华南理工网络教育2018年离散数学大作业参考答案#试题
离散数学试题2018模拟2+答案

离散数学试题2018模拟2+答案work Information Technology Company.2020YEAR华南理工大学网络教育学院2015–2016学年度第一学期期末考试《离散数学》试卷(模拟卷2)教学中心:专业层次:学号:姓名:座号:注意事项:1. 本试卷共三大题,满分100分,考试时间90分钟,闭卷;2. 考前请将以上各项信息填写清楚;3. 所有答案必须做在答题纸上,做在试卷、草稿纸上无效;4.考试结束,试卷、答题纸、草稿纸一并交回。
一、单项选择题(本大题30分,每小题6分) A CABC1 A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?在上面句子中( )是命题2.设个体域为整数集,下列真值为真的公式是( )A.∃y∀x (x – y =2) B.∀x∀y(x – y =2)C.∀x∃y(x – y =2) D.∃x∀y(x – y =2)3. 设A={0,1},B={1,2},则A×{1}×B=( )A.{<0,1,1 >,<1,1,1 >,<0,1,2>,<1,1,2>}B.{<0,1 >,<1,1 >,<0,2>,<1,2>}C.{<1,0, 1 >,<1,1,1 >,<1,0, 2>,<1,1,2>}D.{<0,1,1 >,<1,1,1 >,<0,2, 1>,<1,2,1>}4.设A={1,2,3,4,5, 6},B={a,b,c,d,e},以下哪个函数是从A到B的满射函数( )A.F ={<1,b>,<2,a>,<3,c>,<1,d>,<5,e>, <6,e>}B.F={<1,c>,<2,a>,<3,b>,<4,e>,<5,d>, <6,e>}C.F ={<1,b>,<2,a>,<3,d>,<4,a>, <6,e>}D.F={<1,e>,<2,a>,<3,b>,<4,c>,<5,e>, <6,e>}5.对于群来说,下列判断错的是()A.群中除了幺元外,不可能再有等幂元B.群与其子群共一幺元C.循环群的生成元是唯一的D.任何一个循环群必定是阿贝尔群二、判断题(本大题20分,每小题4分)×××√×1、命题公式(P∧Q)∨(⌝R→T)是析取范式。
(完整版)华南理工《离散数学》命题逻辑练习题(含答案)

第一章命题逻辑1.1命题与联结词一、单项选择题1、A .明年“五一”是晴天 B .这朵花多好看呀!C.这个男孩真勇敢啊! D .明天下午有会吗?在上面句子中,是命题的是2. A . 1 + 101 = 110 •中国人民是伟大的。
C.这朵花多好看呀! 计算机机房有空位吗? 在上面句子中,是命题的是3. A .如果天气好,那么我去散步。
B •天气多好呀!C.x=3。
•明天下午有会吗?在上面句子中()是命题下面的命题不是简单命题的是4.A. 3是素数或4是素数).2018年元旦下大雪C. 刘宏与魏新是同学•圆的面积等于半径的平方与之积5. 下面的表述与众不一致的一个是A. P :广州是一个大城市().P:广州是一个不大的城市C.6 .设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:()A. P Q B . P QC. P Q D . P Q7.设:P :刘平聪明。
Q刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A. P Q B . P QC. P Q D . P Q&设:P:他聪明;Q:他用功。
则命题“他虽聪明但不用功。
”在命题逻辑中可符号化为()A. P Q B . P QC. P Q D . P Q9 .设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
”可符号化为:()A. P Q B . (P QC. P Q D . P Q10 .设: P:王强身体很好;Q:王强成绩很好。
命题“王强身体很好化为()A. P Q B . P QC. P Q D . P QP :广州是一个很不小的城市D. P:广州不是一个大城市11 .设:P:你努力;Q你失败。
则命题“除非你努力,否则你将失败,成绩也很好。
”在命题逻辑中可符号在命题逻辑中可符号化为()A. Q P B . P QC. P Q D . Q P12 .设:p:派小王去开会。
《离散数学》作业参考答案

