谓词逻辑的推理规则和证明方法
第七章谓词逻辑

整个公式中,
是自由出现。
z
约束出现,
x
既有约束出现又有自由出现,
y
33
变元的约束讨论
❖ 从约束变元的概念可以看出,P(x1,x2, … ,xn)是n元谓词, 它有n个相互独立的自由变元。
❖ 若对其中k个变元进行约束,则P成为n-k元谓词。
❖ 当k = n,即谓词公式中没有自由变元出现时,则该公式就 成为一个命题。
请将下列命题符号化: (1) 某些实数是有理数。 (2) 没有不犯错误的人。 (3) 尽管有人聪明,但未必一切人都聪明。
解:(1) R(x):x是实数。Q(x):x是有理数。 (x)(R(x)Q(x) )
(2) M(x):x是人。F(x):x犯错误。 (x)(M(x)F(x))
(3) M(x):x是人。S(x):x聪明。 (x)(M(x)S(x)) (x)(M(x)S(x))
某种性质或具有某种关系,需要引入量词。 例如: (1) 某些人会跳舞; (2) 所有人都会跳舞;
14
量词
❖ [定义]量词 表示数量的词
1.全称量词: 表示任意的,所有的,每一个,凡是 x 表示对个体域中所有的x……
2.存在量词: 表示存在, 有的, 至少有一个,有些 x 表示在个体域中存在x……
❖ 在∀x A(x)和∃x A(x)中: ❖ 紧跟量词的x称为量词的指导变元或作用变元 ❖ A称为量词的辖域或作用域
回答:(1)(2)是谓词合式。
30
谓词逻辑
❖7.1.1 谓词与命题函数
▪ 1. 谓词 ▪ 2. 命题函数
❖7.1.2 量词
▪ 1. 全称量词 ▪ 2. 存在量词
❖7.1.3 谓词合式
❖7.1.4 约束元与自由元
谓词 基本推理公式

谓词基本推理公式
谓词逻辑是逻辑学中的一种形式系统,它使用谓词来表达命题的性质和关系。
基本推理公式是谓词逻辑中的一些基本规则,用于推导命题的真假。
以下是几个常用的谓词逻辑基本推理公式:
1. 交换律:A→B ↔ B→A
2. 结合律:(A→B)→C ↔ A→(B→C)
3. 吸收律:A→(B∧C) ↔ (A→B)∧(A→C)
4. 分配律:(A∧B)→C ↔ A→(B→C)
5. 重写律:A→B ↔ ¬B→¬A
6. 否定引入律:¬(A∧B) ↔ (¬A∧¬B)
7. 否定消去律:¬¬A ↔ A
8. 双条件引入律:A↔B ↔ (A→B)∧(B→A)
9. 双条件消去律:A↔B ↔ (A∧B)∨(¬A∧¬B)
10. 全称量词引入律:∀x(P(x)) ↔ P(y)/y (y属于某个集合)
11. 存在量词引入律:∃x(P(x)) ↔ P(y)/y (y属于某个集合)
这些基本推理公式是谓词逻辑的基础,可以用于推导其他命题的真假。
在具体使用时,需要根据命题的具体情况进行选择和应用。
谓词逻辑 基本推理公式

谓词逻辑基本推理公式
谓词逻辑的基本推理公式包括:
1. 全称量词规则:如果个体域中每一个个体具有性质A,则存在一个个体具有性质A。
即,能找出一个就表示存在。
公式为A ( c ) ⇒∃ x A
( x )A(c)\Rightarrow\exists xA(x)A(c)⇒∃xA(x)。
规则成立的条件是c是个体域中某个确定的个体,代替c的x不在A©中出现过。
2. 存在量词规则:如果个体域中存在个体具有性质A,则至少存在一个个体具有性质A。
公式为∃ x A ( x ) ∀ y A ( y )\exists xA(x)\forall yA(y)∃x A(x)∀yA(y)。
3. 归结推理:将公式中的量词的指导变元及其辖域中的该变元换成该公式中没有出现的个体变元,公式的其余部分不变。
4. 代入规则:把公式中的某一自由变元,用该公式中没有出现的个体变元符号替代,且要把该公式中所有的该自由变元都换成新引入的这个符号。
5. 解释(赋值):谓词公式A的个体域D是非空集合,则每一个常项指定D中一个元素;每一个n元函数指定Dn到D的一个函数;每一个n元谓词指定Dn到{0,1}的一个谓词。
按这个规则做的一组指派,称为A的一个解释或赋值。
以上是谓词逻辑的基本推理公式,通过这些公式可以推导出更复杂的逻辑推理结果。
第3章 基于谓词逻辑的机器推理4

