离散数学第四讲-推理规则与证明方法

合集下载

离散数学逻辑推理

离散数学逻辑推理

Proof:
(1) D
P
(2) D ∨ A
P
(3) A
T(1),(2)I
(4) A→ (B→C)
P
(5) B→C
T(3),(4)I
(6) B
P
(7) C
T(5),(6)I
(8) D → C
CP
反证法
反证法的主要思想是:假设结论不成立,可以推出矛盾式。 下面先介绍有关概念和定理。
反证法定义:设有前提集合{H1,H2 ,...,Hn} ,H1,H2 ,...,Hn是相容的,H1 ∧ H2 ∧...∧ Hn C ,当且仅当H1
R ∨ (P ∧ ¬P) R R ∧ (P ∨ ¬P) R R ∨ (P ∨ ¬P) T R ∧ (P ∧ ¬P) F P → Q ¬P ∨ Q ¬(P → Q ) P ∧ ¬Q P → Q ¬Q → ¬P P →(Q → R) (P∧Q ) → R P↔Q (P → Q ) ∧ (Q → P ) P↔Q (P∧Q ) ∨(¬P ∧ ¬Q ) ¬(P↔Q ) P↔¬Q
,H2 ,...,Hn, C是不相容的。
或说H1 ∧ H2 ∧...∧ Hn ∧ C F(永假式)。
【example】 P→Q, (Q∨R)∧R, (P∧S) S
Proof:
(1) S
P(假设前提)
(2) S
T (1)E
(3) (P∧S) P
(4) P∨S
T (3)E
我们可把不相容的概念应用于命题公式的证明。
设有一组前提H1, H2,…, Hm 要推出结论C,即证 H1∧H2∧....∧Hm C,记作SC,即 C → S为永真,或 C ∨ S为永真,故 C ∧ S为永假。

命题逻辑的推理规则和证明方法

命题逻辑的推理规则和证明方法

命题逻辑的推理规则和证明方法命题逻辑是一种对简单命题和命题之间关系的形式化推理系统,广泛应用于数学、计算机科学和哲学等领域。

在命题逻辑中,推理规则和证明方法被用来推导出真实或假设的命题之间的关系。

本文将介绍命题逻辑的一些常见推理规则和证明方法。

1. 推理规则命题逻辑的推理规则是用来推导命题之间关系的规则。

以下是一些常见的推理规则:(1)析取引入规则(Disjunction Introduction Rule):如果命题P 成立,则P或Q成立。

表示为P -> (P ∨ Q)。

(2)析取消去规则(Disjunction Elimination Rule):如果P或Q 成立,且根据P和Q均能推导出命题R,则R成立。

表示为((P ∨ Q), (P -> R), (Q -> R)) -> R。

(3)合取引入规则(Conjunction Introduction Rule):如果P和Q 成立,则P且Q成立。

表示为(P, Q) -> (P ∧ Q)。

(4)合取消去规则(Conjunction Elimination Rule):如果P且Q 成立,则P和Q均成立。

表示为(P ∧ Q) -> (P, Q)。

(5)蕴含引入规则(Implication Introduction Rule):如果根据P 能推导出Q,则P蕴含Q成立。

表示为((P -> Q) -> Q) -> (P -> Q)。

(6)蕴含消去规则(Implication Elimination Rule):如果P和P蕴含Q成立,则Q成立。

表示为((P, (P -> Q)) -> Q)。

2. 证明方法证明是在命题逻辑中用于证明命题之间关系的方法。

以下是一些常见的证明方法:(1)直接证明法:假设前提命题成立,通过适当的推理规则证明出结论命题成立。

这种方法常用于证明蕴含关系。

(2)间接证明法(反证法):假设结论命题不成立,通过适当的推理规则推导出与已知事实相矛盾的命题,从而得出结论命题成立的结论。

离散数学--第四章 谓词逻辑推理

离散数学--第四章  谓词逻辑推理

Dr Chen Guangxi
例4.1.1
注:在对 ∀x ( F ( x ) → G ( x )) 使用UI规则时, 可以得 F(y) → G(y),也可得F(c) → G(c), 其中y是任意的个体常项,c可为任意个体 常项,由结论的需要取c为a。