7 (P→Q) (P→R) ( P Q) ( P R) (合取范式) ( P Q (R R) ( P ( Q Q) R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)(主合取范式)
(P ( Q Q)) (( P P) Q) (P Q) (P Q) ( P Q) (P Q) (P Q) (P Q) ( P Q)(主析取范式) 2.Q→( P R) Q P R(主合取范式) (Q→( P R)) ( P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R)
E
(6)
(8)
E
前提
(9) E E
(7),(8)
8 、A→(C B),B→ A,D→ C A→ D.
证明:
(1) A
附加前提
(2) A→(C B) 前提
(3) C B
(1),(2)
(4) B→ A
前提
(5) B
(1),(4)
(6) C
(3),(5)
(7) D→ C
前提
(8) D
( P (Q Q)) (( P P) Q) ( P Q) ( P Q) ( P Q) (P Q) ( P Q) ( P Q) (P Q)(主析取范式) 4. (P→Q) (R P) ( P Q) (R P) (P Q) (R P)(析取范式) (P Q (R R)) (P ( Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R)(主析取范式) ( (P→Q) (R P)) (P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)
华理离散数学试题及答案

华理离散数学试题及答案一、单项选择题(每题2分,共10分)1. 在离散数学中,以下哪个概念是用来描述两个集合之间元素的对应关系的?A. 函数B. 映射C. 序列D. 集合答案:A2. 命题逻辑中,以下哪个符号表示逻辑“与”?A. ∧B. ∨C. →D. ¬答案:A3. 集合{1, 2, 3}和{3, 4, 5}的交集是什么?A. {1, 2}B. {3, 4}C. {3}D. {1, 2, 3, 4, 5}答案:C4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 部分图答案:B5. 在图论中,一个图的度是指什么?A. 顶点的数量B. 边的数量C. 顶点的度数D. 图的连通性答案:C二、填空题(每题2分,共10分)1. 在集合论中,空集用符号____表示。
答案:∅2. 如果A和B是两个集合,那么A和B的并集用符号____表示。
答案:A∪B3. 逻辑运算中的否定运算符用符号____表示。
答案:¬4. 在图论中,如果一个图的任意两个顶点都可以通过路径相连,则称这个图为____图。
答案:连通5. 一个有n个顶点的完全图,其边的数量为____。
答案:\(\frac{n(n-1)}{2}\)三、简答题(每题5分,共20分)1. 请解释什么是二元关系,并给出一个例子。
答案:二元关系是集合A和集合B之间的一种对应关系,它由有序对(a, b)组成,其中a属于A,b属于B。
例如,如果A是人名集合,B是年龄集合,那么“小于”就是一个二元关系。
2. 什么是归纳推理?请给出一个简单的例子。
答案:归纳推理是一种从特殊到一般的推理方法,它通过观察一系列具体实例来推断出一个普遍的结论。
例如,观察到太阳每天从东方升起,我们归纳出“太阳每天都会从东方升起”。
3. 什么是图的生成树?请简述其特点。
答案:图的生成树是包含图中所有顶点的子图,并且是一个树。
它的特点是没有环,并且任意两个顶点之间有且仅有一条路径。
离散数学大作业答案

一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。
答:结合律(AUB)UC=AU(BUC)x∈(AUB)UC,即 x∈AUB 或 x∈C即 x∈A 或 x∈B 或 x∈C 即 x∈A 或 x∈B∪C即 x∈AU(BUC)说明 (AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC)2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。
3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R = ΦR = {<1,1>}R = {<2,2>}R = {<1,1>,<2,2>}R = {<1,2>,<2,1>}R = {<1,1>,<1,2>,<2,1>}R = {<1,2>,<2,1>,<2,2>}R = {<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M的上界,下界。
5.关于P,Q,R请给出使极小项m0,m4为真的解释。
答:m0= ┐p∧┐q∧┐r m4= p∧┐q∧┐r6.什么是图中的简单路?请举一例。
答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。
7.什么是交换群,请举一例。
答:如果群〈G,*〉中的运算*是可以交换的,则称该群为可交换群,或称阿贝尔群。
如〈I,+〉是交换群。
8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),记为a≡b(右mod H)。
9.什么是有壹环?请举一例。
答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。
离散数学试题2018模拟1+答案

