组合逻辑电路的类型
组合逻辑电路实验报告

组合逻辑电路实验报告组合逻辑电路实验报告引言组合逻辑电路是数字电路中的一种重要类型,它由多个逻辑门组成,能够根据输入信号的不同组合产生相应的输出信号。
在本次实验中,我们将研究和实验不同类型的组合逻辑电路,并通过实验结果来验证其功能和性能。
实验一:与门电路与门电路是最简单的组合逻辑电路之一,它的输出信号只有在所有输入信号都为高电平时才会输出高电平。
我们首先搭建了一个与门电路,并通过输入信号的变化来观察输出信号的变化。
实验结果显示,在输入信号都为高电平时,与门电路的输出信号为高电平;而只要有一个或多个输入信号为低电平,输出信号则为低电平。
这验证了与门电路的逻辑功能。
实验二:或门电路或门电路是另一种常见的组合逻辑电路,它的输出信号只有在至少一个输入信号为高电平时才会输出高电平。
我们搭建了一个或门电路,并通过改变输入信号的组合来观察输出信号的变化。
实验结果表明,只要有一个或多个输入信号为高电平,或门电路的输出信号就会为高电平;只有当所有输入信号都为低电平时,输出信号才会为低电平。
这进一步验证了或门电路的逻辑功能。
实验三:非门电路非门电路是一种特殊的组合逻辑电路,它只有一个输入信号,输出信号与输入信号相反。
我们搭建了一个非门电路,并通过改变输入信号的电平来观察输出信号的变化。
实验结果显示,当输入信号为高电平时,非门电路的输出信号为低电平;当输入信号为低电平时,输出信号则为高电平。
这进一步验证了非门电路的逻辑功能。
实验四:多选器电路多选器电路是一种复杂的组合逻辑电路,它具有多个输入信号和一个选择信号,根据选择信号的不同,将其中一个输入信号输出。
我们搭建了一个4选1多选器电路,并通过改变选择信号的值来观察输出信号的变化。
实验结果表明,当选择信号为00时,输出信号与第一个输入信号相同;当选择信号为01时,输出信号与第二个输入信号相同;依此类推,当选择信号为11时,输出信号与第四个输入信号相同。
这验证了多选器电路的功能和性能。
数字电路与逻辑设计第四章组合逻辑电路

第四章 组合逻辑电路
设计的一般过程:
●建立给定问题的逻辑描述 ●求出逻辑函数的最简表达式 ●选择器件并对表达式变换 ● 画出逻辑电路图
弄清楚变量及函数,得 到描述给定问题的逻辑 表达式。求逻辑表达式 有两种常用方法,即真
值表法和分析法。
求出描述设计问题的 最简表达式,使逻辑电路 中包含的逻辑门最少且连 线最少。
令: 逻辑变量A、B、C --- 分别代表参加表决的3个成员, 并约定逻辑变量取值为0表示反对,取值为1表示赞成;
逻辑函数 F---- 表示表决结果。F取值为0表示被否定,F 取值为1表示通过。
按照少数服从多数的原则可知,函数和变量的关系是:当3 个变量A、B、C中有2个或2个以上取值为1时,函数F的值为1, 其他情况下函数F的值为0。
注意:在化简这类逻辑函数时,利无关项用随意性往往 可以使逻辑函数得到更好地简化,从而使设计的电路达到更 简!
第四章 组合逻辑电路
例 设计一个组合逻辑电路,用于判别以余3码表示的1 位 十进制数是否为合数。
解 设输入变量为ABCD,输出函数为 F,当ABCD表示 的十进制数为合数(4、6、8、9)时,输出F为1,否则F为0。
目的:了解给定逻辑电路的功能,评价设计方案的优劣, 吸取优秀的设计思想、改进和完善不合理方案等。
一般步骤:
第四章 组合逻辑电路
1.写出输出函数表达式 ;
2.输出函数表达式化简;
3.列出输出函数真值表 ;
4.功能评述 。
第四章 组合逻辑电路
1. 写出输出函数表达式
根据逻辑电路图写输出函数表达式时,一般从输入端开始 往输出端逐级推导,直至得到所有与输入变量相关的输出函数 表达式为止。
电子课件电子技术基础第六版第六章门电路及组合逻辑电路可编辑全文

