往复泵外文翻译--压缩机,泵,制冷工程

往复泵外文翻译--压缩机,泵,制冷工程
往复泵外文翻译--压缩机,泵,制冷工程

Chemical and Petroleum Engineering, Vol. 40, Nos. 11–12, 2004

COMPRESSORS, PUMPS, REFRIGERATION ENGINEERING UPDATING PISTON PUMPS FOR OIL

PRODUCTION

B. S. Zakharov,1 G. N. Sharikov,2

and E. G. Kormishin2

The three-plunger acid treatment pump SIN32 and the two-cylinder double-acting pump NPTs-32 with four working chambers (for cementing units) have been updated to control pump delivery. The fluid delivery diagrams for pumps of various designs are examined and the test results are reported.

In drilling and oil production, single-acting three-plunger (triplex) pumps or double-acting two-cylinder (duplex) pumps are used.

In injecting reagents (clay drilling mud, water, cement, acid, etc.) into wells, depending on the technology applied,it is required to inject the fluid in amounts ranging from the maximum to the minimum in a single operation. If the bed accepts the injected fluid well, it becomes necessary to maximize pump delivery for quick completion of the operation. If on the other hand, the bed does not accept the fluid well, it becomes necessary to reduce pump delivery so as to restrict the injection pressure to the safe limit. At present, because of wear of well (down-hole) equipment, the permissible injection

pressure is not higher than 10–15 MPa..

The delivery of a piston (reciprocating) or a plunger (displacement) type of pump can be controlled in the following ways:

? by installing several pumps with identical or different pumping capacities;

? by changing the drive rotation speed;

? by using cylinders (plungers) of the required size;

? by channeling a part of the fluid into a bypass; and

? by dismounting one or several valves.

The first version is used essentially in drilling. In oil production, generally all versions are used either individually or in some combination.

All pumping units designed for injection of various fluids (fluidal materials) for cementing, hydraulic formation fracturing, hydraulic sand-jet flushing of sand bridges, and other flushing operations in oil and gas wells are mounted on the chassis of motor vehicles (trucks), tractors, caterpillar (tracked) carriers, and specially made carriages.

The operating parameters of the pumps (delivery and injection pressure) depend on the power of the drive and maximum and minimum speed of the engine and the pump. The pump delivery can be changed by changing the number of pump strokes without stopping the engine with the help of a gearbox (by gear shifting) and with stopping of the engine by installing cylinders of the required size. Replacement of the cylinders takes a lot of time and is not always possible in a continuous echnological process. In the existing pumping plants, the delivery variation range is inadequate. At the minimum rotation speed and cylinder diameter, the delivery remains extremely high, and for injecting the fluid into the bed the pressure has to be raised above what is permissible.

Assigned by NGDU Zainskneft’, ékogermet carried out updating of two types of pumps, namely, SIN32 and NPTs-32.

In the three-plunger (triplex) acid treatment pump SIN32, for reducing the minimum delivery down to 1.0 m3/h,plungers having a diameter of 125 mm were replaced with plungers having a diameter of 55 mm. As a result, the theoretical pump delivery was reduced from 16 down to 3.3 m3/h. Further reduction of the pump delivery was achieved by reducing the rotation speed of the vehicle engine to the possible minimum (500–600 rpm).

Simultaneously with this, a new design of packing glands (sealing devices) of plungers of the UPN55 type was developed.It was based on Zakharov mechanical seal [1], which demonstrated high reliability and durability in sucker-rod (oil) pumps. The sealing units and the pistons with a diameter of 55 mm were made for the SIN32 pump by éLKAMneftemash in Perm. Its finishing and testing were done by ékogermet jointly with NGDU Zainskneft’.

The design of the UPN55-type plunger seal is shown in Fig. 1. The combined seal consists of the main threestage mechanical seal 4 and an elastic sealing

collar 2. Each stage of the mechanical seal consists of ten rings that are elastically pressed against each other and simultaneously against the plunger surface. The rings are pressed against the

plunger in pairs from the opposite sides. The next pair is turned relative to the preceding one by 90o. The rings are pressed in the axial direction by rubber rings of round cross section and in the radial direction, by rubber girdles with eccentric collars. The plunger 5 is made of steel 45 and is chromium-plated and the sealing rings are of bronze. Three

cartridges with mechanical seals were installed in the housing bore 3 with a clearance that helps self-centering of the seals relative to the plunger. The cartridges are pressed together by a round nut 1 through a bushing with the sealing collar 2. There are holes in the housing for injecting oil and draining out the overflow into the receiving (suction) line of the pump.

In contrast to the well-known elastic glands, the mechanical seal does not require periodic adjustments and ensures reliable operation of the assembly over a long period [2]. Use of the updated SIN32 pump having a UPN55 type of mechanical plunger seals confirmed that the proposed design operationally fit.

From August through December 2003, NGDU Zainskneft’ carried out s even bottom-hole treatments (BHT) of six wells using the updated SIN32 pump. Different types of technological operations were carried out in the wells: mud acid BHT, muriatic (hydrochloric) acid BHT, injection of the reagents SNPKh-9021, MIAPROM, and RMD, for which SIN32 and ATs-32 pumping units were generally used. If acid or any other reagent could not be forced through (injected) at 12–15 MPa pressure, a low-capacity unit was connected with the SIN32 pump. In that case, the injection pressure dropped by 2–4 MPa。Injection was completed at the third-gear speed of the engine.

The NGDU technologists believe that connecting a low-delivery unit with an SIN32 pump offers the following advantages:

? possibility for continuous injection of acids and reagents in case of low intake capacity of the bed and for prevention of opening up of the fractures (hydraulic fracturing) of the collector and excessive rise in flow string testing pressure;

? extended operating life of the flow string by virtue of pressure

stabilization during injection; and

? action of the acid throughout the perforation period and more complete reaction with the rock when the acid infiltrates the bed.

Since the maximally possible delivery of the SIN32 pump is reduced at least fivefold, NGDU Zainsk neft’ proposed to perform all BHTs by injecting acids into the bed with the aid of a low-capacity unit and all other operations, with a standard unit. In that case, however, it would be necessary to place in the well, instead of one, two units, which have to be handled,by two teams, i.e., it will entail additional manpower and costs. Moreover, a low-capacity unit is not always

fully utilized(does not operate to full capacity) and often stalls.

Thus, for a specific size of the cylinder it is necessary to reduce the pump delivery down to the minimum and, consequently,to broaden the range of control of the pump capacity toward its reduction while maintaining maximally possible delivery.

In multichamber pumps, this issue is resolved by shutting down (disengaging) one or several working chambers.

In duplex plunger pumps, disengaging one or two chambers will cause significantly uneven delivery, hydraulic shocks, disruption of the balance of loads on the drive, and failure of the pump.

In double-acting two-cylinder (duplex) pumps having four working chambers of the NPTs-32(9T) type, which are installed, for example, in ATs-32 cementing units, the delivery can be reduced by disengaging two rod chambers, which is achieved by removing two delivery (pressure) valves (Fig. 2).

The delivery of the NPTs-32 type of pump (duplex) having four chambers is

Q = 2(2F –?)Sn,

where F is the cross-sectional area of the cylinder with a diameter D c, dm2; ? is the cross-sectional area of the rod with a diameter d r, dm2; S is the stroke length, dm; and n is the number of double strokes per minute.