第三章 基于谓词逻辑的机器推理
然后把上述各语句翻译为谓词公式: (1) x(R(x)→L(x)) (2) x(D(x)→乛L(x)) (3) x(D(x)∧I(x)) (4) x(I(x)∧乛R(x)) 已知条件
第三章 基于谓词逻辑的机器推理
求题设与结论否定的标准型,得 (1)乛R(x)∨L(x) (2)乛D(y)∨乛L(y)
Kills ( Jack , Tuna ) False
Kills ( Jack , Tuna )
False
第三章 基于谓词逻辑的机器推理
例 设已知: (1)能阅读者是识字的; (2)海豚不识字; (3)有些海豚是很聪明的。 试证明:有些聪明者并不能阅读。 首先,定义如下谓词: R(x):x能阅读。I(x):x是聪明的。 L(x):x识字。D(x):x是海豚。
B: Dog(y) Owns(x,y) Animallover(x)
16
第三章 基于谓词逻辑的机器推理
3. 2 归结演绎推理
x Animallover(x) y Animal (y) ¬ Kills(x,y) x, y {¬[Animallover(x) Animal (y) ]¬Kills(x,y)} ¬Animallover(x) ¬ Animal (y) ¬ Kills(x,y) }
C:Animallover(x) Animal (y) Kills(x,y) False D: Kills(Jack,Tuna) Kills(Tom,Tuna)
E: Cat(Tuna)
F: Cat(x) Animal (x)
17
第三章 基于谓词逻辑的机器推理
3. 2 归结演绎推理
离散数学第2章 谓词逻辑

在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录
谓词逻辑的基本原理和推理方法

谓词逻辑的基本原理和推理方法谓词逻辑是数理逻辑的一种形式,它主要研究陈述句的真值和推理关系。
本文将探讨谓词逻辑的基本原理和推理方法,以帮助读者进一步理解和运用这一重要的逻辑体系。
一、谓词逻辑的基本原理谓词逻辑是由Richard Montague在20世纪50年代提出的,它是一种基于谓词和量词的逻辑形式。
谓词是描述个体和关系的词汇,而量词则表示个体的范围。
基于这些基本元素,谓词逻辑涉及命题的真值判断和逻辑推理。
1. 命题的真值判断在谓词逻辑中,命题的真值可以通过公式化的方式进行判断。
具体而言,谓词逻辑使用谓词和个体常量构建公式,通过赋值给个体常量和谓词变量来确定命题的真假。
这种方法可以使我们更加准确地判断复杂命题的真值。
2. 逻辑运算符谓词逻辑中常用的逻辑运算符包括否定、合取、析取、蕴涵和双条件。
通过这些逻辑运算符,我们可以对命题进行复合运算,并获得更加精确的逻辑推理。
3. 量词的运用量词在谓词逻辑中起着重要作用,它用来限定命题的个体范围。
通常使用的量词有普遍量词和存在量词,分别表示“对于所有的”和“存在一个”。
量词的运用使得我们能够对具有普遍性或存在性的命题进行精确的描述和推理。
二、谓词逻辑的推理方法谓词逻辑在推理中有着广泛的应用。
下面介绍几种常用的推理方法。
1. 求解真值通过给定谓词和量词的赋值,可以求解命题的真值。
这种方法可以通过证明或反证法来进行,根据不同的情况选择合适的推理策略。
2. 归结推理归结推理是一种通过消解规则进行推理的方法。
它通过将多个命题进行归结,从而得到新的命题。
这种方法在人工智能领域得到广泛应用。
3. 等词推理等词推理是一种通过等词的等同性进行推理的方法。
它通过推导两个等词相等的命题,从而间接地得出新的命题。
等词推理在代数逻辑和数学中有着重要的应用。
4. 形式化推理形式化推理是一种将命题转化为形式逻辑公式来进行推理的方法。
通过将推理过程形式化,可以减少人为因素的干扰,提高推理的准确性和可靠性。
离散数学-谓词演算的推理规则

xG(x) y p(y) R(y, x)
20
例2、将下列命题译成自然语言,并确定其真值。
(个体域为 Z ) (1) xyG(x, y) ,其中G(x, y) : xy y 解:对任意正整数 x ,存在正整数 y,
F(x),G(x, y) 中的 x 是约束变元, G(x, y) 中的 y是自由变元; y 的辖域是F( y) , F( y) 中的 y 是约束变元; R(x, y, z)中的 x, y, z 都是自由变元。
24
例5、 设个体域为 A a,b,c将下面谓词公式中的
量词消除,写出与之等值的命题公式。 (1) xP(x) xR(x) 解 xP(x) xR(x)
§2.3 谓词演算的推理规则
重点: 全称指定规则(US)(Universal Specification) 存在指定规则(ES)(Existential Specification) 全称推广规则(UG)(Universal Generalization) 存在推广规则(EG)(Existential Specification)
3
3、全称推广规则(UG)
A( y) xA(x) 要求:(1)y是个体域中任一个体,且都有A( y)为真。
4、存在推广规则(EG)
A( y) xA(x)
要求:(1) y 是个体常元或变元,
(2)在公式A(y)中,y不出现在量词 x或x
的辖域内。
4
注:考察以下推理过程
① xyP x, y
②
yP(c, y)
谓词公式;辖域,约束变项,自由变项; 代换实例;重言式, 矛盾式,可满足式。 2、应用。 (1) 求某些公式在给定解释下的真值。 (2) 判断某些简单公式的类型。
离散数学第二章(第3讲)