Dr Chen Guangxi
例4.1.3
构造下面推理的证明 前提: ¬∃ x ( F ( x ) ∧ H ( x )), ∀ x ( G ( x ) → H ( x ))
Dr Chen Guangxi
四条重要的推理规则
2.全称量词引入规则,简记为 UG
A( y) ∴ ∀xA( x)
成立的条件是: (1)y在A(y)中自由出现,且为任意的个体变 项; (2)取代y的x不能在A(x)中约束出现过。
Dr Chen Guangxi
四条重要的推理规则
3.存在量词消去规则,简记为EI
∀x( H ( x ) → ¬F ( x))
G ( y) → ¬F ( y)
∀ x ( G ( x ) → H ( x )) G( y) → H ( y)
∀x (G ( x ) → ¬F ( x )) 本例要注意UI规则的用法!!
Dr Chen Guangxi
例题
构造推理
学术委员会的每个成员都是博士并且是教授。有些成 员是青年人。因而,有的成员是青年教授。
∃xA( x) ∴ A(c)
成立的条件为: (1)c是使A(c)为真的特定的个体常项; (2)c不在A(x)中出现过; (3)若A(x)中除x外还有其它自由出现的 个体变项时,此规则不能使用。
Dr Chen 为EG
A(c ) ∴ ∃ xA ( x )
Dr Chen Guangxi

离散数学第四讲-推理规则与证明方法

离散数学第四讲-推理规则与证明方法


Q
P
× x 2
四个例子的推理是否正确?
例3.
例4.
如果x是偶数, 则x2是偶数。所用依据如是果什x是么偶?数, 则x2是偶数。
x不是偶数。
x2不是偶数。
x2不是偶数。
x不是偶数。
P Q P Q
× x 2
.
P Q
Q

P
3
1、推理和推理规则
刚才的例子表明了研究推理规则的重要性。 推理规则:正确推理的依据。
注意: 1. 不考虑前提的真假,推理正确≠结论为真。 2. 结论的真假 取决于 前提H1∧H2∧ …∧Hn的真假。
前提为真,则结论为真; 前提为假,则结论可真可假。 3. 因此,定义中只说C 是H1, H2, …, Hn 的有效结论而不说是正确结 论。“有效”是指结论的推出合乎推理规则。
.
5
1、推理和推理规则
永真 永真 永真 永真 永真 永真
.
13
3. 证明方法
利用CP规则证明以下例题
例3:证A →(B → C), ¬ D A,B D → C
证: (1) D (2) ¬ D A (3) A (4) A →(B → C) (5) B → C (6) B (7) C (8) D → C
P(附加前提)
常用的推理规则
1) 恒等式(E1~E24) 2) 永真蕴含式(I1~I8,表1.5-1) 3) 替换规则,代入规则 4) P规则和T规则
P规则:(前提引入)
在推导的任何步骤上,都可以引入前提。
T规则:(结论引用)
在推导任何步骤上所得结论都可以作为后继证明的前提。
.
6
1.5-1
表 常 用 推 理 规 则

离散数学证明题解题方法

离散数学证明题解题方法

离散数学是现代数学的一个重要‎分支,是计算机科学‎中基础理论‎的核心课程。

离散数学以研究离散量的结构和相‎互间的关系‎为主要目标‎,其研究对象‎一般地是有‎限个或可数‎个元素,因此他充分‎描述了计算机科学‎离散性的特‎点。

1、定义和定理‎多。

离散数学是‎建立在大量‎定义上面的‎逻辑推理学‎科。

因而对概念‎的理解是我‎们学习这门‎学科的核心‎。

在这些概念‎的基础上,特别要注意‎概念之间的‎联系,而描述这些‎联系的实体‎则是大量的‎定理和性质‎。

●证明等价关系:即要证明关‎系有自反、对称、传递的性质‎。

●证明偏序关系:即要证明关‎系有自反、反对称、传递的性质‎。

(特殊关系的证明就列‎出来两种,要证明剩下‎的几种只需‎要结合定义‎来进行)。

●证明满射:函数f:X Y,即要证明对‎于任意的y‎ Y,都有x X,使得f(x)=y。

●证明入射:函数f:X Y,即要证明对‎于任意的x‎1、x2 X,且x1≠x2,则f(x1) ≠f(x2);或者对于任‎意的f(x1)=f(x2),则有x1=x2。

●证明集合等‎势:即证明两个‎集合中存在‎双射。

有三种情况‎:第一、证明两个具‎体的集合等‎势,用构造法,或者直接构‎造一个双射‎,或者构造两‎个集合相互‎间的入射;第二、已知某个集‎合的基数,如果为א,就设它和R‎之间存在双‎射f,然后通过f‎的性质推出‎另外的双射‎,因此等势;如果为א0‎,则设和N之‎间存在双射‎;第三、已知两个集‎合等势,然后再证明‎另外的两个‎集合等势,这时,先设已知的‎两个集合存‎在双射,然后根据剩‎下题设条件‎证明要证的‎两个集合存‎在双射。