If the delivery (pressure) valves are removed from the rod chambers, the four-chamber pump turns into a two-chamber one with differentially acting cylinders. The delivery of such a pump Q1 = 2FSn.

If the valves from the front chambers are removed, the pump delivery can be determined by the equation Q2 = 2(F –?)Sn.

Reduction of delivery by disengaging the rear (rod) chambers depends on the factor k1 = (2 –?/F) and by disengaging the front chambers, on the factor k2 = [2 + ?/ (F –?)]. It can be readily seen that for reducing delivery the front chambers have to be disengaged. However, theory and practice show that disengagement of the rod chambers is more advisable.

Thus, in NPTs-32 type of pump having cylinders of 90, 100, 115, and 127 mm diameter and rods of 45 mm diameter the delivery can be reduced 1.75–1.87 times by removing the valves from the rod chambers. At low loads (pressure drop not more than 15 MPa and minimal delivery), the engine of the motor vehicle KrAZ-250 can run steadily at a rotation speed of 550 rpm. In the second gear with

minimum engine rotation speed, the delivery of a pump with a cylinder of 90 mm

diameter can be reduced down to 1.0 m3/h.

Unlike the SIN32 pump, the delivery of the NPTs-32 pump can be controlled during the technological operation and reducing or raising the delivery can change the pump output. Removal and installation of two valves do not take too long.

Let us see how the uniformity of pump delivery will change upon removal of the valves.

It is well known that the instantaneous output of a single-cylinder single-acting pump is

q = Fr sin = 0.5FS sin

where r is the radius of the crank and is the crankshaft-turning angle.

The ratio of the maximum instantaneous delivery to the average delivery of the pump is called coefficient of delivery nonuniformity: = Q max/Q av.

The average delivery of a four-chamber pump in one turn of the crank Q av = 2(2F –?)S/2·3.14.

The maximum instantaneous delivery of a pump having four chambers and cranks turning at a 90° angle (Fig. 3a)Q max = FS sin45° = 0.7FS. For the NPTs-32 type of duplex pump (D c = 90–127 mm and d r = 45 mm), = 1.25–1.17.

After this, as the delivery (pressure) valves are removed from the rod chambers, the average delivery of a two-chamber differential

(differentially-acting) pump (Fig. 3b) Q av = 2FS/2·3.14 = FS/ 3.14.

For such pumps, the maximum instantaneous delivery

Q max = (F –?)S sin45° = 0.7(F –?)S; = 1.65–1.91.

For all other types of delivery variation on account of removal of valves (in succession, all front pressure valves or crosswise, one of the front chambers and another of the rod chambers in another cylinder), the coefficient will be much higher. In general, in differential pumps, to reduce the nonuniformity

in the pump delivery, the rod diameter is so chosen that its cross-sectional area is half that of the cylinder, i.e., ? = 0.5F. In that case, the delivery nonuniformity coefficient will be the lowest for two-cylinder differential pumps: = 0.7·0.5FS·3.14 /FS = 1.099.

For each cylinder, in order to get the coefficient = 1.099, it will be necessary to make a rod of a fixed diameter (63,70, 80, and 90 mm, respectively). But then, if the pump operates with all the valves, there will be a substantial increase in delivery nonuniformity and decrease in pump delivery. If the NPTs-32 pump is required to operate in two modes, it is perhaps advisable to make a rod of 55 mm diameter (for cylinders of 90 and 100 mm diameter) and of 70 mm diameter (for cylinders of 115 and 127 mm diameter). In that case, the delivery nonuniformity coefficient will be identical for both modes of pump operation: = 1.35–1.38. The theoretical pump delivery on account of increase in the diameter of the rod in a duplex-type pump will decrease roughly by 10%.

Let us see how the delivery nonuniformity will change if the pressure (delivery) valves are removed from the front chambers (Fig. 3c). The delivery, as was noticed earlier, will decrease more than twofold.

The average delivery of a series-produced NPTs-32 pump operating with two rod-chambers is

Q av = 2(F –?)S/2·3.14 = (0.75–0.87)FS/ 3.14.

The maximum instantaneous pump delivery (forward stroke) is

Q max = FS sin45° = 0.7FS.

The minimum instantaneous delivery (back stroke) is

Q min = FS sin45° = 0.7FS = 0.7(0.25–0.125)FS.

The delivery nonuniformity coefficient is

= (Q max + Q min)/Q av = 3.87–3.45.

If the rod diameter of such a differential pump is increased, the delivery

nonuniformity will increase further and,therefore, it will be necessary to remove valves only from the rod chambers.

In series-produced NPTs-32 type of pumps having four working chambers, the nonuniformity of the fluid flow in the delivery (pressure) and suction (intake) lines will be identical and will depend on the rod diameter. The smaller the crosssectional area of the rod, the greater will the fluid flow uniformity be.

In the suction (intake) line of a differential pump, the flow nonuniformity increases considerably because only two chambers operate and the cranks of the crankshaft are turned by not 180°, as is usual for single-acting two-cylinder (duplex) pumps, but by 90°.

The delivery nonuniformity coefficient in this case will be = Q max/Q av = 2.199.

Suction conditions of differential pumps, just as of all other types of piston pumps, can be improved by installing air suction surge chambers in the suction line and placing the fluid tanks above the pumping unit.

An NPTs-32 type of differential pump was tested in field conditions in two modes: with two front working chambers (the delivery valves were removed from the rod chambers) and with two rear rod chambers (the delivery valves were removed from the front chambers). During the tests, the delivery Q and the pressure p were measured at various rates. Cylinders with a diameter of 115 mm and rods with a diameter of 45 mm were installed in the pump. The test results are reported in Tables 1 and 2, respectively.

The tests of the differential pump were performed in two wells. In one well (Table 1), the residual pressure was 10 MPa and in the other (Table 2), 5 MPa.

It is evident from Table 1 that the measured deliveries are in accord with the calculated with due regard for the volumetric efficiency. The average volumetric efficiency of the pump operating at the second-gear speed is 0.77 and at the thirdgear

speed, 0.65. With increase of the rotation speed, the volumetric efficiency decreases and pressure fluctuations rise from 5 to 30%. In spite of high delivery

nonuniformity coefficient ( = 1.86), the pump functioned satisfactorily.

It follows from Table 2 that the measured deliveries are not always in accord with the calculated. This is so because of wide pressure fluctuations (from 70 to 550 %) in the delivery (pressure) line. Accurate measurement of the rotation speed of an engine at such pressure fluctuations is practically impossible.

Thus, it is proved both theoretically and by measurements that a duplex type of pump can be converted to a differential one only by removing the delivery (pressure) valves from the rod chamber. In this regard, in order to reduce the delivery nonuniformity of an NPTs-32 type of pump, it is necessary that the rod diameter be 55 or 70 mm, depending on the diameter of the cylinder.

Based on the studies made and the operational data obtained, the following steps may be recommended for improving the series-produced NPTs-32 pump: ? to make pump with rod of two diameters, namely, 55 and 70 mm;

? to design valve system with option for disengaging it automatically or manually without disassembling the pump [3]; and

? to design piston and rod systems having mechanical sea ls. REFERENCES

1. B. S. Zakharov, Piston and Plunger Pumps for Oil Production [in Russian], OAO VNIIOéNG, Moscow (2002),

p. 52.

2. N. G. Ibragimov, G. N. Sharikov, E. G. Kormishin, and B. S. Zakharov, Application for Invention No. 2003125236.

Mechanical Seal of Plunger Pump [in Russian], 2003.

