离散数学---推理理论

合集下载

离散数学16推理理论:直接证法

离散数学16推理理论:直接证法

推理理论----直接证法一、推理理论1.定义1-8.1 设A和C两个命题公式,当且仅当A→C为重言式,即A ⇒ C.称C是A的有效结论,或C可由A 逻辑地推出.称已知的A为前提。

得到的C为前提的有效结论.实际上,推理的过程就是证明蕴含式的过程,即令H 1,H 2,…,H m 是已知的命题公式(前提),若有H 1∧H 2∧....∧H m C ,则称C 是一组前提H 1,H 2,…H m 的有效结论,简称结论.1、真值表法(1)检查真值表中H1,H2,…Hm全部为“T”的所有行,看结论C是否也均为“T”,若C均为“T”,则结论有效.否则结论无效.(2)看结论C为“F”的所有行,检查每行前提H1,H2,…H m中是否至少有一个为F,若有“F”,则结论有效;若有均为“T”的行,则结论无效.二、推理方法例1 求证⌝P ∧ (P∨Q) ⇒Q.证明考察真值表P Q ⌝P P∨Q QF F T F FF T T T TT F F T FT T F T T 由真值表可以看出⌝P ∧ (P∨Q) ⇒Q.2、直接证法由一组前提,利用一些公认的推理规则,根据已知的等价或者蕴含公式,推演得到有效的结论.•规则P(引入前提规则):前提在推导过程中的任何时候都可以引入使用.•规则T(引入结论规则):在推导中,如果有一个或多个公式、重言蕴涵公式S,则公式S可以引入推导中.重要的重言蕴涵式(如教材第43页所示)I1.P∧Q⇒P I2. P∧Q⇒QI3. P⇒P∨Q I4. Q⇒P∨QI5. ⌝P⇒P→Q I6. Q⇒P→QI7. ⌝(P→Q)⇒P I8. ⌝(P→Q)⇒⌝QI9. P,Q ⇒P∧Q I10. ⌝P∧(P∨Q)⇒Q I11. P∧(P→Q)⇒Q I12. ⌝Q∧(P→Q)⇒⌝P I13. (P→Q)∧(Q→R)⇒P→RI14. (P∨Q)∧(P→R)∧(Q→R)⇒RI15. A→B ⇒(A∨C)→(B∨C)I16. A→B ⇒(A∧C)→(B∧C)重要的等价公式:⌝⌝P⇔P对合律 E1P∧Q⇔Q∧P E3 P∨Q⇔Q∨P 交换律 E2结合律 EP∧(Q∧R)⇔(P∧Q)∧R4E5 P∨(Q∨R)⇔(P∨Q)∨RP∧(Q∨R)⇔(P∧Q)∨(P∧R)分配律 E6E7 P∨(Q∧R)⇔(P∨Q)∧(P∨R)德-摩根定律 E⌝(P∧Q)⇔⌝P∨⌝Q8E9⌝(P∨Q)⇔⌝P∧⌝QP∨P⇔P E11 P∧P⇔P幂等律 E10P∨F⇔P E13 P∧T⇔P同一律 E12零律 EP∨T⇔T E15 P∧F⇔F14E16 P→Q⇔⌝P∨Q E17 ⌝(P→Q)⇔P∧⌝QE18 P→Q⇔⌝Q→⌝P E19 P→(Q→R)⇔(P∧Q)→R E20 P ∆ Q ⇔(P→Q)∧(Q→P)E21 P ∆ Q ⇔(P∧Q)∨(⌝P∧⌝Q )E22 ⌝(P ∆ Q)⇔ P↔⌝Q吸收律 P∨(P∧Q)⇔P P∧(P∨Q)⇔P互补律 P∨⌝P⇔T P∧⌝P⇔FP ∆ Q ⇔(⌝P∨Q)∧(P∨⌝Q)例2 求证(P→Q)∧(Q→R)∧P ⇒ R.证明序号前提或结论所用规则(从哪几步得到)所用公式(1) P P(2) P→Q P(3) Q T (1)(2) I11(4) Q→R P(5) R T (3)(4) I11 •(注公式I11为: P ∧(P→Q)⇒ Q )。