●证明群:即要证明代数系统封闭、可结合、有幺元和逆‎元。

(同样,这一部分能‎够作为证明‎题的概念更‎多,要结合定义‎把它们全部‎搞透彻)。

●证明子群:虽然子群的‎证明定理有‎两个,但如果考证‎明子群的话‎,通常是第二‎个定理,即设<G,*>是群,S是G的非空子集,如果对于S‎中的任意元‎素a和b有‎a*b-1 S,则<S,*>是<G,*>的子群。

离散数学---推理理论

离散数学---推理理论

实例分析
西 华 大 学 制 作
判断推理是否正确:张红不管有无空闲都不看电影。张红看了电影。所以张 红有空闲时间又没有空闲时间。 解:P:张红有空闲时间;Q:张红看电影 。 前提:A1=P∨ P→ Q A2=Q 结论:A=P∧ P 问题:该结论是否有效结论。(该推理是否正确)。
P 0 0 1 1
自然推理系统P
西 华 大 学 制 作
自然推理系统
特点:可以从任意给定的前提出发,
形式系统
应用系统中的推理进行推演,得到 的结论在系统中被认为是有效的。
公理系统
特点:只能从几个给定的公理出发, 应用系统中的推理规则进行推演,
得到的结论是系统中的定理。
自然推理系统P
自然推理系统P定义如下:
1.字母表
§1.6 推理理论
西 华 大 学 制 作
一、有效论证推理规则 二、基本蕴涵式 三、自然推理系统P 四、推理证明的方法
一、有效论证与推理规则
西 华 大 学 制 作
• 定义:A1∧A2∧…∧An→A,其为永真式,则称 前提A1,A2,…,An得到有效结论A;从前提公式得 到有效结论的过程称为正确推理。 • 若AB是永真式,则记为AB; • 若A→B是永真式,则记为AB。 • 前提一致和不一致: • 如果前提A1∧A2∧…∧An为可满足式,则 为前提A1,A2,…,An一致。
西 (1)命题常元,命题变元:P,Q,R,…,Pi,Qi,…,1,0(T,F) 华 大 (2)命题联结词:、∧、∨、→、 学 (3)括号:(,) 制 2.合式公式:(略) 作
3.推理规则:
(1).前提引入规则(P规则):在证明的任何步上,都可引入前 提; (2).结论引用规则(T规则):在证明的任何步上,所得的结论 都可作为证明得前提; (3).置换规则:在证明的任何步上,命题公式的任何子命题 公式都可以用与之等价的命题公式置换。 (4).永真蕴涵规则:使用基本蕴涵式,常常将条件用‘,’

离散数学推理的三要素

离散数学推理的三要素

离散数学推理的三要素1.推理的形式结构(1)定义3.1:设A1,A2,A3...AK和B都是命题公式,若对于A1,A2,A3...AK和B中出现的命题变项的任意一组赋值,或者A1,A2,A3...AK为假,或者当A1,A2,A3...AK为真是,B也为真,则称由前提A1,A2,A3...AK推出结论B的推理是有效的或正确的,并称B是有效的结论。

由上面的推论可知,推理正确的并不能保证结论B一定成立,因为前提可能就不成立。

这与我们通常理解的推理是不同的。

通常只能认为在正确的前提下推出正确的结论才是正确的推理,而在这里,如果前提不正确,不论结论正确与否,都说推理正确。

(2)定理3.1:命题公式A1,A2……AK推导B的推理正确当且仅当A1,A2……AK>B为重言式。

要把推理的形式写成:前提:A1,A2……AK结论:B2自然推理系统P本节由前提A1,A2……,AK推B的正确推理的证明给出严格的形式描述。

“证明”是一个描述推理过程的命题公式序列,其中的每个公式或者是已知前提,或者是由前面的公式应用推理规则得到的结论(中间结论或推理中的结论)。

(1)定义3.2:一个形式系统I由下面4个部分组成:非空的字母表A(I);A(I)中符号构造的合式公式集E(I)E(I)中一些特殊的公式组成的公理集Ax(I)推理规则R(I)将I记为四元组<A(I),E(I),Ax(I),R(I)>.其中<A(I),E (I)>是I的形式语言系统,而<Ax(I),R(I)>为I的形式演算系统。

形式系统一般分为两类:一类是自然推理系统,它的特点是从任意给定的前提出发,应用系统中的推理规则进行推理演算,最后得到的命题公式是推理的结论(它是有效的结论,尔肯那个是重言式,也可能不是重言式)。