逻辑函数除可以用逻辑函数表达式(逻辑表达式)表示以 外,还可以用相应的真值表以及逻辑电路图来表示。真值表 与前述基本逻辑关系的真值表类似,就是将各个变量取真值 (0 和 1)的各种可能组合列写出来,得到对应逻辑函数的真 值(0 或 1)。逻辑电路图(逻辑图)是指由基本逻辑门或复 合逻辑门等逻辑符号及它们之间的连线构成的图形。
TTL 集成“与非”门的外形和引脚排列 a)外形 bOS 集成门电路以绝缘栅场效应管为基本元件组成, MOS 场效应管有 PMOS 和NMOS 两类。CMOS 集成门电路 是由 PMOS 和 NMOS 组 成的互补对称型逻辑门电路。它具 有集成度更高、功耗更低、抗干扰能力更强、扇出系数更大 等优点。
三、其他类型集成门电路
1. 集电极开路与非门(OC 门) 在这种类型的电路内部,输出三极管的集电极是开路的, 故称集电极开路与非门,也称集电极开路门,简称 OC 门。
OC 门 a)逻辑符号 b)外接上拉电阻
74LS01 是一种常用的 OC 门,其外形和引脚排列如图所 示。
74LS01 的外形和引脚排列 a)外形 b)引脚排列
2. 主要参数 TTL 集成“与非”门的主要参数反映了电路的工作速度、抗 干扰能力和驱动能力等。
TTL 集成“与非”门的主要参数
TTL 集成“与非”门具有广泛的用途,利用它可以组成很多 不同逻辑功能的电路,其外形和引脚排列如图所示。如 TTL“ 异或”门就是在 TTL“与非”门的基础上适当地改动和组合而成 的;此外,后面讨论的编码器、译码器、触发器、计数器等 逻辑电路也都可以由它来组成。
组合逻辑 树状逻辑

组合逻辑树状逻辑
组合逻辑是指由多个逻辑门组合而成的逻辑电路,通过这些逻
辑门的组合可以实现各种复杂的逻辑功能。
常见的组合逻辑电路包
括加法器、减法器、多路选择器等。
这些逻辑电路通过将多个逻辑
门按照一定的规则连接在一起,实现了特定的逻辑运算。
树状逻辑是一种逻辑结构,通常用于描述复杂系统或者复杂问
题的逻辑关系。
在树状逻辑中,整体被分解成若干个部分,每个部
分又可以进一步分解成更小的部分,最终形成一种类似树状结构的
逻辑关系。
这种逻辑结构可以帮助我们更清晰地理解复杂系统的组
成和各个部分之间的关系。
从组合逻辑和树状逻辑的角度来看,我们可以探讨它们在计算
机科学和工程领域的应用。
在计算机中,许多逻辑电路都是由组合
逻辑构成的,例如CPU中的运算单元就是由多个组合逻辑电路组成的。
而树状逻辑则可以用于描述计算机软件中复杂系统的逻辑结构,比如软件模块之间的依赖关系、数据结构的组织方式等。
此外,我们还可以从教育和学习的角度来看待这两个概念。
在
教学中,通过组合逻辑和树状逻辑的介绍,可以帮助学生理解逻辑
电路的设计原理以及复杂系统的逻辑结构。
这有助于培养学生的逻辑思维能力和系统化思维能力。
总的来说,组合逻辑和树状逻辑在工程、计算机科学、教育等领域都有着重要的应用和意义,它们帮助我们理解和处理复杂的逻辑关系,促进了技术的发展和人类知识的积累。
数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。
数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。
本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。
1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。
数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。
1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。
组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。
常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。
常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。
1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。
时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。
在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。
在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。
2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。
数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。
2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。
信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。
2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。
组合逻辑电路(半加器全加器及逻辑运算)

组合逻辑电路是数字电路中的一种重要类型,主要用于实现逻辑运算和计算功能。
其中,半加器和全加器是组合逻辑电路的两种基本结构,通过它们可以实现数字加法运算。
本文将详细介绍组合逻辑电路的相关知识,包括半加器、全加器以及逻辑运算的原理和应用。
一、半加器半加器是一种简单的数字电路,用于对两个输入进行加法运算,并输出其和及进位。
其结构由两个输入端(A、B)、两个输出端(S、C)组成,其中S表示和,C表示进位。
半加器的真值表如下:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1从真值表可以看出,半加器只能实现单位加法运算,并不能处理进位的问题。
当需要进行多位数的加法运算时,就需要使用全加器来实现。
二、全加器全加器是用于多位数加法运算的重要逻辑电路,它能够处理两个输入以及上一位的进位,并输出本位的和以及进位。
全加器由三个输入端(A、B、Cin)和两个输出端(S、Cout)组成,其中Cin表示上一位的进位,S表示和,Cout表示进位。
全加器的真值表如下:A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1通过全加器的应用,可以实现多位数的加法运算,并能够处理进位的问题,是数字电路中的重要组成部分。
三、逻辑运算除了实现加法运算外,组合逻辑电路还可用于实现逻辑运算,包括与、或、非、异或等运算。
这些逻辑运算能够帮助数字电路实现复杂的逻辑功能,例如比较、判断、选择等。
逻辑运算的应用十分广泛,不仅在计算机系统中大量使用,而且在通信、控制、测量等领域也有着重要的作用。
四、组合逻辑电路的应用组合逻辑电路在数字电路中有着广泛的应用,其不仅可以实现加法运算和逻辑运算,还可以用于构建各种数字系统,包括计数器、时序逻辑电路、状态机、多媒体处理器等。
组合逻辑电路还在通信、控制、仪器仪表等领域得到了广泛的应用,为现代科技的发展提供了重要支持。
实用组合逻辑电路

