第六章 假设检验
合集下载
第六章 假设检验.

n 即 z A,没有落入拒绝域内 , 所以没有足够的理由 来拒绝原假设 H 0,该样本的信息说明生 产正常
检验统计量的 P 值为: P( Z 1.8) 1 - P( Z 1.8) 1 - 0.9281 0.0719 0.05 因此,拒绝原假设的证 据也不强。
2.单侧检验 对于单侧检验,以左侧检验为例,要检验的 假设: H0 : 0对H1 : 0 1)假定原假设 H 0 : 0成立, 并令
S是样本标准方差,即检验统计量服从自 由度为n-1的t分布,我们称之为t检验统 计量,n>30, 可用z检验代替
例6.6 解:根据问题的要求,确定原假设与备择假设
H0 : 1000 对H1 : 1000
这是一个双侧检验 , S 24 已知, 可用t检验。 x 986, 0.05, 查表,t / 2 (n 1) t / 2 (8) 2.306, 因此,拒绝域A {t ; t 2.306}, 计算t检验统计量的值
P( Z za)
2)通过查标准正态分布表求出临界值za.由此临界 值确定由检验统计量表示的拒绝域
A {z; z z / 2 }
3)对于样本 x ( x1 , x2 ,..., xn )计算检验统计量的值
n 不能拒绝原假设
z
x 0
, 若 z A,则拒绝原假设,否则
即 z A {z, z 1.645},落入拒绝域内 , 所以没有充分的理由 接受原假设H 0,接受备择假设,该样 本的数据支持该公司的 自我声称
三、正态总体方差的假设检验
2 2 设原假设H 0 : 2 0 , H1 : 2 0
检验统计量为
统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?
第六章--假设检验基础课件

两样本所属总体方差相等且两总体均为正态分布
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效
卫生统计学课件_第六章_假设检验

16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。
第6章 假设检验

2
2
n2 7.5 2 / 120 6.3 2 / 153 0.8533
u
X1 X 2 s X1X 2
139.9 143.7 0.8533
4.4353 u 0.05 2.58
P<0.01,差别有统计学意义,可认为该市1993年12岁男童平均身高比1973年高。
假设检验应注意的问题
t 检 验
样本均数与总体均数的比较
目的:推断该样本是否来自某已知总体; 样本均数代表的总体均数与0是否相等。
总体均数0一般为理论值、标准值或经大量观察所得并为人们接
受的公认值、习惯值。
解决思路:
区间估计
判断样本信息估计的总体均数之可信区间是否覆盖已知的 总体均数0 ?若不覆盖,则可推断该样本并非来自已知均 数的总体。
样本信息不支持H0,便拒绝之并接受H1,否则不拒绝H0 。
假设检验的基本步骤
建立假设 确定检验水准 计算检验统计量 计算概率P 结论
当P≤ 时,拒绝H0,接受H1,差别有统计学意义。
当P> 时,不拒绝H0,差别尚无统计学意义。
不论,拒绝拒绝H0,还是不拒绝H0都可能范错误。
同?
μ0 =132(g/L)
n=25
? =
μ
X 150 ( g / L) S 16.5( g / L)
已知总体
未知总体
目的:推断病人的平均血红蛋白(未知总体均
数)与正常女性的平均血红蛋白(已知总体均
数0)间有无差别
μ =μ0 ?