另一类是公理推理系统,他只能从若干条给定的公里出发,应用系统中的推理规则进行推理演算,得到的结论是系统中的重言式,成为系统中的定理。

1.5推理规则和证明方法

1.5推理规则和证明方法

离散数学Discrete Mathematics数理逻辑 1.5 推理规则与证明方法张晓 西北工业大学计算机学院 zhangxiao@ 2011-1-10引言什么时候数学论证是正确的? 用什么方法来构造数学论证? 数理逻辑的主要任务是用数学的方法来研究推理过 程。

所谓推理是指从前提出发推出结论的思维过程 前提是已知命题公式集合,结论是从前提出发应用 推理规则推出的命题公式。

要研究推理就应该给出推理的形式结构,为此,首 先应该明确什么样的推理是有效的或正确的。

2011-1-10离散数学21.5.1推理规则前几节所讲的命题演算, 本质上和简单的开 关代数一样, 简单的开关代数是命题演算的 一种应用。

现在, 我们从另一角度研究命题演算, 即从 逻辑推理角度来理解命题演算。

2011-1-10离散数学34个推理的例子设x属于实数, P: x是偶数, Q: x2是偶数。

例1 如果x是偶数, 则x2是偶数。

前提 x是偶数。

x2是偶数。

例2 如果x是偶数, 则x2是偶数。

x2是偶数。

2011-1-10P→Q P结论∴Q在每一例子中, 横线上的是前提, 横线下的是结论。

右侧是例子的 逻辑符表示。

P→Q Qx是偶数。

离散数学∴P4例3 如果x是偶数, 则x2是偶数。

x不是偶数。

x2不是偶数。

例4 如果x是偶数, 则x2是偶数。

x2不是偶数。

x不是偶数。

2011-1-10 离散数学P→Q P ∴ QP→Q Q ∴ P5例 1 中, 若不管命题的具体涵义, 那么它所应用的推理规则 就是 左侧规则的另一P →Q P ∴ Q种写法所对应的永真蕴 含式。

P ,P → Q 推得 QP∧(P→Q) ⇒ Q从这个永真蕴含式可看出, 它正是代表“如果 P 并且 P→Q 是真, 则 Q是 真”的意义, 这里P和Q表示任意命题。

它恰好代表左侧的推理规则。

这条推理规则叫假言推理, 从形式上看 结论Q是从P→Q中分离出来的, 所以又叫分离规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前提
推理规则
推理
结论
本节内容:从逻辑推理的角度来理解命题演算
.
2
推理的例子:设x属于实数, P: x是偶数, Q: x2是偶数。
例1.
如果x是偶数, 则x2是偶数。
x是偶数。
前提
x2是偶数。 ------------- 结论
例2.
如果x是偶数, 则x2是偶数。
x2是偶数。 P Q
x是偶数。 P Q P Q
常用的推理规则
1) 恒等式(E1~E24) 2) 永真蕴含式(I1~I8,表1.5-1) 3) 替换规则,代入规则 4) P规则和T规则
P规则:(前提引入)
在推导的任何步骤上,都可以引入前提。
T规则:(结论引用)
在推导任何步骤上所得结论都可以作为后继证明的前提。
.
6
1.5-1
表 常 用 推 理 规 则
Q

P
× x 2
四个例子的推理是否正确?
例3.
例4.
如果x是偶数, 则x2是偶数。所用依据如是果什x是么偶?数, 则x2是偶数。
x不是偶数。
x2不是偶数。
x2不是偶数。
x不是偶数。
P Q P Q
× x 2
.
P Q
Q

