竖直平面内的圆周运动及实例分析

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

23 圆周运动的实例分析(共21张PPT)

23 圆周运动的实例分析(共21张PPT)
能根据海鸥的飞行姿态判断出它正在做怎样的 运动吗?
三 圆周运动实例分析
一、物体在水平面内的圆周运动
讨论:水平面上绕自身轴匀速旋转的圆盘上放置一木块,木 块相对圆盘静止,试分析木块的向心力。
木块受力: 竖直向下的重力 G 竖直向上的支持力 N 水平方向指向圆心的摩擦力 f
木块做圆周运动所需向心力:
N
火车的向心力来源
由G和N的合力 h
提供
F G
F向心力 F合 mg tan
例题
如图示 知 h , L,转弯半径R,车轮对内外轨都无压力,
质量为m的火车运行的速率应该多大?
F合 F向
F向
m
v2 r
火车转弯应以规定速度行驶
N
F
F合 mg tan
h
tan h
L
v gR tan gRh / L
【解】G和N的合力提供汽车做圆周运动的
N
向心力,由牛顿第二m
r
( 1 )由牛顿第三定律可知汽车对桥的压力N´=
N<G (2)汽车的速度越大,汽车对桥的压力越小
(3)当汽车的速度增大到 v R时g,压力为零。
问题2:质量为m的汽车以速度v通过半径为R的凹型桥。它经桥的 最低点时对桥的压力为多大?比汽车的重量大还是小N?速度越大压 力越大还是越小?
由圆盘对木块的静摩擦力 f 提供
ω
N
f O
G
例、小球做圆锥摆时细绳长L,与竖直方向成θ角,求 小球做匀速圆周运动的角速度ω。
解: 小球受力:
竖直向下的重力G 小球的向心力:
沿绳方向的拉力T
O
θ
L T
由T和G的合力提供
F向心 F mg tan

圆周运动中的临界问题

圆周运动中的临界问题
的角速度ω满足什么条件,物体M才能随转台转动? (2)物体M随转台一起以角速度ω匀速转动时,物体离转台中心的最大距 离和最小距离。 M
向心力最小时,角速度最小
向心力最大时,角速度最大
m
四、实例分析
例4:如图,长为L的绳子,下端连着质量为m的小球,上端接于天花 板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光
三、解决圆周运动中临界问题的一般方法
1、对物体进行受力分析 2、找到其中可以变化的力以及它的临界值 3、求出向心力(合力或沿半径方向的合力)的临界值
4、用向心力公式求出运动学量(线速度、角速度、周期、 半径等)的临界值
四、实例分析
例1:如图,在质量为M的电动机的飞轮上,固定着一个 质量为m的重物(m的体积和大小可忽略),重物m到飞 轮中心距离为R,飞轮匀速转动时,为了使电动机的底 座不离开地面,转动的角速度ω最大为多少?
B A
O’
四、实例分析
例3:在以角速度ω匀速转动的转台上放着一质量为M的物体,通过一 条光滑的细绳,由转台中央小孔穿下,连接着一m的物体,如图所示。 设M与转台平面间的最大静摩擦力为压力的k倍,且转台不转时M不能 相对转台静止。求:
(1)如果物体M离转台中心的距离保持R不变,其他条件相同,则转台转动
A A
30°
30°
B
45°Biblioteka B 45°CCO
A
O’
水平转盘上放有质量为m的物快,当物块到转 轴的距离为r时,若物块始终相对转盘静止,物 块和转盘间最大静摩擦力是正压力的μ倍,求 转盘转动的最大角速度是多大?
物体与圆筒壁的动摩擦因数为μ ,圆筒的半 径为R,若要物体不滑下,圆筒的角速度至少 为多少?