3. N. G. Ibragimov, G. N. Sharikov, E. G. Kormishin, V. S. Isakov, and B. S. Zakharov, Application for Useable Model

No. 2004119790. Two-Cylinder Piston Pump [in Russian].

译文

化工和石油工程卷40第11刊 C12,2004

压缩机,泵,制冷工程最新式的活塞泵专用油产品

B. S. Zakharov,G. N. Sharikov,和EG Kormishin2

SIN32酸处理泵的三缸柱塞泵和两缸双作用泵的工作NPTs-32与四室(对影响固井优质率的单位)已经被更新,以便控制泵流量。用于各种流体输送泵的设计图进行检查和测试结果的报告。

在钻井和石油生产中,单作用三柱塞(三缸)泵或双作用两缸(双面)泵的使用。在注射试剂(粘土钻井泥浆、水、水泥、酸等)到油井里,凭借自身的技术应用型£?则需注入流体总量从最高到最低限度在一次操作步骤里面。假如机架注入流畅的流体,有必要最大限度的对泵的排量的操作快速完成。如果在另一方面,机架未能接受良好的流体,有必要以减少泵排量,以限制注射压力,控制在安全范围内。目前,由于井(井下)设备的磨损,其允许注射

的压力不高于10到15兆帕..

一个活塞(往复式)或柱塞(位移)类型的泵可控制在以下几个方面:

?通过安装几组具有相同或不同能力的泵获得不同的泵输送能力;

?通过改变驱动旋转转速;

?通过改变泵要求的要求的气缸(活塞)的尺寸;

?通过引导到一部分流体到一个旁路,

?用一个或几个拆装阀。

第一个版本主要用于钻井。在石油生产中,一般都使用单独或在某些组合的版本。

所有的抽油机设计各种液体注射fluidal)对影响固井优质率的材料所有抽油机组注入各种流体(流体材料)泥浆,水力压裂,液压砂喷射冲洗,及其他石油和天然气井的作业是安装在汽车(卡车)机箱,拖拉机,卡特彼勒(跟踪)载流子,和特制的车厢。

泵的(流量和注射压力)的操作参数取决于驱动器和发动机和泵最高和最小高动力。该泵流量的改变可以通过齿轮变速器(通过齿轮位移)在不停止发动机的情况下改变其泵的冲程,并在发动机停止时可通过安装所需气缸尺寸调节排量。对柱塞更换需要花费很多时间,柱塞的更换往往具有不可连续性。在现有的泵机装置,流量的变化范围是不够规范的。以最低转速和最小气缸直径、排量仍非常高,并注入底座流体的压力将高于可允许的范围。

图1.UPN55-type密封相结合的SIN32柱塞泵

由NGDU Zainskneft ,kogermet进行了两种类型的泵的更新,即SIN32和NPTs-32.

在三柱塞(三缸)酸处理泵SIN32排量减少到最低1.0流量立方米/小时,柱塞直径125毫米,替换为活塞直径55毫米。以至于,泵理论输送率从16下降到3.3立方米/小时泵的流量进一步减少,通过减少发动机转速到可能的最低速度(500 到600每分钟转速)。

同时,随着这一点,一种有关于填函料(密封装置)新的设计得到发展。正是以扎哈罗夫的机械密封[1]为基础,这展示了高可靠性和耐久性抽油杆(油)泵。密封装置和一个55毫米直径的活塞为 SIN32泵| LKAMneftemash而做最终的完成和测试测试由kogermet和NGDU Zainskneft完成。

该UPN55型柱塞密封设计如图1所示联合后的阀座主要由threestage机械密封4和弹

性密封轴环2组成。机械密封的每个阶段都包括十个弹性环,同时对柱塞表面施加压力。密封环挤压在

柱塞的两个对侧面。接下来的一对相对于原来的转一个90度。环是压在圆截面橡胶圈轴向和径向方向,通过橡胶环束缚轴偏心。柱塞5是由45号钢,是镀铬和密封环镀铜组成的。三组

机械密封盒安装在箱体钻孔部位3,以利于泵的自动定心。使用这个方案被压在一起的一个圆螺母1通过套管与密封圈2结合。有孔的外壳注入了石油终止啦泵输出端的溢流。

相较于著名的弹性汽封,机械密封不需定期调整,这确保了程序长期可靠的运行[2]。使用最新的SIN32机械柱塞泵证实,拟议的设计密封UPN55类型在操作上是了可行的。

从八月到2003年12月NGDU Zainskneft完成了7井底的六口井的处理(BHT)使用的最新SIN32泵。不同类型的操作技术,进行了井:泥酸甲苯,盐酸(盐酸)酸甲苯,试剂的SNPKh - 9021注射,MIAPROM和RMD,为此SIN32和ATS - 32抽油机被普遍使用。如果酸或任何其他试剂无法通过(注入)在12-15 MPa的压力下,低容量的装置将与SIN32泵相连接。在这种情况下,注射压力下降2-4兆帕? 注射操作在发动机的第三档速度完成。

图2.液压原理图的一部分:a)两缸泵和四个工作腔(双);

b)与differentially-acting圆柱体,1)前面(头)工作室(横截面积F);2)后方(杆)室(横截面积

F-?);3)压力(交货)阀;4)吸(摄入)阀门;(5)杆截面?)。

The NGDU技术专家认为,连接带有低配送单位的SIN32泵将提供下列优点:

?连续注入的可能性酸试剂,并在试剂如果较低的注射入机构,在防治过大的破损(水力压裂)

的情况下和过度上涨压力下,测试出流量的压力。

?凭借稳定的压力可以延长注射液管柱使用寿命;及

?在整个行动期间,穿孔与摇晃时,酸试剂更完整的浸润机构。

此后SIN32泵最大可能减少五倍流量,NGDU Zainskneft提出了一种通过注射执行所有BHTs酸借助于一个low-capacity单元和所有其他操作,与标准件在这种情况下,然而,也有必要放置好,代替一个,两个单元,它们必须处理两队的,也就是说,它将需要额外的人力及成本此外,低容量的单位并不总是被充分利用(不运作满负荷),往往不起作用。

因此,对于一个特定大小的气缸,有必要以减少泵输出到最低限度,因此,以拓展其在减少对泵流量能力的控制范围,同时最大可能的保持限度的泵流量。

在多室泵,这个问题停止(分离)了一个或多个工作线程。

在双缸柱塞泵,脱离一个或两个分庭将造成明显不均匀排量,液压冲击,扰乱了驱动器上的负载平衡,导致泵的故障。

在双动两缸(双面),有四个工作腔32(9齿)类型已经安装。比方说,在ATS32固井单位,排量可通过减少分离两柱塞杆,从而降低两个阀流量(压力)(图2)。

NPTs-32 型泵流量(双面),有四个腔室,是

其中F是DM2的汽缸横截面面积;f是活塞杆横截面面积,S为行程长度,n为每分钟双笔画数。

如果流量(压力)阀从活塞杆上移除,那么四腔泵变成两个间隔不同的气缸。这种输出泵Q1= 2FSn。

图3. 图中的液体交付的活塞泵:1)duplex-type和b,c)differential-type(当前面和

杆工作腔,分别在运作)。

如果正面的阀门被移除后,泵输送可以由第二方程式

减少泵排量取决于系数k1 = (2 –?/F)和k2 = [2 + ?/ (F –?)]。它可以很容易地看出,对于减少排量是被分离开的。然而,理论和实践表明,活塞杆脱离是更明智的。

因此,泵NPTs-32 型气缸具有90,100,115,127毫米和45毫米直径杆可减少泵排量通过移除活塞杆气阀1.75-1.87个杆长。在低负载(压力降不超过15 MPa和最小的流量),对发动机KrAZ - 250可以稳固的运行在550 rpm的发动机转速。在与发动机转速最低第二齿轮,泵用的90毫米直径圆筒传递会降到1.0立方米/小时

不像SIN32泵,NPTs-32泵输送过程中可以控制技术操作,降低或提高流量可以改变

泵的输出。拆除和安装两个阀门不要太长。

让我们看看如何改变泵的输送均匀性在阀门切除后的情况下。

众所周知,一个单缸单动泵瞬时输出

其中r是曲柄半径是曲轴转角。的最大瞬间传递到泵的平均流量的比率称为流量不均匀

系数:

一个四腔泵于一体的平均流量转曲轴Q av = 2(2F –?)S/2·3.14.