实用组合逻辑电路组合逻辑电路是由逻辑门组成的电路,根据输入的信号进行逻辑运算并输出结果。
它是数字电路中的一种重要类型,广泛应用于计算机、通信、控制系统等领域。
本文将介绍几种常见的实用组合逻辑电路及其应用。
一、多路选择器多路选择器是一种常用的组合逻辑电路,它根据控制信号选择其中一个输入信号作为输出。
多路选择器的输入端有多个,输出端只有一个,控制端决定了哪个输入信号被选择输出。
多路选择器常用于数据选择、信号调制等场景。
二、译码器译码器是一种将编码信号转换为特定输出信号的组合逻辑电路。
它通常用于将输入信号转换为对应的输出信号,例如将二进制编码转换为BCD码或者将BCD码转换为七段数码管的控制信号。
译码器在数字电路中起到了非常重要的作用。
三、加法器加法器是一种实现数字加法运算的组合逻辑电路。
它可以将两个二进制数相加,并输出相应的结果。
加法器通常由半加器和全加器组成,其中半加器用于处理两个二进制位的加法操作,而全加器可以处理进位的情况。
加法器在计算机算术运算中扮演着重要的角色。
四、减法器减法器是一种实现数字减法运算的组合逻辑电路。
它可以将两个二进制数相减,并输出相应的结果。
减法器通常由加法器和补码运算组成,其中补码运算可以将减法转换为加法。
减法器在计算机中广泛应用于算术运算和逻辑运算。
五、比较器比较器是一种用于比较两个数字的大小关系的组合逻辑电路。
它可以比较两个二进制数的大小,并根据比较结果输出相应的信号。
比较器通常由减法器和逻辑门组成,其中减法器用于进行减法运算,逻辑门用于判断大小关系。
比较器在计算机中广泛应用于逻辑判断和条件执行。
六、编码器编码器是一种将多个输入信号转换为少量输出信号的组合逻辑电路。
它通常用于将多个输入信号编码为相应的二进制编码。
编码器广泛应用于数据传输和信号处理等领域,例如将多个开关信号编码为二进制编码进行传输。
七、解码器解码器是一种将二进制编码信号转换为相应输出信号的组合逻辑电路。
第3章-组合逻辑电路