圆周运动的实例分析

圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0

R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反

竖直平面内的圆周运动实例分析

竖直平面内的圆周运动实例分析
问题1:最高点水的受力情况?向心力是什么? 问题2:最低点水的受力情况?向心力是什么? 问题3:最高点速度最小值是多少时才能保证水 不流出?
(1)当 v gr 时,N=0,水在杯中刚好不流 出,此时水作圆周运动所需向心力刚好完全由重力提 供,此为临界条件。
gr 时,N>0,杯底对水有一向下 (2)当 v 的力的作用,此时水作圆周运动所需向心力由N和重 力G的合力提供。
【精讲精析】 (1) 以 A 为研究对象,设其受到 杆的拉力为 F,则有 v2 mg+F=m L . (1)代入数据 v=1 m/s,可得 2 2 v 1 -10N=-16 N, F=m L -g=2× 0.5 即 A 受到杆的支持力为 16 N.根据牛顿第三定律 可得 A 对杆的作用力为压力 16 N, 方向竖直向下.
轻杆支撑型(轻杆模型)
类似模型:
·O
质点在竖直放置的光滑细管内做圆周运动,
研究方法和轻杆模型一样!
课 堂 小 结
竖直平面内圆周运动的临界问题 对于物体在竖直平面内做变速圆周运动的问 题,中学物理中主要研究物体通过最高点和最低 点的情况,并且经常出现临界状态.对临界问题 简要分析如下:
模型 模型说明
a b c d
可能飞离路面的地段应是?
练习
2.如图所示,汽车以一定的速度经过一个圆弧形桥 面的顶点时,关于汽车的受力及汽车对桥面的压力 情况,以下说法正确的是 ( BC )
A.在竖直方向汽车受到三个力:重力、 桥面的支持力和向心力 B.在竖直方向汽车只受两个力:重力 和桥面的支持力 C.汽车对桥面的压力小于汽车的重力 D.汽车对桥面的压力大于汽车的重力
汽车以大于或等于v的速度驶过 拱形桥的最高点时,汽车与桥面的 相互作用力为零,汽车只受重力, 又具有水平方向的速度的v,因此汽 车将做平抛运动。

2.3圆周运动实例分析(竖直面)

2.3圆周运动实例分析(竖直面)

F⊥ O
F
一、汽车过拱形桥
例1:设汽车质量为m,以速度v通过桥面半径为R的拱桥, 求拱桥受到的压力是多大?
FN
a
FN
G
a
失重 G
超重
变式: 如果把拱桥变成凹桥,汽车以相同速度过桥,求 桥受到的压力是多大?
发散思维:汽车有无可能做这样的运动?
二、绳连物
例:一根长为L的绳子连一个小球绕其一端在竖直 一根长为 的绳子连一个小球绕其一端在竖直 平面内做圆周运动,在最高点速度为v时 平面内做圆周运动,在最高点速度为 时,求绳对 小球的拉力大小。 小球的拉力大小。
O
圆周运动实例分析( 2.3 圆周运动实例分析(2)
——竖直面内的匀速圆周运动 竖直面内的匀速圆周运动
知识回顾
1.物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时,合外力有何共同点? 物体做匀速圆周运动时
合外力总是指向圆心
2.物体做变速圆周运动时,合外力一定指向圆心 物体做变速圆周运动时, 物体做变速圆周运动时 吗? v 不一定。如图, 不一定。如图, F
三、杆连物
例:一根长为L的杆子连一个小球绕其一端在竖直 一根长为 的杆子连一个小球绕其一端在竖直 平面内做圆周运动,要使小球完成圆周运动, 平面内做圆周运动,要使小球完成圆周运动,试 分析杆对小球的作用力的情况。 分析杆对小球的作用力的情况。
O
1.过最高点的最小速度: 1.过最高点的最小速度: 过最高点的最小速度
0
.
2.过最高点的速度为 2.过最高点的速度为 gL ,杆对小 0 . 球的作用力为 3.过最高点的速度小于 3.过最高点的速度小于 小球的作用力为 支持力 4.过最高点的速度大于 4.过最高点的速度大于 小球的作用力为 拉力

圆周运动的实例分析(第4课时)

圆周运动的实例分析(第4课时)

