《工程电磁场导论》课后习题附答案
工程电磁场课后习题答案

E2-9 在中心点位于原点,边长为L的媒质立方体内的极化强度矢量为()0e x y z P P e x e y e z =++,(a) 计算面和体束缚电荷密度; (b) 证明总束缚电荷为零。
解:据题,体束缚电荷密度为:03v e P P ρ=-∇⋅=- (公式y x zE E E E x y z∂∂∂∇⋅=++∂∂∂) 在2L x =的面002s x e L e P P x P ρ=⋅== 在2L x =-的面00()2s x e Le P P x P ρ=-⋅=-= 同理,在2Ly =和2L y =-的面,02s L P ρ=在2L z =和2L z =-的面,02s LP ρ=∴(a )六个面上的面束缚电荷密度均为:0/2P L ρ=s体束缚电荷密度为:03v P ρ=-∴ (b) 总束缚电荷为:23006()302s v LQ Q Q L P P L =+=-=E2-13 半径为a 的球内充满体电荷密度为f ρ的电荷。
已知球内外的电场强度是⎪⎩⎪⎨⎧≥+≤+=-)()()(24523a r rAa a a r Ar r E r求体电荷密度(全部空间的介电常数均为0ε)。
解:0f E ρε∇⋅=(1)在r a ≤的区域内:23221[()]E r r Ar r r∂∇⋅=⋅+∂ 254r Ar =+ 20(54)f r Ar ρε∴=+(2)在r a ≥的区域内:254221[()]E r a Aa r r r-∂∇⋅=⋅⋅+∂ = 0 0f ρ∴=∴体电荷密度为:20(54),(),()f r Ar r a r a ερ⎧+≤=⎨≥⎩E2-17 两媒质分界面为z=0面,已知1223r r εε==和,如果已知区域1中的123(5)x y z E e y e x e z =-++我们能求出区域2中哪些地方的2E 和2D 呢?能求出区域2中任意点的2E 和2D 吗? 解:(1)在两种媒质的分解面z=0上,由于没有电荷的存在,电位移矢量的法线方向连续。
工程电磁场课后答案1(完整)

0.29K
7401
VOH 74LS00
2.9.1 驱动: 负载: 拉电流: 灌电流: 扇出:
2.9.2 VOH > VIH VOL < VIL IOH > IIH IOL > IIL
第三章 组合逻辑电路分析与设计
3.1.2证明(C)A ABC ACD C D E
A ACD (C D )E
(b) _______ ________ _______ ________
A B C D C D A D
( A B)(C D) (C D)( A D)
(C D)( A B D)
AC AD BC BD CD D
AC BC D
3.2.1展开最小项(a) L A(B C) A BC A(B B)(C C) ( A A)BC
mi
3.2.2 (a)
______________________
___________________
AC ABC BC ABC AC BC BC ABC
灌电流多余: (8-4.8)/0.4=8
N=min(8,17)=8
2.4.5
__________________ ____ ____
L AB BC D E
AB BC D E
2.4.6 RP计算 (1)拉电流时
VCC R IP IH 74LS 00 VOH 7401
D=0 选中低位片1;D=1 选中高位片2
01234
56789
1
0
1
A B C D
0
2
0
4.2.9 7位数字译码显示电路
《工程电磁场导论》练习题及答案

《工程电磁场导论》练习题一、填空题(每空*2*分,共30分)1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体。
2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。
3.在自由空间(如真空中)电荷运动形成的电流成为运流电流。
4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。
5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的细天线。
6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。
7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过8mA 时,有可能发生危险,超过30mA 时将危及生命。
8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。
9.恒定电场中传导电流连续性方程∮S J.dS=0 。
10.电导是流经导电媒质的电流与导电媒质两端电压之比。
11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。
12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。
13. 电荷的周围,存在的一种特殊形式的物质,称电场。
14.工程上常将电气设备的一部分和大地联接,这就叫接地。
如果是为保护工作人员及电气设备的安全而接地,成为保护接地。
二、回答下列问题1.库伦定律:答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为:这一规律成为库仑定律。
2.有限差分法的基本思想是什么?答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。
3.静电场在导体中有什么特点?答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。
工程电磁场部分课后习题答案