例:3位二进制(3线-8线)译码器框图如下所示:
图3.3.5
3线-8线译码器框图
二进制译码器可采用二极管与门阵列或三极管集 成门电路等构成。
(1)二极管与门阵列译码器电路 0(0V) 1(3V)
表3-3-4
74LS42功能表
74LS42逻辑电路图及各输出表达式如下所示:
Y 0 Y 1 Y 2 Y 3 Y 4 Y5 Y 6 Y 7 Y8 Y9 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0 A 3 A 2 A1 A 0
Y3
Y2
Y1
Y0
§3.3 若干常用的组合逻辑电路
目前,一些常用的逻辑电路已经制成了中、小 规模集成化电路产品。
§3.3.1 编码器(Encoder)
“编码”:即为了区分一系列不同的事物,将其 中的每个事物用一个二值代码表示。 编码器的逻辑功能:把输入的每一个高、低电平 信号变成一个对应的二进制代码。
第三章
Chapter 3
组合逻辑电路
Combinational Logic Circuit
本章主要内容
第一节 第二节 第三节 概述 组合逻辑电路的分析和设计方法 若干常用组合逻辑电路
§3.3.1 编码器(Encoder) §3.3.2 译码器(Decoder) §3.3.3 数据分配器(Demultiplexer)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合逻辑电路的类型
在前面的芝识课堂中,我们跟大家简单介绍了逻辑IC的基本知识和分类,并且特别提到CMOS逻辑IC因为成本、系统复杂度和功耗的平衡性很好,因此得到了最广泛应用,同时也和大家一起详细了解了CMOS逻辑IC的基本操作。
逻辑IC作为一种对一个或多个数字输入(信号)执行基本逻辑运算以产生数字输出信号的(半导体)器件,其应用也是非常丰富的,今天就来和芝子一起了解一下吧。
首先我们要明确的是CMOS逻辑IC大致包括两种逻辑,即组合逻辑和时序逻辑。
其中组合逻辑是输出仅为当前输入的纯函数逻辑电路类型,主要包括反相器、缓冲器、双向总线缓冲器、施密特触发器装置、解码器、(多路复用器)、(模拟)多路复用器/多路分解器、模拟开关等;时序逻辑是一种其输出取决于先前输入值的顺序,并由当前输入(如控制信号触发器、锁存器、计数器、移位(寄存器)等)控制的逻辑电路类型。
组合逻辑电路与时序逻辑电路的区别体现在输入输出关系、有无存储(记忆)单元、结构特点上。
首先我们以几个简单的电路部分为例,来介绍组合逻辑电路的基本情况。
1反相器
组合逻辑应用中比较常见的是反相器(以74VHC04为例),是一种输出(Y)与输入(A)相反的逻辑门,如图1所示。
图1 逆变器的操作
2缓冲器
缓冲器(例如74VHC244),缓冲器增加驱动能力以增加可连接的信号线的数量,并执行波形整形。
缓冲区不执行逻辑操作,示意图如图2。
图2 缓冲器的操作
3双向总线缓冲器((收发器))
双向总线缓冲器(收发器),比如74VHC245。
双向总线缓冲器(收发器)是一种其I/O引脚可配置为输入和输出以接收和发送数据的逻辑电路。
由于收发器允许通过控制信号(DIR)更改信号方向,所以它沿着总线传输,双向传输数据。
图3显示了收发器的应用示例。
双向使用总线信号时,将总线输入和总线输出都通过上拉电阻连接到VCC或GND,以防止在控制信号(DIR)切换信号时输入信号变为开路(未定义)。
切换信号时请注意不要将输出与总线输出短路。
图3 双向总线缓冲器的应用示例
我们来看一下图3这个系统的逻辑情况,通过在/G为高电平时更改DIR的值,可以轻松更改A和B引脚的方向。
/G为高电平时,
更改DIR的值和外部数据的方向。
在周期#0,数据从B传输到A。
在周期#1,A引脚处于高Z状态。
因此,输出数据无效。
在周期#2,更改DIR的值和外部数据的方向。
在周期#3,启用A和B引脚。
然后,输出数据在周期#4开始时保持稳定。
在周期#4,数据从A传输到B。
详细输入和输出逻辑关系如图4所示。
图4 双向总线缓冲器的逻辑示意
4施密特触发器
我们再看一个特别的示例,施密特触发装置(以VHC14为例)。
施密特触发装置在两个输入(阈值电压)之间有一个磁滞带。
图5显示了具有输入阈值滞后的施密特反相器的输入和输出波形。
对于具有磁滞的IC,正向阈值电压(VP)不同于负向阈值电压(VN)。
对于缓慢上升或下降的输入,输入阈值滞后(VH)有助于稳定输出。
即使存在输入噪声或(电源)或噪声引起的接地反弹的情况下,IC也不会产生错误输出,除非噪声或反弹超过磁滞宽度。
图5 施密特反相器的输入和输出波形
5解码器
解码器也是一种典型的组合逻辑电路,我们以VHC138为例进行逻辑解读。
解码器将N个编码输入的二进制信息转换为最多2N个独特输出。
它通常用于增加端口数量和生成(芯片)选择信号。
图6显示了3对8解码器(即具有三个输入和八个输出的解码器)的逻辑符号、真值表和时序图。
图6 3对8解码器的逻辑符号和真值表以及时序图
图7则显示如何使用3对8解码器从三个输入(A、B和C)生成八个芯片选择信号。
当A、B和C都为低电平时,只有/Y0输出提
供逻辑低电平,所以选择IC0。
图7表明,通过三个输入的组合,可以从最多八个芯片中选择任意芯片。
图7 3至8解码器的时序图
今天的芝识课堂,我们带大家了解了几种典型电路单元的对应逻辑关系,在下面的芝识课堂中,我们将继续跟大家分享CMOS逻辑IC 的基础知识,敬请期待。