一个有四个腔室的泵的最大瞬时流量,曲柄旋转在90正负角(图3a)Q max = FS sin45° = 0.7FS.转向。NPTs-32型双缸泵(直流= 90 ° C127毫米和博士= 45毫米),在此之后,由于流量(压力)阀将从杆上移除,一个差异双缸(差异效)泵(图3b)Q av = 2FS/2·3.14 = FS/ 3.14.

对于这样的泵,最大瞬时流量

全部其他类型的流量变化对移除阀(接着,所有前压力阀或横向来看,正面的腔室和另一杆的腔室的另一个气缸)系数的较其他类型将高得多。一般来说,不同的泵,减少泵输出的不均匀性,杆直径是精心设计过的,其横截面面积是气缸的一半,即f= 0.5F。在这种情况下,输出的不均匀系数将是两缸泵的最低差:

对于每个气缸,为了得到系数??= 1.099,有必要做一个固定的直径(分别为63,70,80和90毫米)的杆。但是,如果泵所有的阀门运行,将会大幅增加流量不均匀性和泵输出下降。如果 NPTs-32型泵需要在两种模式下运行,这可能最可取的直径是55毫米(90缸,100毫米直径)和活塞杆直径70毫米(为115汽缸直径127毫米)。在这种情况下,泵输出的不均匀系数,在两种运行模式下将是完全相同的:

关于从理论上增加泵杆的直径为一个双缸型泵流量将减少10%。

让我们来看看如何导致泵流量的不均匀性的改变,如果压力(流量)阀是从(图3C)的腔室移除。流量,正如先前发现,将减少超过两倍多。

一个系列生产的 NPTs-32泵的工作有两个杆腔室平均流量

Q av = 2(F –?)S/2·3.14 = (0.75–0.87)FS/ 3.14.

最大瞬时泵输送(向前冲程)是

Q max = FS sin45° = 0.7FS.

最低瞬时流量(逆行程)是

Q min = FS sin45° = 0.7FS = 0.7(0.25–0.125)FS.

流量不均匀系数

如果这种差异的泵杆直径增加,流量不均匀性将会进一步增加,因此,有必要消除泵腔室气阀。

在系列生产的NPTs-32型泵有四个工作腔室,其流量(压力)和吸入(摄入)流量的不均匀性将是相同的,将取决于杆的直径。较小的杆的截面积越大,流体流动的均匀性将越高。

在吸(进气)的差分泵管,流量不均匀性大大增加,因为只有两腔室运作和曲轴的曲柄是不是正负180正负旋转,这个现象是常见的,因为单作用两缸(双面)泵。

流量不均匀系数在这种情况下

泵吸条件差,就像活塞泵的所有其他类型,可以通过安装吸气调节室吸风调压室,并把泵装置流体油槽加以改善。

一个NPTs-32型差动泵在现场条件下进行了两种模式的测试:有两个正面的工作腔室(流量阀门被拆除的杆腔)和两个后轮杆工作腔室(流量阀门从正面杆腔拆除)。在测试过程中,流量Q和P测量的压力是不同的比率。汽缸直径115毫米,杆直径45毫安装在泵上。测试结果报告表1和2是各自独立的。

对不同泵的测试执行的两个不同的实验。其中一个(表1),剩余的压力为10 MPa和在其他(表2),5兆帕。

从表1可见,在符合流量测量与容积效率在适当考虑后计算。平均在第二个齿轮泵的

运行速度容积效率为0.77,并在第三档

速度快,0.65。随着转速的增加,容积效率降低,压力波动上升,从5至30%。泵在高输出下的不均匀系数= 1.86),泵运作情况令人满意。

因此,测量流量不符合计算结果如表2。之所以如此,是因为压力波动大(从70到550%)超出额定输出(压力)线。精确测量在这种压力下的发动机转速波动测量几乎是不可能的。

因此,在理论上证明了它是由一个泵双缸类型可以转换到只能通过移除流量(压力)阀门杆腔测量的微弱差别。在这方面,为啦降低NPTs-32型泵流量不均匀性,这是必要的,杆直径为55或70毫米,取决于气缸的直径。

研究的基础上提出和获得的运行数据,下面的步骤可能被推荐为改善该系列生产的NPTs-32泵:

?把两个泵杆的直径改为55mm和70mm

?以设计阀门装置可自动脱离或者手动的拆离出泵[3]

?设计有机械密封活塞和活塞杆系统。

参考文献

1。[俄罗斯]采油学士扎哈罗夫,活塞和活塞泵,OAO跟VNIIO,莫斯科(2002年),p.°.52。2。议员易卜拉欣莫夫,沙瑞克夫,Kormishin,和BS扎哈罗夫,发明号二十〇亿零三百十二万五千二百三十六应用。机械密封柱塞泵[俄罗斯],2003。

3。议员易卜拉欣莫夫,沙瑞克夫,Kormishin,与伊萨科夫,和BS扎哈罗夫,对于可用的模型中的应用没有G2两缸活塞泵[俄罗斯]。

外文翻译油气储运

本科毕业论文(翻译) 英文标题 学生姓名学号 教学院系石油与天然气工程学院 专业年级油气储运工程2011级 指导教师职称 单位 辅导教师职称 单位 完成日期2015年06月

利用天然气管道压差能量液化天然气流程 摘要 长输管道天然气的输送压力通常较高(高达10兆帕),在城市门站通常需要一套节流装置完成减压过程,这个过程通常由节流装置实现,而且在此过程中会浪费非常巨大的压力能。在该文章中通过HYSYS软件来设计和模拟回收利用该巨大能量来完成一股天然气的膨胀液化过程。将单位能量消耗和液化率作为目标函数并作为优化设计选择的关键变量。同样对天然气管道在不同运输用作压力下的工作情况进行计算和讨论,同时对不同设备压力能损失进行评估,并对具体细节进行分析。结果显示,这一液化率显然低于普通液化过程的液化率,该天然气膨胀液化过程适用于进行天然气液化是由于他的单位能耗低,过程简单及灵活。 1.介绍 长距离输送管线通常在较高的工作压力下运行(高达10兆帕),高压天然气通常在城市门站内通过一个不可逆的节流过程从而降压到达较低的压力为了适应不同的需求,在这个过程中有用的压力能就这样被浪费了,因而,利用合适的能源利用方法回收这部分大量的压力能是十分有价值的。 天然气管道压力能多用于发电,轻质烃的分离以及天然气的液化。现在已经有很多关于一些小型的LNG站场天然气液化的研究报告,天然气技术研究所开发了一个小型的利用混合制冷机制冷循环的天然气液化系统,起液化能力在4-40m3 /d,kirllow等人研究了利用涡流液化技术和膨胀液化技术的小型天然气液化调峰厂。Len等人描述了几个基于压力能回收利用的天然气液化流程。Lentransgaz公司开发了充分利用压力能而没有外来能源输入来液化天然气的天然气液化的新设备。 Mokarizadeh等人应用了基因遗传学的相关算法对于天然气调峰厂的液化天然气的压力能使用进行优化以及损失的评估,Cao等人使用Hysys软件分析了应用于小型天然气液化流程的使用混合制冷剂循环以及N2,CH4膨胀循环的撬装包。Remeljej等人比较了四种液化流程包括单级混合制冷循环,两级膨胀氮循环,两开环膨胀流程,以及类似的能量分析得到单级的混合制冷剂循环有最低的能量损失。 表1 符号命名 符号名称符号名称 a 吸入参量,Pa(m3/mol) t 温度K A 无量纲吸入参量v 摩尔体积m3/mol b 摩尔体积m3/mol W 能量kW