圆周运动的实例分析第4课时学习目标:1.理解“轻杆..”或“双轨..”约束下圆周运动的动力学特点,运动规律,掌握解题的一般方法。

2.熟练判断最高点时,轻杆中弹力的方向和双轨受力方向...............3.培养学生的综合能力、物理思维及科学方法,强化规范解题能力的训练。

1.轻杆模型一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是:在最高点...的速度 。

(杆既可以提供拉力,也可提供支持力或侧向力)①当0v =时,杆对小球的支持力 小球的重力;②当0<时,杆对小球的支持力 于小球的重力;③当v =时,杆对小球的支持力 于零;④当v >时,杆对小球产生 力。

【例1】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0m/s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?【变式训练1】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A .小球到达最高点的速度必须大于gL B .小球到达最高点的速度可能为0C .小球到达最高点受杆的作用力一定为拉力D .小球到达最高点受杆的作用力一定为支持力 【变式训练2】如图所示,在内壁光滑的平底试管内放一个质量为1g 的小球,试管的开口端加盖与水平轴O 连接.试管底与O 点相距5cm ,试管在转轴带动下,在竖直平面内做匀速圆周运动(g=10m/s 2,结果可以保留根号).求:(1)转轴的角速度达到多大时,试管底所受压力的最大值等于最小值的3倍?(2)转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况?m2.双轨模型一小球在竖直平面内的光滑管道里做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是:在最高点...的速度 。

高考物理 专题集锦(一)圆周运动实例分析与临界问题

高考物理 专题集锦(一)圆周运动实例分析与临界问题

圆周运动实例分析与临界问题圆周运动是高考命题的热点,命题点围绕弹力和摩擦力的临界态展开,具体表现为水平、竖直面和斜面内的圆周运动,命题中凸显学生对临界思想的理解和分析能力,有些问题还涉及图象,复习中要抓住热点,掌握解决的方法。

一、水平面内的圆周运动【例1】如图1所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为 3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、l.5r 。

设本题中的最大静摩擦力等于滑动摩擦力,下列说法正确的是 ( ) A.B 对A 的摩擦力一定为3μmgB.B 对A 的摩擦力一定为3m ω2rC.转台的角速度一定满足ω≤D.转台的角速度一定满足ω【解析】B 对A 的摩擦力是A 做圆周运动的向心力,所以23fBA F m r ω=,A 项错误,B 项正确;当滑块与转台间不发生相对运动,并随转台一起转动时,转台对滑块的静摩擦力提供向心力,所以当转速较大,滑块转动需要的向心力大于最大静摩擦力时,滑块将相对于转台滑动,对应的临界条件是静擦力提供向心力,即2mg m r μω=,ω=所以,质量为m 、离转台中心距离为r 的滑块,能够随转台一起转动的条件是ω≤对于本题,物体C 需要满足的条件ω≤A 和B 需要满足的条件均是ω≤ 要使三个物体都能够随转台转动,转台的角速度一定满足ω≤项错误,D 项正确。

【答案】BD【总结】水平面内的圆周运动主要涉及的问题是摩擦力临界。

常见问题如下(图中物体质量为m ,距离圆心为r ,转盘转动的角速度为ω,最大静摩擦力为F m ,绳的拉力为F T ):【例2】(2016 •山东临沂教学质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图2所示,绳a 与水平方向夹角为θ, 绳b 沿水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做勻速圆周运动,则下列说法正确的是 ( )A.a 绳张力不可能为零B.a 绳的张力随角速度的增大而增大C.当角速度ω>,b 绳将出现弹力D.若b 绳突然被剪断,a 绳的弹力可能不变【解析】小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 项正确;根据竖直方向上平衡得,sin a F mg θ=,解得/sin a F mg θ=,可知a 绳的拉力不变,故B 项错误;当b 绳拉力为零时,有2cot mg ml θω=,解得ωω>时,b 绳出现弹力,故C 项错误;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故D 项正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竖直平面内的圆周运动及实例分析
竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。

一、两类模型——轻绳类和轻杆类
1.轻绳类。

运动质点在一轻绳的作用下绕中心点作变速圆周运动。

由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。

所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向
心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小
速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点
在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。

2.轻杆类。

运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。

所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其
大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度
,才能运动到最高点。

