的符号规定:功的计量也以环境为准。 W > 0表示环境对系统作功, W < 0表示系统对环 境作功