双吸离心泵毕业设计-开题报告

双吸离心泵毕业设计-开题报告

毕业设计(论文)开题报告 学生姓名:陈乐东学号:20121698 学院:机电工程学院 专业:热能动力工程 设计(论文)题目:800S26型双吸泵的设计 指导教师:杨辉 2016年2月15日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇; 4.有关年月日等日期,按照如“2002年4月26日”方式填写。

1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写1500字左右的文献综述(包括研究进展,选题依据、目的、意义) 文献综述 800S26型双吸泵的型号意义是,入口直径为800mm,设计点扬程为26m的单极双吸水平中开式离心清水泵。要想了解此泵,首先要了解双吸离心泵。 双吸离心泵是从叶轮两面进水的双吸离心泵,因泵盖和泵体是采用水平接缝进行装配的,又称为水平中开式离心泵。与单级单吸离心泵相比,效率高、流量大、扬程较高。但体积大,比较笨重,一般用于固定作业。适用于丘陵、高原中等面积的灌区,也适用于工厂、矿山、城市给排水等方面。 S型单极双吸离心泵也被称为为中开式离心泵,供抽送清水或物理化学性质类似于水的其他液体之用。S系列单级双吸离心泵主要适用于自来水厂、空调循环用水、建筑供水、灌溉、排水泵站、电站、工业供水系统、消防系统、船舶工业等输送液体的场合。 S型中开泵与其他同类型泵相比较具有寿命长、效率高、结构合理,运行成本低、安装及维修方便等特点,是消防、空调、化工、水处理及其他行业的理想用泵。泵体设计压力为1.6MPa和2.0MPa。泵体的进出口法兰均位于下泵体,这样可以在不拆卸系统管路的情况下取出转子,维修方便。部分泵体采用双流道设计,以减少径向力,从而延长机封和轴承的寿命。叶轮叶轮的水力设计采用了最先进的 CFD 技术,因此提高了S泵的水力效率。对叶轮进行动平衡, 确保S泵的运行平稳。轴轴径较粗,轴承间距较短,从而减小了轴的挠度,延长了机械密封和轴承的寿命。轴套可以采用多种不同的材料,以防止轴被腐蚀和磨损,轴套可更换。磨损环泵体与叶轮间采用可更换的磨损环,防止泵体和叶轮的磨损,更换方便,维修费用低,同时保证运行间隙和较高的工作效率。既可以使用填料也可以使用机械密封,可以在不拆卸泵盖的情况下更换密封装置。轴承独特的轴承体设计使轴承可采用油脂或稀油润滑,轴承的设计寿命10万小时以上,也可使用双列推力轴承和封闭轴承。材料根据用户的实际需要,S型中开泵的材料可为铜、铸铁、球铁、316不锈钢、416;7锈钢、双向钢、哈氏合金、蒙耐合金,钛合金及20号合金等材料。 我国水泵技术的现状 1、我国泵产品图样的来源可分为联合设计、引进、自行开发等几种,引进的这些

空气压缩机论文中英文对照资料外文翻译文献

毕业设计外文资料翻译 附件1:外文资料翻译译文 一维多级轴流压缩机性能的解析优化 摘要 对多级压缩机的优化设计模型,本文假设固定的流道形状以入口和出口的动叶绝对角度,静叶的绝对角度和静叶及每一级的入口和出口的相对气体密度作为设计变量,得到压缩机基元级的基本方程和多级压缩机的解析关系。用数值实例来说明多级压缩机的各种参数对最优性能的影响。 关键词 轴流压缩机 效率 分析关系 优化 1 引言 轴流式压缩机的设计是工艺技术的一部分,如果缺乏准确的预测将影响设计过程。至今还没有公认的方法可使新的设计参数达到一个足够精确的值,通过应用一些已经取得新进展的数值优化技术,以完成单级和多级轴流式压缩机的设计。计算流体动力学(CFD )和许多更准确的方法特别是发展计算的CFD 技术,已经应用到许多轴流式压缩机的平面和三维优化设计。它仍然是使用一维流体力学理论用数值实例来计算压缩机的最佳设计。Boiko 通过以下假设提出了详细的数学模型用以优化设计单级和多级轴流涡轮:(1)固定的轴向均匀速度分布(2)固定流动路径的形状分布,并获得了理想的优化结果。陈林根等人也采用了类似的想法,通过假设一个固定的轴向速度分布的优化设计提出了设计单级轴流式压缩机一种数学模型。在本文中为优化设计多级轴流压缩机的模型,提出了假设一个固定的流道形状,以入口和出口的动叶绝对角度,静叶的绝对角度和静叶及每一级的入口和出口的相对气体密度作为设计变量,分析压缩机的每个阶段之间的关系,用数值实例来说明多级压缩机的各种参数对最优性能的影响。 2 基元级的基本方程 考虑图1所示由n 级组成的轴流压缩机, 其某一压缩过程焓熵图和中间级的速度三角形见图2和图3,相应的中间级的具体焓熵图如图4,按一维理论作级的性能计算。按一般情况列出轴流压缩机中气体流动的能量方程和连续方程,工作流体和叶轮的速度。在不同级的轴向流速不为常数,即考虑i j u u ≠,i j c c ≠ (i j ≠) 时的能量和流量方程。在