X 0 150 132 18
手头样本对应的未知总体均数 μ等于已知总体均数μ0,
第六章 假设检验

,接受 H 1 。表明在
第二节 总体均值的假设检验
(二)总体为非正态分布或分布未知 当总体分布为非正态分布且大样本时,检验的 X 统计量为 Z
0
/
n
在“原假定成立”的条件下,只要样本容量充分 大(一般习惯上要求 n≥30),它近似服从标准正 态分布。 如果标准差σ未知,只需用样本标准差S作为它 的估计量代替式中的 σ即可,这时检验统计量为
检验统计量服从t分布与其服从标准正态分布的检验结论判断方法一致
例6.3 某厂购买了一台新的生产机器,生产零件的长度规定为10厘米。为了 检验机器的性能是否良好,质检员随机抽取了25件产品,测得其平均长度为9.8厘 米,标准差为0.4厘米。假设生产的零件长度服从正态分布,问在显著性水平 =0.05时,该机器的性能是否良好。 2 解:设 X 表示该机器生产零件的长度,则有 X ~ N (, ),样本容量n=25,样本 均值 x =9.8厘米,样本标准差 s 0.4 厘米。根据问题提出的假设为: H0 : 0 =10厘米; H 1 : 0 =10厘米 这是一个双侧检验问题,因为总体服从正态分布但总体方差未知,用检验的小 样本数据检验,故当 H 0 成立时,检验统计量为: x 0
t
s n
规定显著性水平为 =0.05,查表得到临界值 t / 2(24) 2.064 ,所以原假设的否 定域为:t 2.064 。 计算检验统计量的值: t x 0 9.8 10 2.5
s 0.4 n 100
因为 |-2.5|=2.5>2.064,落在否定域,所以否定 H 0 显著性水平 =0.05时,不能说该机器的性能良好。 互动地带 6-11
第Ⅱ类错误,也称取伪错误 本来是非真的,却根据检验统计量的值把它给接受了。 发生这种错误的概率通常用 表示,即 P(接受H 0 / H 0非真) 在样本容量一定时,犯两种错误的风险是彼此消长的。两者要同时得到控制只 有增加样本容量。在样本容量受限时,通常根据研究问题的性质决定重点控制 第一类错误的风险还是控制第二类错误的风险。
第六章 假设检验
第六章 假设检验
第一节 假设检验的基本原理
第二节 总体参数假设检验
假设检验在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
第一节 假设检验的基本原理
一、假种假设,然后利
用样本信息来判断原假设是否成立,决定应接受或
否定假设。假设检验也称为显著性检验。
在此,我们关心的是新机床加工零件的椭圆度总体均值 与老机床加工零件的椭圆度总体均值为0.081mm是否有 不同,可作如下假设 原假设 H 0 : 0.081mm 没有明显差异 备择假设 H1 : 0.081mm 有显著差异, 这是一个双侧检验问题,所以只要 > 0 或 < 0 二者之间有一个成立就可以拒绝原假设。
例某机床厂加工一种零件,根据经验知道,该厂加工零件的椭
圆度近似服从正态分布,其总体均值为0=0.081mm,总体标
准差为= 0.025 今换一种新机床进行加工,抽取n=200个零件 进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的 椭圆度的均值与以前有无显著差异?(=0.05)
H 0 : 0.081mm H1 : 0.081mm < 0 或 > 0 有一个成立就可以拒绝原假设。
为了减少冤枉好人的概率,应尽可能接受原假设, 判被告无罪,这可能增大了放过坏人的概率。
第二节总体参数假设检验
一、总体均值的假设检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
n
Z
X 0 S n
t
第一节 假设检验的基本原理
第二节 总体参数假设检验
假设检验在统计方法中的地位
统计方法
描述统计 推断统计
参数估计
假设检验
第一节 假设检验的基本原理
一、假种假设,然后利
用样本信息来判断原假设是否成立,决定应接受或
否定假设。假设检验也称为显著性检验。
在此,我们关心的是新机床加工零件的椭圆度总体均值 与老机床加工零件的椭圆度总体均值为0.081mm是否有 不同,可作如下假设 原假设 H 0 : 0.081mm 没有明显差异 备择假设 H1 : 0.081mm 有显著差异, 这是一个双侧检验问题,所以只要 > 0 或 < 0 二者之间有一个成立就可以拒绝原假设。
例某机床厂加工一种零件,根据经验知道,该厂加工零件的椭
圆度近似服从正态分布,其总体均值为0=0.081mm,总体标
准差为= 0.025 今换一种新机床进行加工,抽取n=200个零件 进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的 椭圆度的均值与以前有无显著差异?(=0.05)
H 0 : 0.081mm H1 : 0.081mm < 0 或 > 0 有一个成立就可以拒绝原假设。
为了减少冤枉好人的概率,应尽可能接受原假设, 判被告无罪,这可能增大了放过坏人的概率。
第二节总体参数假设检验
一、总体均值的假设检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
n
Z
X 0 S n
t
第六章假设检验
当我们把真实的原假设当成假的加以拒绝, 称为第一类错误,也称弃真错误、α错误,犯 第一类错误的概率就是显著性水平α;当我们 把不真实的原假设当作真的加以接受,称为第 二类错误,也称取伪错误、β错误,犯第二类 错误的概率是不确定的。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。