华南理工大学网络教育学院2016–2017学年度第一学期期末考试 《 离散数学 》试卷(模拟卷)(客观题电脑给分,主观题依过程给分)教学中心: 专业层次:学 号: 姓 名: 座号: 注意事项:1. 本试卷共 三 大题,满分100分,考试时间90分钟,闭卷;2. 考前请将以上各项信息填写清楚;3. 所有答案必须做在答题纸上,做在试卷、草稿纸上无效; 4.考试结束,试卷、答题纸、草稿纸一并交回。
一、单项选择题(本大题30分,每小题6分)1.设,P :他聪明;Q :他用功。
在命题逻辑中,命题: “他既聪明又用功。
” 可符号化为:( ) A .P ∧ Q B .P → Q C .P ∨ ⌝Q D .P ∧⌝Q 【答案:A 】2.下列式子( )是永真式A .Q →(P ∧ Q )B .P →(P ∧ Q )C .(P ∧ Q )→ PD .(P ∨Q )→ Q 【答案:C 】 3.设S (x ):x 是运动员,J (y ):y 是教练员,L (x ,y ):x 钦佩y 。
命题“所有运动员都钦佩一些教练员”的符号化公式是( ) A .∀x (S (x )∧ ∀ y (J (y )∧ L (x ,y ))) B .∀x ∃y (S (x )→(J (y )→ L (x ,y ))) C .∀x (S (x )→ ∃y (J (y )∧ L (x ,y ))) D .∃y ∀x (S (x )→(J (y )∧ L (x ,y ))) 【答案:C 】4.下列命题是真的是( )A .如果A ⊆B 及B ∈C,则A ⊆C B .如果A ⊆B 及B ∈C,则A ∈C C .如果A ∈B 及B ⊆C,则A ⊆CD .如果A ∈B 及B ⊆C,则A ∈C 【答案:D 】5.设G 是n 有个结点,m 条边的简单有向图。
若G 是连通的,则m 的下界是( )A .nB .1n -C .()1n n -D .()112n n -【答案:B 】二、 判断题(本大题20分,每小题4分)1. 设A ,B 是命题公式,则蕴涵等值式为A →B ⇔⌝A ∧B 。
离散数学作业标准答案

离散数学作业标准答案离散数学作业⼀、选择题1、下列语句中哪个是真命题(C )。
A .我正在说谎。
B .如果1+2=3,那么雪是⿊⾊的。
C .如果1+2=5,那么雪是⽩⾊的。
D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。
A. 恒假的B. 恒真的C. 可满⾜的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。
A .是⾃由变元但不是约束变元 B .既不是⾃由变元⼜不是约束变元 C .既是⾃由变元⼜是约束变元 D .是约束变元但不是⾃由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。
A .单射⽽⾮满射 B .满射⽽⾮单射 C .双射 D .既不是单射,也不是满射 6、下列⼆元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算 B. S={0,1},S 关于普通的乘法运算 C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所⽰,哪个能使({a,b},*)成为含⼳元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D8、下列图中是欧拉图的是( A )。
华南理工网络教育学院离散数学试题A