⼯程电磁场部分课后习题答案12-1 ⼀点电荷q放在⽆界均匀介质中的⼀个球形空腔中⼼■设介质的介电常数为⼀空腔的半径为S求空腔表⾯的极化电荷⾯密度。
解由⾼斯定律,介质中的电场强度为-P(SM- e r) =KT ⼆——_- E4πer2*r由关系式n = e0E+P,得电极化强度为P-(E - Eo)E = ---- --- -4 Tter因此,空腔表⾯的极化电荷⾯密度为1-3-1从静堪场基本⽅程出发‘证明当电介质均匀时*极化电荷密度P P 存在的条件是⾃由电荷的体密度P不为零,且有关系式P P- - (I-^)P O 解均匀介质的E为常数C t从关系式D= ε0E + P Xr> = εE1得介质中的电极化强度P=D-ε0E-D-E0≤ = (l扱化电荷密度PP =-V -P= - V *[(1 -~)D \=?D灼(1 ⼀“)Tl )V ?!>εε由円?DP和Sl -号)=仇故上式成为P P=-学)⼙1-4-3 IJillF列静电场的边值问题:(0电荷体密度分别为⾓和他,半径分别为G的双层同⼼带电球体(如题1 - 4 - 3 图(a));(2)在两同⼼导体球壳间,左半部和右半部分别填充介电常数为引与∈2 的均匀介质,内球壳带总电荷量为外球売接地(如题1-4-3图(b));(3)半径分别为α与B的两⽆限也空⼼同轴圆柱⾯导体,内圆柱表⾯上单位长度的电量为⼚外圆柱⾯导休接地(如题I -3图(C))O仅供⽤于学习版权所有郑州航院电⽓⼯程及其⾃动化邓燕博倾⼒之作J? t -4- 3 图解(1)选球坐标系,球⼼与原点重合⼨数,故有如下静电场边值问题:由对称性町知,电位护仅为⼚的函y1 d zd7σ豁-EO(0≤r< α)d / 不&豁-(aI Y Ct ( 乔& (XY 8:r = a=?’r ≡αιL严翠f P2F = A =拓I lr = A—⾦⼀e?r =卄L呦=有限值,P-I rf 8-0(2)选球坐标乘*球⼼与原点重介。
工程电磁场课后答案

电磁兼容性
总结词
电磁兼容性是研究电磁场和电子系统相互作 用的学科。
详细描述
电磁兼容性主要关注电子系统在电磁环境中 的性能表现,包括电磁干扰(EMI)和电磁敏 感度(EMS)等问题。通过学习电磁兼容性,
学生可以了解如何设计和实施有效的电磁屏 蔽、滤波和接地措施,以确保电子系统的可 靠性和稳定性。这对于电子设备和系统的设
磁场能量存储
磁力发电机
利用磁场和导线的相对运动产生感应电动势的原理,将机械能转换为电能进行存 储。
磁性存储器
利用不同磁性材料的不同磁化方向来存储数据,通过改变磁性材料的磁化方向来 读取和写入数据。
电场能量存储
电容
利用电极板之间的电场储存电能,具 有充电和放电的能力,常用于滤波、 去耦和储能等电路中。
总结词
恒定磁场的散度和旋度均为零。
详细描述
由于恒定磁场中电流是恒定的,因此其磁 场强度不会随时间变化,散度和旋度均为 零。
时变电磁场
详细描述
时变电磁场具有以下特性,电场和磁场都 随时间变化,电场和磁场之间存在相互耦
合,电磁波可以传播。
A 总结词
时变电磁场是指电磁场随时间变化 的电磁场。
B
C
D
详细描述
总结词
静电场的散度和旋度分别为零 和不为零。
详细描述
由于静电场中电荷是静止的, 因此其电场线不会随时间变化 ,散度和旋度均为零。
恒定磁场
总结词
详细描述
恒定磁场是由恒定电流产生的磁场,其磁 场强度不随时间变化。
恒定磁场具有以下特性,磁场强度与电流 密度成正比,磁感应线是闭合曲线且无旋 、无源,磁场强度与磁势梯度成正比。
高频电磁波在医疗领域的应用
工程电磁场导论课后答案

工程电磁场导论课后答案【篇一:工程电磁场导论习题课南京理工大学】图示真空中有两个半径分别为r1和r2的同心导体球壳,设内、外导体球壳上分别带有净电荷q1和q2,外球壳的厚度忽略不计,并以无穷远处为电位参考点,试求:(1)导体球壳内、外电场强度e的表达式;(2)内导体球壳(r?r1)的电位?。
2.真空中有一个半径为3cm的无限长圆柱形区域内,有体密度 ??10 mcr?3cm, r?4cm处m均匀分布的电荷。
求:r?2cm,3的电场强度e。
3.内导体半径为2cm和外导体的内半径为4cm的球形电容器,其间充满介电常数??2r的电介质。
设外导体接地,而内导体带电,试求电容器介质内某点电位为内导体电位的一半时,该处的?值。
?afm4.一同轴线内圆柱导体半径为a,外圆柱导体半径为b,其间填充相对介电常数?r?质,当外加电压为u(外导体接地)时,试求:(1)介质中的电通密度(电位移)d和电场强度e的分布; (2)介质中电位?的分布;5. 图示空气中一输电线距地面的高度h?3m,输电线的半径为a?5mm,输电线的的介轴线与地面平行,旦对地的电压为u?3000v,试求地面上感应电荷分布的规律。
(?0?8.85?10?12fm)h6. 已知半径为r的无限长中空半圆柱面,均匀带电,电荷面密度为?0,则在其轴线上产生的电场强度为ey???0??0ey。
一个带有均匀分布的电荷体密度为?0的半圆柱,半径也为r,问它在轴线上产生的电场强度是多少?7. 下图所示空气中一根长直细导线(截面可忽略不计),单位长度所带电荷量为?,平行放置于一块无限大导体平板上方,并与一块半无限大瓷介质(?2?4?0)相邻,且已知长直细导线到导体平板与瓷介质的距离均为d,画出求解空气中电场时,所需镜像电荷的个数、大小和位置(不要求解出电场)。
半无8. 长直圆柱形电容器内外导体的半径分别为r1、r3,其间充满介电常数分别为?1、?2的两种介质,其分界面是半径为r2的圆柱面,若内导体单位长度带电荷量?q,外导体内表面单位长度所带电荷量? q,且外导体接地,如图所示,请写出两种介质区域内电位函数所满足的微分方程和边界条件。
工程电磁场导论课后答案