P
3
1、推理和推理规则
刚才的例子表明了研究推理规则的重要性。 推理规则:正确推理的依据。
是重言式
iff (Q ¬ H1) (Q ¬ H2) … (Q ¬ Hn)
是重言式
iff (¬ Q → ¬ H1) (¬ Q → ¬ H2) … (¬ Q → ¬ Hn) 是重言式
若至少有一个i,使得 使 ¬ Q ¬Hi, 则原恒等式成立。
.
12
6. 证明方法
6. CP规则(演绎定理)
P1∧P2∧ …∧Pn →( P→Q)形式命题的证明
任何一条永真蕴含式都可以作为一条推理规则。
例:析取三段论: P(PQ ) Q 如果,P:他在钓鱼,Q:他在下棋
前提:他在钓鱼或下棋; 他不在钓鱼
结论:所以他在下棋
PQ P 所以 Q
.
4
1、推理和推理规则
定义1:若H1∧H2∧ …∧Hn C, 则称C是H1, H2, …, Hn的 有效结论。 特别若A B, 则称B是A的有效结论,或从A推出B。
对有限的或特殊的情况, 它们常常是重要的。
.
10
3. 证明方法
3).直接证明法
H1∧H2∧ …∧Hn C,由前提利用推理规则直接推出C。
例2:证明
CD, C→R, D→S RS
证: (1) CD (2) ¬( ¬ C) D
(3) ¬ C → D (4) D → S (5) ¬ C→ S (6) C →R (7) ¬ R→¬C
第四讲
推理规则和证明方法
讲授内容: 1.推理和推理规则
推理 推理规则 两规则 替换规则
2. 证明方法
直接证明方法 CP规则 反证法
讲授重点:推理规则,直接证明方法与CP规则 讲授难点:直接证明方法,CP规则与反证法
.
1
1.推理和推理规则
什么是推理?
推理:从前提推出结论的思维过程。 前提:指已知的命题公式。 结论:从前提出发,应用推理规则推出的命题公式。
注意: • 不考虑前提的真假,推理正确≠结论为真。 • 结论的真假 取决于 前提H1∧H2∧ …∧Hn的真假。
前提为真,则结论为真; 前提为假,则结论可真可假。 • 因此,定义中只说C 是H1, H2, …, Hn 的有效结论而不说是正确结 论。“有效”是指结论的推出合乎推理规则。
.
5
1、推理和推理规则
证: P1∧P2∧ …∧Pn P→Q
即证 P1∧P2∧ …∧Pn ∧ P Q
因为 P1∧P2∧ …∧Pn P→Q
iff P1∧P2∧ …∧Pn →( P→Q) iff ¬ (P1∧P2∧ …∧Pn )(¬ P Q) iff ¬P1 ¬P2 … ¬Pn ¬ P Q iff (¬P1 ¬P2 … ¬Pn ¬ P ) Q iff ¬ (P1∧P2∧ …∧Pn ∧ P) Q iff P1∧P2∧ …∧Pn ∧ P → Q iff P1∧P2∧ …∧Pn →( P→Q)
即证
P→Q,R→ ¬ Q,R ¬ P
证: 步骤 断言(真)
根据
(1)
R
P
(2) R→ ¬ Q
P
(3) (4)
¬Q P→Q
T,(1),(2),I3 P
(5) ¬ P
T,(3),(4),I4
.
9
3. 证明方法
1). 无义证明法
证明 P Q为真,只需证明P为假。
2). 平凡证明法 证明 P Q为真,只需证明Q为真。 无义证明法和平凡证明法应用的次数较少, 但
因为P Q iff P→Q永真 iff ¬ Q → ¬P永真
iff ¬Q ¬P
5). (H1∧H2∧ …∧Hn) Q形式命题的证明
H1∧H2∧ …∧Hn Q
iff H1∧H2∧ …∧Hn →Q
是重言式
iff ¬ (H1∧H2∧ …∧Hn )Q
是重言式
iff ¬ H1 ¬ H2 … ¬ Hn Q
P
T,(1),(2),I5 P
T,(3),(4),I3 P
T,(5),(6),I3 CP规则
.
14
3. 证明方法
7.分情况证明
证明 P1 P2 … Pn Q , 只需证明对每一i,Pi → Q成立。
因为 P1 P2 … Pn Q iff P1 P2 … Pn → Q iff ¬(P1 P2 … Pn) Q iff (¬P1 ¬P2 … ¬Pn) Q iff ( ¬P1 Q) ( ¬P2 Q) … ( ¬Pn Q) iff (P1 → Q ) (P2 → Q ) (Pn → Q )
永真 永真 永真 永真 永真 永真
.
13
3. 证明方法
利用CP规则证明以下例题
例3:证A →(B → C), ¬ D A,B D → C
证: (1) D (2) ¬ D A (3) A (4) A →(B → C) (5) B → C (6) B (7) C (8) D → C
P(附加前提)
.
7
永真蕴含式
.
8
运用推理规则形式化证明
例1:考虑下述论证: 1. 如果这里有球赛, 则通行是困难的。 2. 如果他们按时到达, 则通行是不困难的。 3. 他们按时到达了。 4. 所以这里没有球赛。 前 3 个断言是前提, 最后1个断言是结论, 要求我们从前提推出结论。
设P: 这里有球赛, Q: 通行是困难的, R: 他们按时到达。
P
T,(1),E1 T,(2),E14 P T,(3),(4),I6 P T,(6),E24
(8) ¬ R→ S
(9) ¬( ¬ R)S
(10) R S
T,(5),(7),I6
T,(8),E14 T, (9), E1
.
11
Байду номын сангаас
3. 证明方法
4). 间接证明法-(对原命题的逆否命题进行证明)
证P Q只需证¬Q ¬P
相关文档
最新文档