各种水泵英文翻译

各种水泵英文翻译 abration resisting pump ,,,,, 耐磨泵; absorption pump ,,,,, 吸收泵; acid pump ,,,,, 耐酸泵; activated sludge pump ,,,,, 活性污泥泵 adjustable diaphragm pump ,,,,, 可调隔膜泵; adjustable discharge gear pump ,,,,, 齿轮比例泵; adsorption vacuum pump ,,,,, 吸附真空泵; agricultural spray pump ,,,,, 喷灌泵; agricultural spray pump for chemicals ,,,,, 农用喷药泵; air lift pump ,,,,, 气泡泵;曼木特泵;气举泵; air operated pump ,,,,, 压缩空气驱动泵; air-powered piston pump ,,,,, 风动活塞泵; air-pressure actuated slurry pump ,,,,, 气动泥浆泵; airtight screw pump ,,,,, 密闭式螺杆泵; all abronze pump ,,,,, 全青铜泵; all iron pump ,,,,, 铸铁泵; alloy pump ,,,,, 合金泵; alloy steel pump ,,,,, 合金钢泵; angle-type axial flow pump ,,,,, 半贯流式轴流泵;弯管轴流泵; angle-type axial piston pump ,,,,, 斜轴式轴向活塞泵; animal self-operated drinking water pump ,,,,, 饲槽自动泵;家畜自动饮水泵;annular casing pump ,,,,, 环壳泵; anti-roll pump ,,,,, 减摇泵; Archimedean screw pump ,,,,, 螺旋泵; armoured pump ,,,,, 铠装泵; articulated vane pump ,,,,, 铰链滑片泵; ash pump ,,,,, 灰渣泵; attached pump ,,,,, 附属泵; automatic trough pump ,,,,, 饲槽自动泵;家畜自动引水泵; automobile pump ,,,,, 汽车用泵; auxiliary pump ,,,,, 辅泵;辅助泵; auxiliary stripping pump ,,,,, 辅扫仓泵;辅清仓泵; aviation pump ,,,,, 航空用泵; axial double entry liquid ring pump ,,,,, 轴向双吸液环泵; axial flow ,,,,, 轴流泵; axial flow pump for water jet propulsion ,,,,, 喷水推进轴流泵; axial flow pump with adjustable pitch blades ,,,,, 可调式轴流泵; axial flow pump with blades adjustable in operation ,,,,, 全可调式轴流泵axial flow pump with blades adjustable when stationary ,,,,, 半可调式轴流泵;axial flow pump with variable pitch blades ,,,,, 全可调式轴流泵; axial flowpump with reversible blades ,,,,, 可逆叶片轴流泵; axial inlet pump ,,,,, 轴吸泵;

中英文文献翻译-螺杆压缩机

英文原文 Screw Compressor The Symmetric profile has a huge blow-hole area which excludes it from any compressor applicat -ion where a high or even moderate pressure ratio is involved. However, the symmetric profile per -forms surprisingly well in low pressure compressor applications.More details about the circular p -rofile can be found in Margolis, 1978. 2.4.8 SRM “A” Profile The SRM “A” profile is shown in Fig. 2.11. It retains all the favourable features of the symmetric profile like its simplicity while avoiding its main disadvantage,namely, the large blow-hole area. The main goal of reducing the blow hole area was achieved by allowing the tip points of the main and gate rotors to generate their counterparts, trochoids on the gate and main rotor respectively. T -he “A” profile consists mainly of circles on the gate rotor and one line which passes through the gate rotor axis.The set of primary curves consists of: D2C2, which is a circle on the gate rotor with the centre on the gate pitch circle, and C2B2, which is a circle on the gate rotor, the centre of whi ch lies outside the pitch circle region.This was a new feature which imposed some problems in the generation of its main rotor counterpart, because the mathematics used for profile generation at tha -t time was insufficient for general gearing. This eccentricity ensured that the pressure angles on th -e rotor pitches differ from zero, resulting in its ease of manufacture. Segment BA is a circle on th -e gate rotor with its centre on the pitch circle. The flat lobe sides on the main and gate rotors were generated as epi/hypocycloids by points G on the gate and H on the main rotor respectively. GF2 is a radial line at the gate rotor. This brought the same benefits to manufacturing as the previously mentioned circle eccentricity on Fig. 2.11 SRM “A” Profile

外文翻译----离心泵在化工生产的应用

CENTRIFUGAL PUMP IN CHEMICALPRODUCTIONAPPLICATION Centrifugal pump in chemical production, this is most widely used because of its performance wide range (including flow, pressure head of media properties and ShiYing sexual), small volume, simple structure, easy operation, flow uniformity, low malfunction, long service life, CaoZuoFei are lower cost and prominent advantages. (1)centrifugal pump principle of work Centrifugal pump working principle is: centrifugal pump so can turn the water away is because only centrificating. Water pump before work, pump body and feed water full line must be cans in vacuum condition, when the impeller fast turns, leaf prompted water quickly spin, spin in the water under the action of the centrifugal force, pump impeller flew in from the water was thrown in the central part of the impeller, after forming vacuum area. Water in the water atmospheric pressure (or water pressure) under the action of water pipe pressure came through a tube. This cycle unceasingly, can achieve continuous pumped. In the centrifugal pump is worth mentioning: before initiating must to the pump housing filled with water, can start after, otherwise will cause, the vibration of the pump body, thus reduce heat pump, damage to (hereinafter referred to as "cavitation erosion") cause equipment accident! Centrifugal pump is a lot of more phyletic, classification methods common has the following kinds of kind: 1, press the impeller inhaled way points: single suction style centrifugal pump double suction type centrifugal pump. 2, press the impeller number points: single grade centrifugal pump mulfistage centrifugal pump. 3, according to the structure of impeller points: open impeller centrifugal pump impeller half open centrifugal pump closed impeller centrifugal pump. 4, according to work pressure points: low voltage centrifugal pump medium centrifugal pump high-pressure centrifugal pump. 5, according to pump shaft position points: horizontal centrifugal pump edge vertical centrifugal pump. (2) basic structure, centrifugal pumps

外文翻译--制冷技术发展的历史-精品

制冷技术发展的历史 在史前时代,人类已经发现在食物缺少的季节里,如果把猎物保存在冰冷的地窖里或埋在雪里,就能保存更长的时间。在中国,早在先秦时代已经懂得了采冰,储冰技术。 希伯来人,古希腊人和古罗马人把大量的雪埋在储藏室下面的坑中,然后用木板和稻草来隔热,古埃及人在土制的罐子里装满开水,并把这些罐子放在他们上面,这样使罐子抵挡夜里的冷空气。在古印度,蒸发制冷技术也得到了应用。当一种流体快速蒸发时,它迅速膨胀,升起的蒸汽分子的动能迅速增加,而增加的能量来自周围的环境中,周围环境的温度因此而降低。 在中世纪时期,冷却食物是通过在水中加入某种化学物质像硝酸钠或硝酸钾,而使温度降低,1550年记载冷却酒就是通过这种方法。这就是制冷工艺的起源。 在法国冷饮是在1660年开始流行的。人们用装有溶解的硝石的长颈瓶在水里旋转来使水冷却。这个方法可以产生非常低的温度并且可以制冰。在17世纪末,带冰的酒和结冻的果汁在法国社会已非常流行。 第一次记载的人工制冷是在1784年,威廉库伦在格拉斯各大学作了证明。库伦让乙基醚蒸汽进入一个部分真空的容器,但是他没有把这种结果用于任何实际的目的。 在1799年冰第一次被用作商业目的,从纽约市的街道运河运往卡洛林南部的查尔斯顿市,但遗憾的是当时没有足够的冰来装运。英格兰人Frederick Tuder和Nathaniel Wyeth看到了制冰行业的巨大商机,并且在18世纪上半叶,通过自己的努力革新了这个行业。Tudor主要从事热带地区运冰,他尝试着安装隔热材料和修建冰房,从而使冰的融化量从66%减少到8%,Wyeth发明了一种切出相同冰块的方法,即快速又便捷,从而使制冰业发生了革命性变化,同时也减少了仓储业,运输业和销售业由于管理技术所造成的损失。 在1805年,一名美国发明者Oliver Evans设计了第一个用蒸汽代替液体的制冷系统,但Evans从来没有制造出这种机器。不过美国的一位内科医生John. Gorrie制造了一个相似的制冷机器。