工程电磁场导论课后答案【篇一:工程电磁场导论习题课南京理工大学】图示真空中有两个半径分别为r1和r2的同心导体球壳,设内、外导体球壳上分别带有净电荷q1和q2,外球壳的厚度忽略不计,并以无穷远处为电位参考点,试求:(1)导体球壳内、外电场强度e的表达式;(2)内导体球壳(r?r1)的电位?。
2.真空中有一个半径为3cm的无限长圆柱形区域内,有体密度 ??10 mcr?3cm, r?4cm处m均匀分布的电荷。
求:r?2cm,3的电场强度e。
3.内导体半径为2cm和外导体的内半径为4cm的球形电容器,其间充满介电常数??2r的电介质。
设外导体接地,而内导体带电,试求电容器介质内某点电位为内导体电位的一半时,该处的?值。
?afm4.一同轴线内圆柱导体半径为a,外圆柱导体半径为b,其间填充相对介电常数?r?质,当外加电压为u(外导体接地)时,试求:(1)介质中的电通密度(电位移)d和电场强度e的分布; (2)介质中电位?的分布;5. 图示空气中一输电线距地面的高度h?3m,输电线的半径为a?5mm,输电线的的介轴线与地面平行,旦对地的电压为u?3000v,试求地面上感应电荷分布的规律。
(?0?8.85?10?12fm)h6. 已知半径为r的无限长中空半圆柱面,均匀带电,电荷面密度为?0,则在其轴线上产生的电场强度为ey???0??0ey。
一个带有均匀分布的电荷体密度为?0的半圆柱,半径也为r,问它在轴线上产生的电场强度是多少?7. 下图所示空气中一根长直细导线(截面可忽略不计),单位长度所带电荷量为?,平行放置于一块无限大导体平板上方,并与一块半无限大瓷介质(?2?4?0)相邻,且已知长直细导线到导体平板与瓷介质的距离均为d,画出求解空气中电场时,所需镜像电荷的个数、大小和位置(不要求解出电场)。
半无8. 长直圆柱形电容器内外导体的半径分别为r1、r3,其间充满介电常数分别为?1、?2的两种介质,其分界面是半径为r2的圆柱面,若内导体单位长度带电荷量?q,外导体内表面单位长度所带电荷量? q,且外导体接地,如图所示,请写出两种介质区域内电位函数所满足的微分方程和边界条件。
工程电磁场课后题目答案解析

2-5有两相距为d 的无限大平行平面电荷,电荷面密度分别为σ和σ-。
求由这两个无限大平面分割出的三个空间区域的电场强度。
解:100022E σσσεεε⎛⎫=--= ⎪⎝⎭200300022022E E σσεεσσεε⎛⎫=---= ⎪⎝⎭=-=2-7有一半径为a 的均匀带电无限长圆柱体,其单位长度上带电量为τ,求空间的电场强度。
解:做一同轴单位长度高斯面,半径为r(1)当r ≦a 时,222012112E r r a r E a τπππετπε⋅⋅=⋅⋅⋅=(2)当r>a 时,0022E r E rτπετπε⋅==2-15有一分区均匀电介质电场,区域1(0z <)中的相对介电常数12r ε=,区域2(0z >)中的相对介电常数25r ε=。
已知1234x y z =-+E e e e ,求1D ,2E 和2D 。
解:电场切向连续,电位移矢量法向连续()()11222111122212220202021022020,10,505020,10,201050502010201050x y z r r x r y r z rr x r y r z r x y zrr x r y r z E E D D D E D e e e E e e e D e e e εεεεεεεεεεεεεεεεεε==-===-=∴=-+=-+=-+2-16一半径为a 的金属球位于两种不同电介质的无穷大分界平面处,导体球的电位为0ϕ,求两种电介质中各点的电场强度和电位移矢量。
解:边界电场连续,做半径为r 的高斯面()()()()()()22121221202121212002222222Saar D dS r E E r E QQE r Q QE dr dr r aQ a a E e rπεεπεεπεεϕπεεπεεπεεϕϕ∞∞⋅=+=+=∴=+⋅===++∴=+∴=⎰⎰⎰⎰12102012221020112210201020,,,r r p n p n a a D e D e r rD D aap e p e aaεϕεϕεϕεϕσσεεεεσϕσϕ======--=⋅=-=⋅=-两介质分界面上无极化电荷。