2016离散数学中期大作业

合集下载

离散数学作业题

离散数学作业题

离散数学作业题第2章集合、关系与映射1.A⊆B,A∈B能否同时成立,说明原因求集合A={a,{a}}的幂集2.证明:若B⊆C,则P(B)⊆ P(C)3.如果A∪B=A∪C,是否有B=C?如果A⊕B=A⊕C,是否有B=C?4.试求1到10000之间不能被4,5或6整除的整数个数.5.列出所有从A={a,b,c}到B={s}的关系,并指出集合A上的恒等关系和从A到B的全域关系.6.给出A上的关系及其关系图和矩阵表示.{<x,y>|0≤x-y<3} A={0,1,2,3,4}7.已知S={a,b}. R⊆ ={〈x,y〉|x,y∈A∧x⊆y∧A为集合族ρ(S)}.试写出关系R⊆.8.已知:A={a,b,c}, R={〈a,b〉,〈a,c〉,〈b,c〉}该关系具有什么性质?(自反,反自反,对称,反对称,传递性)9.设A={a,b,c},R={〈a,b〉,〈a,c〉} 计算:r(R),sr(R),tr(R),str(R).10.设A是含有4个元素的集合,试求:(1)在A上可以定义多少种对称关系?(2)在A上可以定义多少种既是自反的,又是对称的关系?(3)在A上可以定义多少种既不是自反的,也不是反自反的二元关系?11.设集合A={0,1,2,3,4}. R={<x,y>|x+y=4,x,y∈A} ,S={<x,y>|y-x=1,x,y∈A}.试求:R◦S,R◦R,(R◦S)◦R,R◦(S◦R).12.证明:R是A上的传递关系⇔R◦R⊆R.13.A={1,2,3,4,5},R={<x,y>|x,y∈A∧x-y可被2整除},试问R是否是A上的等价关系?如果是,求出R的各等价类.14.A={1,2,3,4,5},A上的划分∏={{1,2},{3,4},{5}},给出由∏所诱导出的A上的等价关系R的集合表达式.15.试给出一个单射但非满射的函数.(对某一集合而言)16.设f:N→N×N,f(n)=<n,n+1>,则:(1)说明f是否为单射和满射,并说明理由.(2) f的反函数是否存在?并说明理由.(3)求ranf.17.已知如果从无限集合A到集合B存在单射f,则B也是无限集合。

大学试卷《离散数学》及答案.docx

大学试卷《离散数学》及答案.docx

离散数学一、填空题(本大题共48分,共16小题,每小题3分)1.--公式为之充分必要条件是其合取范式之每一合取项中均必同时包含一命题变元及其否定2.无向图G具有是生成树,当且仅当的,若G为(n,m)连通图,要确定G的一棵生成树必删掉G的条边。

3.一个无向图的欧拉回路要求经过图中一次且仅一次,汉密顿图要求经过图中一次且仅一次。

4.设P:我生病,Q:我去学校(1)命题“我虽然生病但我仍去学校”符号化为o (2)命题“只有生病的时候,我才不去学校”符号化为o (3)命题"如果我生病,那么我不去学校”符号化为o5.设有33盏灯,拟公用一个电源,则至少需要5个插头的接线板数6.若HlAH2A-AHn是 ,则称Hl, H2, -Hn是相容的,若HlAH2A-AHn是 ,则称H1.H2, -Hn是不相容的7.设f,g,h 是N 到N上的函数(N 为自然数集合),f(n)=n+l;g(n)=2n;h(n)=0;贝lj(fdg)oh=8.K5的点连通度为 ,边连通度为o9.A={1, 2, 3, 4, 5, 6, 8, 10, 24, 36}, R 是A 上的整除关系。

子B={1, 2, 3, 4},那么B的上界是; B的下界是;:6的上确界是; B的下确界为10.命题公式P-*QAR的对偶式为11.设入={1, {2}, <t>},则A的幕集有元素个。

12.设A={0, 1,2, 3}, B={4,6, 7}, C={8, 9, 12, 14}, R1 是由A 到B 的关系,R2 是由B到C原关系,分别定义为Rl={<2, 6>, <3, 4>, <0, 7>} ;R2={<4, 8>, <4, 12>, <6, 12>,〈7, 14〉},则复合关系RloR2 为:13.设A= {<i)}, B={<t>, (<!>}},贝i]P(A) nP(B)= 。

离散数学大作业答案

离散数学大作业答案

一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。

答:结合律(AUB)UC=AU(BUC)x∈(AUB)UC,即 x∈AUB 或 x∈C即 x∈A 或 x∈B 或 x∈C 即 x∈A 或 x∈B∪C即 x∈AU(BUC)说明 (AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC)2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。

3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R = ΦR = {<1,1>}R = {<2,2>}R = {<1,1>,<2,2>}R = {<1,2>,<2,1>}R = {<1,1>,<1,2>,<2,1>}R = {<1,2>,<2,1>,<2,2>}R = {<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M的上界,下界。