离心泵设计

1.概述 (2) 2.工艺说明 (2) 2.1工艺介绍 (2) 2.2物料性质 (2) 2.3工作温度 (2) 2.4工作压力 (2) 3.机械设计 (3) 3.1材料选择 (3) 3.2结构设计 (3) 3.3设计参数计算 (4) 4.零部件的选型 (4) 4.1法兰的选型 (4) 4.2人孔的选型 (5) 4.3容器支座的选型 (5) 5.总结 (5) 参考文献 (6)

1.概述 离心泵是工业生产中应用最为广泛的液体输送机械。其突出特点是结构简单、体积小、流量均匀、调节控制方便、故障少、寿命长、适用范围广、购置费用和操作费用较低。 离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 2.工艺说明 2.1工艺介绍 离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。 2.2物料性质 传输介质是清水,正常的沸点和熔点是100℃、不具有腐蚀性和毒性 2.3工作温度 介质温度不高于80℃ 环境温度不高于40℃ 2.4工作压力

允许吸入管路压力0.3MPa,泵的最高使用压力1.6MPa 3.机械设计 3.1材料选择 根据工艺参数和介质特性来选择泵的系列和材料。 (1)根据介质特性决定选用哪种特性泵,如清水泵、耐腐蚀泵和杂质泵等。介质为剧毒、贵重或有放射性等不允许泄漏物质时,应考虑选用无泄漏泵(如屏蔽泵、磁力泵)或带有泄漏液收集和泄漏报警装置的双端面机械密封。如介质为液化等易发挥发液体应选择低汽蚀余量泵、如筒型泵。 (2)根据选择安装条件选择卧式泵、立式泵(含液下泵、管道泵)。(3)根据流量大小选用单吸泵、双吸泵,或小流量离心泵。 (4)根据扬程高低选用单级泵、多级泵,或高速离心泵等。 3.2结构设计 1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转矩传给叶轮,所以它是传递机械能的主要部件。

外文翻译----设计加工螺杆式压缩机的内摆线

附录 1 The Original English THE KEY TECHNOLOGY OF DESIGN HOB FOR HOBBING SCREW COMPRESSOR ROTORS WITH CUCLOID-ARC PROFILE ABSTRCT The profile of cycloid-arc screw compressor rotors is not a smooth profile; it has a tip on it. When design the hob cutter used for machining this kind of rotors, the profile of hob edge will appear separation. In this paper, the author made researches on the design theory of hob cutter for hobbing the cycloid-arc rotor with tip profile, and got the best way for design this kind of hob cutter with a separate edge. It is good practice to design the hob cutter and hob the cycloid-arc rotor according to practical design, manufacture and test. (1) INTRODUCTION The efficiency and reliability of screw compressor mainly depend on manufacturing technology of screw rotors. At present, the machining method of our country for machining screw rotors is milling the shortcoming of milling is low productivity and machining accuracy. Hobbing characteristic is high productivity and machining accuracy, so the machining method for hobbing instead of milling screw compressor rotors is now becoming more and more popular. Hobbing instead of milling for machining screw compressor rotors has much more advantage, but the key problem for carrying out hobbing the screw compressor rotors is that the profile of screw compressor rotors must be suited to hobbing. Our national standard profile for screw compressor rotors have no-symmetric cycloid-arc profile and symmetric are profile [1], since no-symmetric cycloid-arc profile screw compressor has much more advantage than symmetric are profile screw compressor, our national factory all adopt the former at present. The property of no-symmetric

文献翻译-离心泵的故障分析

附录1 离心泵的故障分析 摘要 离心泵故障按其产生的原因可以分成泵本身的机械故障、泵和管道组成的工艺系统存在的缺陷导致的泵出现异常振动、噪声等故障。后类故障原因比较隐蔽,不易查明。通过工作中遇到的几个实例,对工艺和管路系统设计问题导致的离心泵故障进行了分析,并提出了相应的对策。 Abstract:Leadership water p ump break down t o press its output reason and can be divided into the mechanical trouble of oneself pump and pump to appear with the pump that blemish cause that the craft system that piping constitute exsits abnormality vibration, voice etc.break down.The empress type breaks down the reason more concealment, find out not easily.Passes a few and solid example met in the work,to craft with take care of the road system the design t he problem cause of leadership water p ump break down proceeded the analysi s, a n d put forward the homologous counterplan. 关键词:离心泵机械故障分析真空度 Keywords:Leadership water p ump Mechanical trouble Analysis 1离心泵吸入管路进气 由于气体密度远小于液体,气体通过叶轮流道时,所能得到的压头远小于液体通过叶轮流道时所得到的压头。在叶轮流道中的不同位置,压力分布不同,当液体中混有气体时,气泡在这种不均匀的压力作用下,先膨胀后压缩,产生了类似汽蚀的冲击,最后有可能会被压溃或破灭。叶轮受到激振力作用会剧烈振动并发出噪声泵出口压在密闭系统中与液体一起循环流动,无法排出系统,如果系统中夹带的气体的量比较多,泵就会出现异常振动。密闭系统中气体来源主要有两个方面: (l)系统本身设计不合理存在难以排气的死角,每次向系统中注入液体时这些死角区域残留有大量空气,而在循环时这些空气有可能被带入泵中。 (2)系统工作液体在长期工艺循环中产生不凝性气体由于系统缺少气液分离、 排放措施不凝性气体在系统中积聚。如加热系统中的热媒等有机物在长期循

往复泵外文翻译--压缩机,泵,制冷工程

Chemical and Petroleum Engineering, Vol. 40, Nos. 11–12, 2004 COMPRESSORS, PUMPS, REFRIGERATION ENGINEERING UPDATING PISTON PUMPS FOR OIL PRODUCTION B. S. Zakharov,1 G. N. Sharikov,2 and E. G. Kormishin2 The three-plunger acid treatment pump SIN32 and the two-cylinder double-acting pump NPTs-32 with four working chambers (for cementing units) have been updated to control pump delivery. The fluid delivery diagrams for pumps of various designs are examined and the test results are reported. In drilling and oil production, single-acting three-plunger (triplex) pumps or double-acting two-cylinder (duplex) pumps are used. In injecting reagents (clay drilling mud, water, cement, acid, etc.) into wells, depending on the technology applied,it is required to inject the fluid in amounts ranging from the maximum to the minimum in a single operation. If the bed accepts the injected fluid well, it becomes necessary to maximize pump delivery for quick completion of the operation. If on the other hand, the bed does not accept the fluid well, it becomes necessary to reduce pump delivery so as to restrict the injection pressure to the safe limit. At present, because of wear of well (down-hole) equipment, the permissible injection pressure is not higher than 10–15 MPa.. The delivery of a piston (reciprocating) or a plunger (displacement) type of pump can be controlled in the following ways:

离心泵的设计

目录 1 概述 (1) 2 工艺说明 (1) 2.1 工艺简介 (1) 2.2 物料性质 (1) 2.3 工作温度 (2) 2.4 尺寸参数 (2) 3 机械设计 (2) 3.1 材料选择 (2) 3.2 设计计算 (2) 3.2.1 泵的比转速计算 (2) 3.2.2 泵进口及出口直径计算 (2) 3.2.3 泵的计算功率 (3) 3.3 确定叶片厚度 (3) 3.4 叶片出口角的确定 (3) 4 总结 (4) 参考文献 (4)