华南理工网络教育学院离散数学试题A一、选择题1、在下列命题中,不是命题的是()A.这是一个苹果B.今天是星期一C.苏州在南京的南边D.明天会下雨吗?E.所有猫都是动物2、下列命题中,真命题是()A.如果a>b,那么ac>bcB.如果a>b,c>d,那么a+c>b+dC.如果a>b>0,c>d>0,那么ac>bdD.如果a>b>0,那么对任意实数c,ac>bc3、下列命题中,假命题是()A.如果一个命题的逆命题是真命题,那么这个命题是假命题B.如果一个命题的否命题是假命题,那么这个命题是真命题C.如果一个命题的逆否命题是假命题,那么这个命题是假命题D.如果一个命题的否命题是真命题,那么这个命题是真命题二、填空题1、填空题中的空档里,请按照数学表达式的正确格式填写答案。
设A和B是两个集合,用符号表示它们之间的关系,相交关系为 A ∩B,全集为 U,则 A的补集表示为 A'。
2、如果一个命题的逆命题是真命题,那么这个命题是____________。
3、如果一个命题的否命题是假命题,那么这个命题____________。
4、如果一个命题的逆否命题是假命题,那么这个命题是____________。
5、在下列各小题中,选择一个适当的答案填入空格内。
(1)如果a>b>0,那么对任意实数c,ac________bc;(2)如果a>b>0,c>d>0,那么ac________bd;(3)如果a>b>0,那么对任意实数c,ac________bc;(4)如果a>b>0,那么对任意实数c,ac________bc。
答案:(1)> (2)> (3)> (4)<解析:根据不等式的性质进行判断。
6、下列各小题中,选择一个适当的答案填入空格内。
(1)如果a<b<0,那么对任意实数c,ac________bc;(2)如果a<b<0,c<d<0,那么ac________bd;(3)如果a<b<0,那么对任意实数c,ac________bc;(4)如果a<b<0,那么对任意实数c,ac________bc。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南理工大学网络教育学院
2018–2019学年度第一学期
《离散数学》作业
1、用推理规则证明⌝(P∧⌝Q),⌝Q∨R,⌝ R⇒⌝P
证(1)⌝Q∨R P
(2)⌝ R P
(3)⌝Q(1)(2)析取三段论
(4)⌝(P∧⌝Q)P
(5)⌝P ∨ Q (4)等价转换
(6)⌝P (3)(5)析取三段论
2、用推理规则证明Q,⌝P → R,P → S,⌝ S⇒Q∧R
证(1)P → S P
(2)⌝ S P
(3)⌝P(1)(2)拒取式
(4)⌝P → R P
(5)R (3)(4)假言推理
(6)Q P
(7)Q∧R(5)(6)合取
3.设命题公式为⌝Q∧(P→Q)→⌝P。
(1)求此命题公式的真值表;
(2)求此命题公式的析取范式;
(3)判断该命题公式的类型。
解(1)真值表如下
P Q ⌝Q P→Q ⌝Q∧(P→Q)⌝P⌝Q∧(P→Q)→⌝P
0 0 1 1 1 1 1
0 1 0 1 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 1
(2)⌝Q∧(P→Q)→⌝P⇔⌝(⌝Q∧(⌝P∨Q))∨⌝P
⇔(Q∨⌝(⌝P∨Q))∨⌝P⇔⌝(⌝P∨Q)∨(Q∨⌝P)⇔1(析取范式)⇔(⌝P∧⌝Q)∨(⌝P∧Q)∨(P∧⌝Q)∨(P∧Q)(主析取范式)
(3)该公式为重言式
4.在一阶逻辑中构造下面推理的证明
每个喜欢步行的人都不喜欢坐汽车。
每个人或者喜欢坐汽车或者喜欢骑自行车。
有的人不喜欢骑自行车。
因而有的人不喜欢步行。
令F(x):x喜欢步行。
G(x):x喜欢坐汽车。
H(x):x喜欢骑自行车。
解前提:∀x(F(x)→⌝ G(x)),∀x(G(x)∨H(x)),
∃ x⌝ H(x)。
结论:∃ x ⌝F(x)。
证(1)∃ x ⌝H(x)P
(2)⌝H(c)ES(1)
(3)∀x(G(x)∨H(x))P
(4) G(c)∨H(c)US(3)
(5) G(c)T(2,4)I
(6)∀x(F(x)→⌝ G(x))P
(7)F(c)→⌝ G(c)US(6)
(8)⌝ F(c)T(5,7)I
(9)(∃x)⌝ F(x)EG(8)
5.用直接证法证明:
前提:(∀x)(C(x)→W(x)∧R(x)),(∃x)(C(x)∧Q(x))
结论:(∃x)(Q(x)∧R(x))。
证(1)(∃x)(C(x)∧Q(x))P
(2)C(c)∧Q(c)ES(1)
(3)(∀x)(C(x)→W(x)∧R(x))P
(4) C(c)→W(c)∧R(c)US(3)
(5) C(c)T(2)I
(6)W(c)∧R(c)T(4,5)I
(7)R(c)T(6)I
(8)Q(c)T(2)I
(9)Q(c)∧R(c)T(7,8)I
(10) (∃x)(Q(x)∧R(x))EG(9)
6.设R是集合A = {1, 2, 3, 4, 5, 6, 7, 8, 9}上的整除关系。
(1)给出关系R;(2)画出关系R的哈斯图;
(3)指出关系R的最大、最小元,极大、极小元。
解R={<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<1,9>,<2,4>,<2,6>,<2,8>,<3,6>,<3,9>,<4,8>}∪I A
COV A={<1,2>,<1,3>,<1,5>,<1,7>,<2,4>,<2,6>,<3,6>,<3,9>,<4,8>}
作哈斯图如右:
极小元和最小元为1;
极大元为5,6,7,8,9, 无最大元
8
7.设R 是集合A = {1, 2, 3, 4, 6, 12}上的整除关系。
(1) 给出关系R ; (2) 给出COV A
(3) 画出关系R 的哈斯图;
(4) 给出关系R 的极大、极小元、最大、最小元。
解 R ={<1,2>,<1,3>,<1,4>,<1,6>,<1,12>,<2,4>,<2,6>,<2,12>,<3,6>,<3,12>,<4,12>,<6,12>}∪I A
COV A ={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,12>,<6,12>}
作哈斯图如右:
极小元和最小元为1;
极大元和最大元为12 8.求带权图G 的最小生成树,并计算它的权值。
解
()12317C T =+++=
9.给定权为1,9,4,7,3;构造一颗最优二叉树。
解 1 3 4 7 9 4 4 7 9 8 7 9 15 9 24
()414334271951W T =⨯+⨯+⨯+⨯+⨯=
10.给定权为2,6,3,9,4;构造一颗最优二叉树。
解 2 3 4 6 9 5 4 6 9 9 6 9 15 9
24。