α也称为生产者风险:在生产者将产品售给消费者时,通常 要进行产品的质量检验,原假设总是产品是合格的,但是检验 时生产者总是担心把合格品检验为不合格品,也就是第一类错 误α,所以α也称为生产者风险。 β也称为消费者风险:在消费者一方总恐怕把不合格品检验 不出来而当作合格品接受,因而β也称为消费者风险。
(二)未知总体分布及总体方差,大样本 1.检验总体均值的统计量
(三)总体为正态分布、方差未知、小样本 1. 检验统计量
2. 拒绝域的临界值 可以根据双侧检验还是单侧检验来确定拒绝域的 临界值。当为双侧检验,显著性水平a时,临界值 为 ;当为右侧检验时,显著性水平a,监界值 为 ;当为左侧检验时,显著性水平为a,临界值 为- 。
备择假设,常用H1表示。即原假设被否定之 后而采取的逻辑对立假设。
(二)检验统计量
有了两个假设,就要根据数据来对他们进行判 断。数据的代表是作为其函数的统计量,对样 本数据进行加工并用来判断是否接受原假设的统计 量称作检验统计量 统计量最常用的是Z统计量、t统计量。
统计量的选择要根据研究的参数及其估计量 的分布、抽样的方式、总体方差是否已知等多种 因素来确定
第四步:确定决策规则。拒绝或没有拒绝原假设的决 策是建立在由样本数据来进行统计检验并将其与假设 的抽样分布比较。抽样分布被分成两个部分,拒绝域 和非拒绝域。如果原假设是真实的,那么统计检验不 可能落入拒绝域。因此,如果统计检验落入了拒绝域, 我们拒绝原假设;否则,我们不能拒绝它。
第六章 假设检验
绝原假设。这时需要选择另一个假设,这个假设 就是备择假设。即:
Ha : u≠3190(克) (有符号 , 或 )
2、Ha为备择假设,表示1990年新生儿与1989年新
生儿体重有明显差异。也可表达为:
Ha:u ≠ m0 或 Ha:u- m0 ≠0
6.1 假设检验的基本概念
提出假设 (结论与建议)
第Ⅰ类错误的概率的条件下,尽可能使犯第Ⅱ类
错误的概率减小。
6.2 一个总体参数的检验
1. 总体均值的检验 2. 总体比例的检验
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验
(检验样本是否来自某已知总体均值的总体)
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验( 2 已知)
H0 :m 1.35 Ha :m <1.35 = 0.01
n = 50 临界值(c):
拒绝H0 0.01
-2.33 0
检验统计量:
z 1.3152 1.35 2.6061 0.365749 50
决策:
拒绝H0
结论:
新机床加工的零件尺寸的平均误 差与旧机床相比有极显著的降低
z
6.2 一个总体参数的检验
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0 样本统计量
第四章 概率论与抽样分布
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0
样本统计量
第四章 概率论与抽样分布
Ha : u≠3190(克) (有符号 , 或 )
2、Ha为备择假设,表示1990年新生儿与1989年新
生儿体重有明显差异。也可表达为:
Ha:u ≠ m0 或 Ha:u- m0 ≠0
6.1 假设检验的基本概念
提出假设 (结论与建议)
第Ⅰ类错误的概率的条件下,尽可能使犯第Ⅱ类
错误的概率减小。
6.2 一个总体参数的检验
1. 总体均值的检验 2. 总体比例的检验
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验
(检验样本是否来自某已知总体均值的总体)
第四章 概率论与抽样分布
6.2 一个总体参数的检验
总体均值的检验( 2 已知)
H0 :m 1.35 Ha :m <1.35 = 0.01
n = 50 临界值(c):
拒绝H0 0.01
-2.33 0
检验统计量:
z 1.3152 1.35 2.6061 0.365749 50
决策:
拒绝H0
结论:
新机床加工的零件尺寸的平均误 差与旧机床相比有极显著的降低
z
6.2 一个总体参数的检验
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0 样本统计量
第四章 概率论与抽样分布
6.2 一个总体参数的检验
显著性水平和拒绝域
抽样分布
(左侧检验 )
置信水平
拒绝H0
1 -
临界值
H0
样本统计量
第四章 概率论与抽样分布
《概率论》第六章假设检验
例1 某服务系统的相应时间服从正态分布,需求 其平均相应时间在0.5秒之内。若16次抽样测试得 到样本平均值为x=0.56秒,样本标准差为s=0.12秒, 该服务系统工作是否正常?(=0.05)
解:H0 : 0.5 n=16 =0.05 t1 1.753 t x 0 0.56 0.5 =2 >1.753 s n 0.12 16
因此否定H0 即该服务系统工作不正常
(二)未知方差2,关于期望的检验
1.检验假设(单边)H0 : 0 H1 : 0
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t (n 1),
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t1 (n 1),
P T t1 (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t t1 (n 1),则否定H0; 若t t1 (n 1),则接受H0.