过最高点的最小向心加速度。

过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向心加速度的表达式也相同,即。

质点能在竖直平面内做圆周运动(轻绳或轻
杆)最高点的向心力最低点的向心力,由机械能守恒
,质点运动到最低点和最高点的向心力之差,向心加速度大小之差也等于。

二、可化为这两类模型的圆周运动
竖直平面内的圆周运动一般可以划分为这两类,竖直(光滑)圆弧内侧的圆周运动,水流星的运动,过山车运动等,可化为竖直平面内轻绳类圆周运动;汽车过凸形拱桥,小球在竖直平面内的(光滑)圆环内运动,小球套在竖直圆环上的运动等,可化为轻竖直平面内轻杆类圆周运动。

三、水流星运动中过最高点的速度和水不流出速度的区别
水流星是一种杂技表演,表演者在两个碗里装上水,用绳子系住碗,然后在竖直平面内舞动,碗中的水和碗一起作圆周运动,水不从碗中流出来。

水流星在竖直平面内作圆周运动过最高点的临界条件是满足轻绳类圆周运动,很多参考书就把这个速度当作是水不流出的最小速度,其实这种理解是不正确的。

我们不能把这当作是水不流出的条件,这是因为当
不但水不能做圆周运动,碗也不能做圆周运动,即是,当碗运动到最高点之前就做斜抛运动了,碗中的水也随之作斜抛运动,在斜抛运动中,水和碗都处于完全失重状态,水也不从碗中流出。

所以不能把当作是水不流出的条件。

四、例子讲解
例1(07年全国2)如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。

一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。

要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。

求物块初始位置相对于圆形轨道底部的高度h的取值范围。

解:设物块在圆形轨道最高点的速度为v,由机械能守恒定律得
mgh=2mgR+mv2①
物块在最高点受的力为重力mg、轨道的压力N。

重力与压力的合力提供向心力,有
mg+N=m②
物块能通过最高点的条件是
N≥0 ③
由②③式得
V≥④
由①④式得
H≥2.5R ⑤
按题的需求,N=5mg,由②式得
V<⑥
由①⑥式得
h≤5R ⑦
h的取值范围是2.5R≤h≤5R
例2如图所示光滑管形圆轨道半径为R(管径远小于R)固定,小球a、b大小相同,质量相
同,均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()
A.速度v至少为,才能使两球在管内做圆周运动
B.当v=时,小球b在轨道最高点对轨道无压力
C.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg
D.只要v≥,小球a对轨道最低点压力比小球b对轨道最高点压力都大6mg 解:内管可以对小球提供支持力,可化为轻杆模型,在最高点时,小球速度可以为零,由机
械能守恒知得,所以A错,得
,此时即重力刚好能提供向心力,小球对轨道无压力。

最低点时的向
心力为5mg,向心力相差4倍,B对,C错,最高点,最低点
由机械能守恒有,所以,D对。

例3(06重庆)如图,半径为R的光滑圆形轨道固定在竖直面内。

小球A、B质量分别为m、βm(β为待定系数)。

A球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低
点的B球相撞,碰撞后A、B球能达到的最大高度均为,碰撞中无机械能损失。

重力加
速度为g。

试求:
(1)待定系数β;
(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;
(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。

解:(1)由mgR=+得β=3
(2)设A、B碰撞后的速度分别为v1、v2,则
设向右为正、向左为负,解得
v1=,方向向左v2=,方向向右
设轨道对B球的支持力为N,B球对轨道的压力为N /,方向竖直向上为正、向下为则N
-βmg=N /=-N=-4.5mg,方向竖直向下。

(3)设A、B球第二次碰撞刚结束时的速度分别为V1.V2,则
解得:V1=-,V2=0
(另一组:V1=-v1,V2=-v2,不合题意,舍去)
由此可得:
当n为奇数时,小球A、B在第n次碰撞刚结束时的速度分别与第一次碰撞刚结束时相同
当n为偶数时,小球A、B在第n次碰撞刚结束时的速度分别与第二次碰撞刚结束时相同。

相关文档
最新文档