5.关于P,Q,R请给出使极小项m0,m4为真的解释。

答:m0= ┐p∧┐q∧┐r m4= p∧┐q∧┐r6.什么是图中的简单路?请举一例。

答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。

7.什么是交换群,请举一例。

答:如果群〈G,*〉中的运算*是可以交换的,则称该群为可交换群,或称阿贝尔群。

如〈I,+〉是交换群。

8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),记为a≡b(右mod H)。

9.什么是有壹环?请举一例。

答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。

离散数学自考题真题2016年04月_真题(含答案与解析)-交互

离散数学自考题真题2016年04月_真题(含答案与解析)-交互

离散数学自考题真题2016年04月(总分100, 做题时间90分钟)第Ⅰ部分选择题一、单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的)1.下列命题公式为永假式的是______SSS_SINGLE_SELA ﹁(P→Q)B ﹁(P→Q)∧QC (P→Q)∨QD ﹁P∧(P→Q)该问题分值: 1答案:B[解析] 当且仅当P的真值为T,Q的真值为F时,P→Q为F,其余情况P→Q为T。

则选项A的真值可为T也可为F。

同理选项C、选项D可为F亦可为T,只有选项B在任何情况下均为F。

2.偏序关系一定不是______SSS_SINGLE_SELA 自反的B 传递的C 反自反的D 反对称的该问题分值: 1答案:C3.下列语句为复合命题的是______SSS_SINGLE_SELA 今天天气凉爽B 今天天气炎热,有雷阵雨C x+y>16D 今天天气多好呀,外面景色多美呀该问题分值: 1答案:B[解析] 判断命题有两个条件:(1)语句本身是陈述句;(2)它有唯一的真值。

因此C、D不是命题更不是复合命题;A是简单命题;只有B是复合命题。

4.设R(x):x是实数,L (x,y):x<y,语句“没有最大的实数”可符号化为______A.B.C.D.SSS_SIMPLE_SINA B C D该问题分值: 1答案:A5.下列集合关于数的加法和乘法运算不能构成环的是______SSS_SINGLE_SELA 自然数集合B 整数集合C 有理数集合D 实数集合该问题分值: 1答案:A6.5个结点的非同构的无向树的数目是______SSS_SINGLE_SELA 5B 4C 3D 2该问题分值: 1答案:C[解析] 5个结点的非同构无向树有3个,具体如下:7.设A={1,2,3,4,5,6},为A上的整除关系,则A的最小元为______ SSS_SINGLE_SELA 1B 3C 4D 6该问题分值: 1答案:A[解析] A={1,2,3,4,5,6},则其哈斯图为,则其最小元是1。

吉林大学 2015-2016学年第一学期期末考试《离散数学》大作业

吉林大学  2015-2016学年第一学期期末考试《离散数学》大作业

一.R,S是集合A上的两个关系。

试证明下列等式:(1)(R•S)-1= S-1•R-1(2)(R-1)-1= R答:(1)对∀∈(R。

S)^(-1)∈R。

S∈R ∧∈S∈S^(-1)∧∈R^(-1)∈S^(-1)。

R^(-1)(2)对∀∈(R^(-1))^(-1)∈R^(-1)∈R二、R,S是集合A上的两个关系。

试证明下列等式:(1)(R∪S)-1= R-1∪S-1(2)(R∩S)-1= R-1∩S-1(1)证相互包含:任意<x,y>∈(R∪S)^(-1),<y,x>∈(R∪S),<y,x>∈R或者),<y,x>∈S<x,y>∈R^(-1),或者<x,y>∈S^(-1),<x,y>∈R^(-1)∪S^(-1),(R∪S)^(-1)包含于R^(-1)∪S^(-1),任意<x,y>∈R^(-1)∪S^(-1),<x,y>∈R^(-1),或者<x,y>∈S^(-1),<y,x>∈R或者,<y,x>∈S<y,x>∈(R∪S),<x,y>∈(R∪S)^(-1),R^(-1)∪S^(-1)包含于(R∪S)^(-1),所以(R∪S)^(-1)=R^(-1)∪S^(-1),(2)任意<x,y>∈(R∩S)^(-1),<y,x>∈(R∩S),<y,x>∈R并且,<y,x>∈S<x,y>∈R^(-1),并且<x,y>∈S^(-1),<x,y>∈(R^(-1)∩S^(-1),(R∩S)^(-1)包含于R^(-1)∩S^(-1),任意<x,y>∈R^(-1)∩S^(-1),<x,y>∈R^(-1),并且<x,y>∈S^(-1),<y,x>∈R并且,<y,x>∈S<y,x>∈(R∩S),<x,y>∈(R∩S)^(-1),R^(-1)∩S^(-1)包含于(R∩S)^(-1),所以(R∩S)^(-1)=R^(-1)∩S^(-1),三、设R是非空集合A上的关系,如果1)对任意a∈A,都有a R a ;2)若aRb,aRc,则bRc ;对称性:已知aRa,对任意b,如果aRb,那么根据条件2有bRa.传递性:对任意a,b,c,如果aRb且bRc,那么根据对称性有bRa,再根据条件2就有aRc.四、若集合A上的关系R,S具有对称性,证明:R•S具有对称性的充要条件为R•S= S•R。