因此这实际上需要比较第二个正态总体 的期望值是与第一个正态总体期望值相 等还是比它高?
这种作为检验对象的假设称为原假设, 通常用 H0表示。比如, 例2中的待检假设为:H0:Eξ=3140
如何根据样本的信息来判断关于总体分布的 某个设想是否成立,也就是检验假设H0成立 与否的方法是本章要介绍的主要内容。
P T t (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t<t (n 1),则否定H0; 若t>t (n 1),则接受H0.
(二)未知方差2,关于期望的检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
x 0
986 1000
1.75
拒绝域是:
t 2.306
第四步:判断。
t 1.75 2.306 ,检验统计量的样本取值落入接受区域,所以 接受。样本数据说明这天的自动包装机工作正常。
由于 6-31
小样本 未知总体均值检验 (实例2)
/ n
/ 2
是一个小概率事件
6-7
假设检验的基本思想
“反证法”---先将要证明的结论假设为不正确的, 作为进一步推论的条件之一使用,最后推出矛盾 的结果,以此否定事先所作的假设。 “小概率原理”---即指概率很小的事件在一次试 验中实际上不可能出现。这种事件称为“实际不 可能事件”。 假设检验的基本思想是:带有概率性质的反证法
是大样本还是小样本
总体方差已知还是未知
基本形式为:
x
x
6-11
3、显著性水平( )和相应的临界值
显著性水平 ,
是一个概率值, 原假设H0成立条件下,规定的小概率的标准 被称为抽样分布的拒绝域 一般取值很小,常取0.1、0.05、0.01等 由研究者事先确定。
402元,本月随机抽取50人来调查,其 平均奖金为412.4元。现假定本月职工 N( , 2) ,问在 35 收入服从正态分布 0.05的显著性水平下,能否认为该企 业职工平均奖金本月比上月有明显提 高?
6-27
总体均值检验(实例3)解
【解】依题意建立假设
H 0 : 402 ; H1 : 402
我认为该企 业欺骗了消 费者!
真的是这 样吗?
6-5
实例分析
【第五章例续】消费者协会接到消费者投诉, 指控雪碧饮料存在容量不足,有欺骗消费者 之嫌。假如雪碧瓶的标签上标明的容量为250 毫升。如果消费者协会从市场上随机抽取50 瓶,发现其平均含量为248毫升。据此,可否 断定饮料厂商欺骗了消费者?
1.65
拒绝域是z<-1.65
0
Z
第四步:判断。
Z -3.54
1.65
由于Z=-3.54<-1.65,检验统计量的样本取值落入拒绝域。拒绝 原假设,接受备选假设,认为有足够的证据说明该种饮料的平均容 量小于包装上注明的250毫升,厂商有欺骗行为。 6-24
总体均值检验(实例2)
6-3
第一节 假设检验概述
一、假设检验的基本思想
二、假设检验的步骤
三、两类错误和假设检验的规则
6-4
第一节 假设检验概述
一、假设检验的基本思想
假设, 即对某问题的一种看 法,分析之前必需陈述
假设检验,就是事先对总体参 数或总体分布形式作出一个假 设,然后利用样本信息来检验 其真或伪的可能性
假设检验的地位
统计方法
描述统计 推断统计
参数估计
假设检验
参数
非参数
6-1
第六章 假设检验
第一节 假设检验概述 第二节 总体参数的假设检验
6-2
目标与要求
1、掌握假设检验的基本思想; 2、认识假设检验中的两类错误及假设检 验的步骤; 3、熟练掌握总体均值与比例指标的各种 检验方法, 包括:z检验、t检验和p-值检 验等; 4 、能利用Excel进行假设检验。
H 0 : 1000 ; H 1 : 1000
第二步:构造出检验统计量。
样本平均数散 x 986 ,n=9,s=24,代入t-检验统计量得:
s/ n 24 / 9 第三步:确定显著性水平,确定拒绝域。
α=0.05
t 2 (n 1) t 0.025 (8) 2.306
假设检验过程就像一场审判过程 统计检验过程
陪审团审判 实际情况 裁决 无罪 有罪 决策
H0 检验 实际情况 H0为真 接受H0 拒绝H0 正确 (1 – )
第Ⅰ类错误 (弃真)()
H0为假
第Ⅱ类错误 (取伪)()
无罪
有罪
正确
错误
错误
正确
正确
(功效1-) 6-18
假设检验的规则
和的关系就像翘 翘板,小就大, 大就小
检验统计量:
z x
n
412 .4 402 35 50
2.101
判断:
0.05
z 0.05 1.65
Z=2.101﹥1.65从而拒绝H0,即认为该企业职工平均 奖金本月比上月有明显提高。
6-28
(二)总体方差 未知---- t 检验
2
检验统计量是:
t
x 0 s/ n
总体参数的假设检验
一、总体均值的假设检验 二、总体比例的假设检验 三、总体方差的假设检验 四、p-值检验
6-20
一个总体的检验
一个总体
均值
比例
方差
Z 检验
(单侧和双侧)
t 检验
(单侧和双侧)
Z 检验
(单侧和双侧)
2检验
(单侧和双侧)
6-21
一、总体均值的假设检验
(一)总体方差 2 已知----z检验
~ t (n-1)
给定显著性 水平,则有:
(1) H 0 : 0
;
H1 : 0
检验规则为:当 t t / 2 (n 1) 时,拒绝H0 ;
当 t t / 2 (n 1)时,接受H0 (2) H 0 : 0
;
H1 : 0
检验规则为: 当
拒绝域 /2 1- /2 接受域 H0值 样本统计量
6-13
置信水平 拒绝域
临界值
临界值
单侧检验
(显著性水平与拒绝域图示)
左侧假设
置信 水平
右侧假设
置信 水平
拒绝域
抽样分布
拒绝域
抽样分布
1-
接受域 H0值 样本统计量
1-
接受域 H0值 临界值
样本统计量
临界值
6-14
做出结论
将临界值与由样本资料计算出 的检验统计量的数值比较,视 统计量落入接受域还是拒绝域, 做出接受或拒绝原假设H0的结 论。
构造的检验统计量为:
z x 0
n
H1 : 0 (1) H 0 : 0 (双侧检验) 检验规则为:当 / 2 时,拒绝H0; 当 / 2 时,则接受H0 H1 : 0 (2) H 0 : 0 (右侧检验) 检验规则为:当 时,拒绝H0; 当 时,则接受H0 H1 : 0 (3) H 0 : 0 (左侧检验) 检验规则为:当 时,拒绝H0; 当 时,则接受H0
6-25
总体均值检验(实例2)解
【解】依题意建立假设
H0 :
15.0
;
H1 :
15.0
拒绝 H0 .025 拒绝 H0 .025 .005 -2.58 -1.96 0 1.96 2.58
检验统计量: x 0 15.15 15 .0 z 2.37 .005 n 0.2 10 判断:
由有关的概率分布表查得,从而可确定H0的接受域和拒绝域。 临界值就是接受域和拒绝域的分界点。 同一显著性水平,选择不同的检验统计量,得到的临界值是不 同的; 同一显著性水平和同一的统计量,双侧检验和单侧检验的临界 值也:
双侧检验
(显著性水平与拒绝域图示) 抽样分布
6-23
总体均值检验(实例1)解
第一步:确定原假设与备选假设。
H 0 : = 250;
H1 :
< 250
拒绝 H0
第二步:构造出检验统计量。
x 0 248 250 4 / 50 3.54
样本平均数 x 248 ,n=50,代入检验统计量得:
/ n
第三步:确定显著性水平,确定拒绝域。
你不能同时减少 两类错误!
内曼(J. Neyman)和皮尔生(Egon S. Pearson)提的假设检 验原则:在控制犯第Ⅰ类错误的概率的条件下,尽可能 使犯第Ⅱ类错误的概率减小。 该原则的含义是:原假设要受到维护,使它不致被轻易否 定,若要否定原假设,必须有充分的理由。
6-19
第二节
Z
0.05
z 0.025 1.96
z 0.005 2.58
Z 2. 3 7
Z=2.37﹥1.96,从而拒绝H0,即认为直径不符合质量标准。
0.01
Z=2.37﹤2.58,从而不能拒绝H0,即认为没有充分的理由说 明直径不符合质量标准。
6-26
总体均值检验(实例3)
【例6.3】某企业职工上月平均奖金为
t t (n 1) 时, 拒绝H0;
当 t t (n 1) 时, 接受H0 H1 : 0 (3)H 0 : 0 ; 检验规则为:当 t t (n 1) 时, 拒绝H0; 当 t t (n 1) 时, 接受H0
6-29
小样本 未知总体均值检验 (实例1)
即包含两个重要思想:
“反证法”思想和“小概率原
理”。
通常以显著性水平α(0<α<1)作为小概率的界限, 所以,统计检验又称显著性检验。
6-8
二、假设检验的步骤
1. 提出原假设(Null Hypothesis)H0和备 择假设(Alternative Hypothesis) H1
2.确定适当的检验统计量