离散数学课件03命题逻辑的推理理论

离散数学课件03命题逻辑的推理理论

((┐p∧┐q)∨p) ∨ q
((┐p∨p )∧(┐q∨p)) ∨ q
(┐q∨p) ∨ q 1
精选课件ppt
由定理 3.1可知, 推理正确。
15
推理定律--重言蕴含式
(1) A (A∨B)
附加律
(2) (A∧B) A
化简律
(3) (A→B)∧A B
假言推理
(4) (A→B)∧┐B ┐A
拒取式
(5) (A∨B)∧┐B A
析取三段论
(6) (A→B) ∧ (B→C) (A→C)
假言三段论
(7) (AB) ∧ (BC) (A C)
等价三段论
(8) (A→B)∧(C→D)∧(A∨C) (B∨D) (A→B)∧(┐A→B)∧(A∨┐A) B
构造性二难 构造性二难
(特殊形式)
(9)(A→B)∧(C→D)∧(┐B∨┐精D选)课件pp(t ┐A∨┐C) 破坏性二难16
只要不出现(3)中的情况,推理就是正确的,因而判断 推理是否正确,就是判断是否会出现(3)中的情况。
推理正确,并不能保证结论B一定为真。
精选课件ppt
8
例题
例3.1 判断下列推理是否正确。(真值表法)
(1) {p,p→q}├ q (2) {p,q→p}├ q
正确 不正确
p q p(p→q) q p(q→p)
推理是指从前提出发推出结论的思维过程。
前提是已知命题公式集合。
结论是从前提出发应用推理规则推出的命题公式。
证明是描述推理正确或错误的过程。
要研究推理,首先应该明确什么样的推理是有效的或 正确的。
精选课件ppt
4
命题逻辑的推理理论
概念
描述问题 的句子

离散数学 推理理论

离散数学  推理理论
S ( P∨Q) S ∨ (P∨Q) ( S ∨P ) ∨Q ( S ∧ P ) ∨Q ( S ∧ P ) Q 例题 证明: (P∨Q) ∧(P R) ∧(Q S) S ∨ R
作业:P46(1)a, b (2)a,c (3)a,c (4)c
结束
T规则:由前提得出的阶段性有效结论(由一个或多 个公式重言蕴含着的公式)也可以在证明中使用。
P43两个表要熟练
例2:用推理规则证明下列各式。
1 . 证明: (P∨Q) ∧(P R) ∧(Q S) S ∨ R
(1) P∨Q

(2)E P
证法2见书P44
(4) P S
T (7) E
(9) C ( D E)
T (8) E
(10) D E
T (5) (9) I
(11) (D∧ E) (12) F (D∧ E) (13) F (14) BF (15) A(BF)
T (10) E P T (11) (12) I CP CP
3 . 半反证法
当结论是析取式,具有形式P∨Q时,我们把其中一析取 项的否定( P或 Q)作为假设前提,并和其它前提 一起共同得出另外一析取项( Q或P) 。 即要证S P∨Q,可通过证明( S ∧ P ) Q 半反证法的正确性证明:
T (1) I T (2) (3) I P
(6) P (7) ( P ∧S)
T (4) (5) I P
(8) P ∨ S (9) S
T (7) E T (6) (8) I
例3:公安人员破案问题。
一公安人员审查某工厂失窃案,他认为下列情况 是真的: (1)有两个怀疑对象,保管员小王和材料科长老李; (2)值班员小张工作一贯负责; (3)失窃案发生的那天白天,老李去兄弟厂开会; (4)如果晚上仓库上锁,就不会发生失窃案; (5)如果晚上仓库未上锁或灯未亮,则值班员小张失职。 请问谁是盗窃犯?