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)02任务_0001试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}} AB. {1,2} AC. {a} AD. A4.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. f◦gB. g◦fC. f◦fD. g◦g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 设集合A={1,2,3,4,5},偏序关系£是A上的整除关系,则偏序集<A,£>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 310. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}02任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

离散数学大作业——编程实现最小生成树

离散数学大作业——编程实现最小生成树

离散数学大作业——编程实现最小生成树学院:电子工程学院班级:021051学号:*********名:***一、最小生成树概念:设G=(V,E)是无向连通带权图,即一个网络。

E中每条边(v,w)的权为c[v,w]。

所有生成树G’上各边权的总和最小的生成树称为G的最小生成树。

二、prim算法(贪心思想)设图G =(V,E),其生成树的顶点集合为U。

1.把v0放入U。

2.在所有u∈U,v∈V-U的边(u,v)∈E中找一条最小权值的边,加入生成树。

3.把2找到的边的v加入U集合。

如果U集合已有n个元素,则结束,否则继续执行2其算法的时间复杂度为O(n^2)三、程序源代码# include<stdio.h># include<malloc.h># define m 6# define n 11 typedef struct {int i,tag;char s;}vertice;typedef struct {int a,b,tag;int weight;}edge;vertice v[m];edge e[n];void inititate();void sort();void chuli();int biaoji( edge *s); void print();void main() {inititate();sort();chuli();print();}void inititate() {int i;printf("输入图的%d个顶点:\n",m);for(i=0;i<m;i++) {v[i].i=i+1;v[i].tag=0;scanf("%c",&v[i].s);getchar();}printf("\n输入%d条边的两端顶点及权:\n",n);for(i=0;i<n;i++) {scanf("%d %d %d",&e[i].a,&e[i].b,&e[i].weight);e[i].tag=0;}}int biaoji( edge *s) {int i,j;i=s->a;j=s->b;if(v[i].tag==0 || v[j].tag==0) {v[i].tag=1;v[i].tag=1;s->tag=1;return 1;}return 0;}void print() {int i,j=0;printf("\n最小生成树的边为:\n");for(i=0;i<n&&j<m-1;i++)if(e[i].tag==1) {printf("<%d-%d> ",e[i].a,e[i].b);j++;}printf("\n\n");}void sort() {edge s;int i,j;for(i=0;i<n-1;i++) {for(j=i+1;j<n;j++) {if(e[i].weight>e[j].weight) {s=e[i];e[i]=e[j];e[j]=s;}}}}void chuli() {int i,j=0;edge *s;for(i=0;i<n&&j<m;i++) {s=&e[i];if(biaoji(s)==1)j++;}}四、实验结果输入图的6个顶点:1 2 3 4 5 6输入11条边的权及两端顶点:1 2 11 4 61 6 91 3 112 3 22 4 33 5 83 6 74 5 104 6 45 6 5最小生成树的边为:<1-2> <2-3> <2-4> <4-6> <5-6> Press any key to continue。

离散数学大作业

离散数学大作业

离散数学大作业题目赋权图的最小生成树算法学院班级学生姓名学号指导老师赋权图的最小生成树算法摘要一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点并且有保持图联通的最少的边问题就是最小生成树问题。

许多应用问题都是一个求无向连通图的最小生成树问题。

例如寻找在城市之间铺设光缆的最好方案问题等等。

解决权值最小生成树问题的方法有很多种,如Prim 算法、Kruskal算法等等都是很好的方法。

本文中使用了kruskal算法(避圈法)实现寻找赋权图的最小生成树问题。

概述离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。

它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。

通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。

离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1求命题公式⌝(p∨q)→(⌝p∧r) 的主析取范式、主合取范式及公式的成假赋值。

(只能用等值演算求)
2设个体域为D={a, b},P(a,a)=P(b,b)=1,P(a,b)=P(b,a)=0 试求出谓词公式∀y∃x P(x, y)的真值
3每个科学家都是勤奋的。

每个勤奋又身体健康的人在事业中都会获得成功。

存在着身体健康的科学家。

所以存在着事业获得成功的人或事业半途而废的人。

(个体域为人类集合) 4设A={1,2,3,4},A上二元关系R定义为:R={<1,2>,<2,1>,<2,3>,<3,4>}求R的自反闭包、对称闭包和传递闭包。

(传递闭包用矩阵求)
5设A={1, 2, 3 , 4, 5, 6 },S={{1,2,3},{4, 5 },{6}}为A 的一个分划,写出划分S所对应等价关系。

6若(A, ≤ ) 是偏序集,其中A = {1, 2, 3 , 4, 5, 6 , 7, 8 , 9, 10 , 24},≤为A上的整除关系,画出哈斯图,并求子集{1, 2, 3 , 6}、{2, 3 , 4 , 24}、{2, 3 , 4 , 8}的最大元、最小元、极大元、极小元、上界、下界、上确界、下确界。

7 求谓词公式∃xF(y, x) →∀yG(y)的前束范式。

相关文档
最新文档