2、规则使用说明
(1)用US,ES在推导中去掉量词,用UG,EG使结论量化 (加上量词)。 (2)在使用ES,US时,要求谓词公式必须是前束范式
(3)推导中既用ES,又用US, 则必须先用ES ,后 用US方可取相同变元,反之不行。
xP(x) P(c) xQ(x) Q(c)
(4)推导中连续使用US规则可用相同变元 xP(x) P(c) xQ(x) Q(c)
(x)(M(x)D(x)),M(s) D(s)
(1) x(M(x)D(x))
P
(2) M(s) D(s)
US(1)
(3) M(s)
P
(4) D(s)
T(2)(3)I
(2)CP 规则证明
例 证明: x (P(x)Q(x)) x P(x) xQ(x)
(1) x P(x)
附加前提
(2) x (P(x)Q(x))
x(P(x)(Q(x)S(x))),x(P(x)T(x)),Q(c)T(c)P(c)S(c)
推理形式如下:
(1) P(c)
附加前提
(2) x(P(x)(Q(x)S(x)))
P
(3) P(c)(Q(c)S(c))
US (2)
(4) Q(c)S(c)
T(1)(3) I
(5) Q(c)T(c)
P
(6) Q(c)
T (6)(10) I
T(1) E
(3) xP(x)
T (2) I
(4) P(a)
ES (3)
(5) xQ(x)
T(2) I
(6) Q(a)
US (5)
(7) x( P(x) Q(x) )
P
(8) P(a) Q(a)
US(7)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谓词逻辑的推理规则和证明方法谓词逻辑是一种用于描述命题关系以及推理过程的数学逻辑系统。
在谓词逻辑中,我们使用谓词来表示性质或关系,通过逻辑连接词进
行命题的组合和推理。
本文将介绍谓词逻辑中常用的推理规则和证明
方法。
一、谓词逻辑的基本符号与概念
在谓词逻辑中,我们使用以下基本符号:
1. 命题变量:用大写字母(如P,Q,R)表示命题变量,表示一个
命题。
2. 常量:用小写字母(如a,b,c)表示常量,表示一个具体的个体。
3. 谓词:用小写字母或小写字母加括号(如P(x),Q(y))表示谓词,表示一个性质或关系。
4. 量词:∀表示全称量词(对于所有的),∃表示存在量词(存在
一个),用于描述一组对象。
在谓词逻辑中,我们还会用到以下概念:
1. 公式:一个命题是谓词逻辑中的公式。
2. 全称量化:∀xP(x)表示谓词P(x)对于所有的x成立。
3. 存在量化:∃xP(x)表示谓词P(x)存在一个x使得成立。
二、推理规则
在谓词逻辑中,我们常用以下推理规则进行逻辑推理:
1. 求取命题的否定:将命题的否定写为¬P(x),表示该命题不成立。
2. 逻辑与的消除:若已知P(x)∧Q(x),则可以得到P(x)和Q(x)。
3. 逻辑或的消除:若已知P(x)∨Q(x),则可以得到P(x)或Q(x)。
4. 蕴含的引入:若已知P(x)成立,则P(x)→Q(x)也成立。
5. 蕴含的消除:若已知P(x)→Q(x)和P(x),则可以得到Q(x)。
6. 等价的引入:若已知P(x)↔Q(x)成立,则P(x)和Q(x)等价。
7. 等价的消除:若已知P(x)↔Q(x)和P(x),则可以得到Q(x)。
三、证明方法
在谓词逻辑中,我们可以使用以下证明方法进行推理证明:
1. 直接证明:假设命题P(x)为真,通过推理规则逐步推导出Q(x)为真,从而得到P(x)→Q(x)。
2. 反证法:假设命题P(x)为假,通过推理规则逐步推导出Q(x)为假,从而得到¬P(x)→¬Q(x)。
3. 归谬证明:假设P(x)和¬Q(x)同时为真,通过推理规则逐步推导
出矛盾,从而得到P(x)→Q(x)。
4. 数学归纳法:对于全称量化的命题,可以使用数学归纳法进行证明。
首先证明基本情况,然后证明归纳步骤。
5. 排除法:通过穷举所有可能的情况,逐一验证命题是否成立。
总结:
本文介绍了谓词逻辑中的推理规则和证明方法。
通过应用这些规则和方法,我们可以进行准确有力的推理,并得出正确的结论。
谓词逻辑作为一种重要的逻辑系统,在数学、计算机科学以及哲学等领域都有广泛的应用。
通过深入理解和熟练运用谓词逻辑的推理规则和证明方法,我们可以提高逻辑思维能力和问题解决能力。