1 概述 离心泵是化工机械和设备的基础知识,借助设计离心泵,完成满足工艺需求的化工机械和设备。 完成设计离心泵也是课程学习的主要目的,也是学习课程的好方法,目的是将所学知识运用于实践,提高综合应用理论知识分析,解决实际问题的能力。 离心泵的设计,需要查阅资料,进行一些理论计算,绘制图表、数据处理等,完成这门设计后可以提高我们在这方面的能力。 要完成离心泵的设计,必须要有足够的理论知识,还需要根据各类参考标准,按规范要求完成作品。根据指导意见修改作品。 本设计的主要包括工艺参数的确定,材料的选择和结构的确定,按照需要计算相关数据。 2 工艺说明 2.1 工艺简介 离心泵是一种用量最大的水泵,在给水排水及农业工程、固体颗粒液体输送工程、石油及化学工业、航空航天和航海工程、能源工程和车辆工程等国民经济各个部门都有广泛的应用。 本设计是清水离心泵的设计,适合应用于工业的排水、给水,也可用于农业的灌溉, 2.2 物料性质

水的熔点是0℃,沸点是100℃,无毒,没有腐蚀性 2.3 工作温度 工作温度是常温下工作 2.4 尺寸参数 (1)扬程H=35m (2)流量Q=15m3/h (3)工作介质为清水 (4)必需汽蚀余量NPSHr=4m (5)工作介质密度为1000kg/m3 3 机械设计 3.1 材料选择 本设计的工作介质是水,无毒无腐蚀性,不需要考虑材料的耐腐蚀性。主体材料可以用碳钢,价格便宜且制作方便。 3.2 设计计算 3.2.1 泵的比转速计算 本设计的必需汽蚀余量为4m,转速为2950r/min Ns=3.65×n×Q1/2/H3/4=48.3 3.2.2 泵进口及出口直径的计算

离心泵设计外文翻译

附录A译文 (一)离心泵使用时的调节方式与能源耗损分析 离心泵是广泛应用于化工工业系统的一种通用流体机械。它具有性能适应范围广(包括流量、压头及对输送介质性质的适应性)、体积小、结构简单、操作容易、操作费用低等诸多优点。通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求最佳、能耗最小、最节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。 1 泵流量调节的主要方式 1.1 改变管路特性曲线 改变离心泵流量最简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。 1.2改变离心泵特性曲线 根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小

流体机械外文翻译

第一篇:在海上生产平台上使用滚动压缩技术回收储存罐内闪发气体 G.B.(比尔)施耐德,SPE, 布莱恩E. 博耶,SPE,马克A.古德伊尔, 商科工程 摘要 位于墨西哥湾外大陆架的一个独立的石油天然气生产操作遭到飓风艾克的袭击并损坏了一些设施。作为重建的一部分,其中一个海上平台被翻新了。翻新包括浓缩产品系列控制来自附近生产平台的额外油气产品。平台的额外产品需要一个蒸发回收系统来回收设备的闪蒸汽。项目小组选择涡旋压缩机蒸发回收装置(VRU)来回收和重新压缩闪蒸汽。该项目是在近海环境涡旋压缩蒸汽回收技术的首次应用。 生产者为了使设施能够回收石油储存罐中的闪发蒸汽和装置中的过剩的未使用的闪发蒸汽而安装了蒸汽回收装置。在项目的初始阶段回收的平均量是大约每天58,000标准立方英尺天然气。回收的天然气中甲烷含量占总额的69%。每天甲烷的回收量估计为0.84吨,温室气体回收量估计为17.6吨二氧化碳。挥发性有机化合物(VOC)每天回收量为1.0吨。涡旋压缩机蒸汽回收装置满足了美国矿产管理局的放空燃烧和法规的监督要求。该项目预计时间为15个月(基本支出)。 该项目的重要意义有:1、首次在离岸申请中使用涡旋压缩技术。 2、装置占地面积小对于近海有限操作空间的重要性。 3、涡旋技术比典型的机械压缩机所需的维修少。 4、低成本和低消耗加快经济恢复。 5、回收的闪发蒸汽含有挥发性有机化合物(VOCs)和甲 烷以及温室气体。 引言 在墨西哥湾外大陆架上的许多石油天然气生产平台和管道遭到2008年11月飓风艾克的破坏。在墨西哥湾当地的一个主要的独立石油天然气生产商有一些设施被暴风雨毁坏。作为重建的一部分,其中一个近海平台被翻新。平台的翻新包括浓缩和改进产品系列控制来自附近生产平台的额外油气产品,由于飓风艾克的影响附近的生产平台不能输送其产品到集合管道中。平台的额外产品需要一个蒸发回收系统来回收储存罐中的闪蒸汽。生产商的工程小组决定利用涡旋压缩机来回收和重新压缩来自储存罐和石油设备中的闪发蒸汽。 石油储存罐中的天然气蒸汽资源包含闪发损失、工作损失和呼吸损失。对于压力容器(如分离器、加热器)或油罐当原油或凝析油中溶解气从高压向低压移动时发生闪发。随着油压的下降油中未溶解的轻组分被释放或“一闪而过”。工作损失归因于储存罐压缩空间内的天然气压缩量作为一个罐已经满了。呼吸损失归因于每天储存罐压缩空间内的天然气压缩量随着罐内温度和压力变化而改变。对于本文,我们将油罐的排出气体统称为闪蒸汽。 通常情况下,来自近海生产平台的闪发蒸汽要么直接排放到大气中要么烧毁。历史上蒸发回收装置被用于当投资量大并且要满足排放标准的情况下回收闪发蒸汽。用于排出闪发蒸汽的典型蒸发回收压缩机是天然气驱动的螺杆压缩机和

离心泵设计

离心泵设计 目录 1 概述 (2) 2 工艺说明 (2) 2.1 工艺简介 (2) 2.2 物料性质 (2) 2.3 工作温度 (2) 2.4 工作压力 (2) 2.5 尺寸参数 (2) 2.6 其他说明................................. 错误!未定义书签。 3 机械设计....................................... 错误!未定义书签。 3.1 材料选择................................. 错误!未定义书签。 3.2 结构设计 (3) 3.3 设计参数 (3) 4 零部件的选型 (4) 4.1 法兰的选型 (4) 4.2 泵体的选型 (4) 4.3 叶轮的选型 (4) 4.4 其他零部件的选型 (4) 5 总结 (4) 参考文献 (5)

1 概述 本门课程是关于化工机械与设备的基础课程,完成一项相关设计是课程学习的主要目的,也是学好课程的重要方法。 目的是将论运用于实践,提高综合运用知识的能力。 本课程设计的目标是提高查阅资料、理论计算、工程制图、数据处理的能力。 完成本设计需要先学好理论知识再参考各类标准按照规范完成作品。 本设计的主要内容有确定工艺参数、确定材料与结构、完成相关计算以及零部件选型。 2 工艺说明 2.1 工艺简介 即合成氨的生产工艺,工艺大致流程如下: 造气→半水煤气脱硫→压缩机1,2工段→变换→变换气脱硫→压缩机3段→脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH 3 本设备主要在其中起输送液体作用。 2.2 物料性质 水在70℃下的物性数据: 热导率:λ 2 = 0.624 W/(m?℃) 粘度:μ 2 = 0.742×10-3 Pa?s 2.3 工作温度 热流体进口温度70℃。 2.4 工作压力 根据工艺要求,设备允许压强不大于2×105Pa。 2.5 尺寸参数 外型尺寸 L: 352 H:320 a:80 h:180

相关文档
最新文档