离散数学命题逻辑推理理论

离散数学命题逻辑推理理论

构造性二难
(A®B)Ù(ØA®B) Þ B
构造性二难(特殊形式)
(A®B)Ù(C®D)Ù( ØBÚØD) Þ (ØAÚØC) 破坏性二难
自然推理系统P
自然推理系统P由下述3部分组成:
1、 字母表
命题变项符号: p,q,r,…,
pi,qi,ri,…
联结词:
,
,
,
,
括号与逗号: ( ), , 2、 合式
明天就是5号、 解 设 p: 今天就是1号, q: 明天就是5号 推理得形式结构为 (p®q)Ùp®q 证明 用等值演算法
(p®q)Ùp®q Û Ø((ØpÚq)Ùp)Úq Û ((pÙØq)ÚØp)Úq Û ØpÚØqÚq Û 1
得证推理正确
实例( 续 )
(2) 若今天天冷,小王就穿羽绒服。小王就穿羽绒服。 所以, 今天天冷。
r:我有课,
s:我备课
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
实例( 续 )
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
证明 ① r®s ② Øs ③ Ør ④ (pÚq)®r
前提引入 前提引入 ①②拒取式 前提引入
Ø(pÚq)
③④拒取式
⑥ ØpÙØq
置换
结论有效, 即明天不就是星期一与星期三
公式
3. 推理规则
前提引入规则
结论引入规则
置换规则
自然推理系统P(续)
(4) 假言推理规则 A®B A
\B (5) 附加规则
A \AÚB (6) 化简规则
AÙB \A
(7) 拒取式规则 A®B ØB
\ØA (8) 假言三段论规则
A®B B®C

离散数学 命题逻辑推理

离散数学 命题逻辑推理
1
3.1 推理的形式结构
推理:从前提出发推导出结论思维过程, 前提 是已知的命题公式集合, 结论 是从前提出发应用推理规则推出的命题公式。 什么样的推理是正确的有效的? 定义3.1 设A1, A2, …, Ak, B为命题公式. 若对于每组赋值, A1A2… Ak 为假, 或当A1A2…Ak为真时B也为真, 则称由前提A1, A2, …, Ak推出结论B的推理是有效的或正 确的, 并称B是有效结论. 定理3.1 由命题公式A1, A2, …, Ak 推出B的推理正确当且仅当 A1A2…AkB为重言式 注意: 推理正确不能保证结论一定正确
10
推理规则
(4) 假言推理规则 AB A ∴B (6) 化简规则 AB ∴A (8) 假言三段论规则 AB BC ∴AC (5) 附加规则 A ∴AB (7) 拒取式规则 AB B ∴ A (9) 析取三段论规则 AB B ∴A
11
推理规则
(10) 构造性二难推理规则 AB CD AC ∴BD
7
推理定律——重言蕴涵式
用定义构造推理过程,需要一些有用的推理定律 1. A (AB) 附加律 2. (AB) A 化简律 3. (AB)A B 假言推理 4. (AB)B A 拒取式 5. (AB)B A 析取三段论 6. (AB)(BC) (AC) 假言三段论 7. (AB)(BC) (AC) 等价三段论 8. (AB)(CD)(AC) (BD) 构造性二难 (AB)(AB) B 构造性二难(特殊形式) 9. (AB)(CD)( BD) (AC) 破坏性二难 每个等值式可产生两个推理定律 如, 由AA可产生 AA 和 AA
0
1 1
0
0 1
1
0
不是重言式, 推理不正确

离散数学17.推理理论:间接证法

离散数学17.推理理论:间接证法
所以 H1∧H2∧...∧ Hn C.
实际上,要证明H1∧H2∧...∧ Hn C,只要证明 H1∧H2∧...∧ Hn ∧C可推出矛盾式即可,即
H1∧H2∧...∧ Hn ∧C R∧R.
例2 P→Q,(Q∨R)∧R, (P∧S)S
(1) S
P(假设前提)
(2) S (3) (P∧S)
例1 P→(Q→S),R∨P,Q R→S.
证明 (1) R
P(附加前提)
(2) R∨P
P
(3) P
T (1)(2) I10
(4) P→(Q→S) P
(5) Q→S (6) Q
T (3)(4) I11 P
(7) S (8) R→S
T (5)Hale Waihona Puke 6) I11 CP(2)反证法
反证法的主要思想是:假设结论不成立,可以推出矛盾的结 论(矛盾式).下面先介绍有关概念和定理.
推理理论
----间接证法
间接证法 (1)CP规则证法
(2)反证法
(1)CP规则
引理:如果H1∧H2∧...∧Hn∧RC,则 H1∧H2∧...∧Hn R→C.
证明: 因为H1∧H2∧...∧Hn∧R C, 则 (H1∧H2∧...∧Hn∧R)C是重言式.
根据结合律得 ((H1∧H2∧...∧Hn)∧R)→C 是重言式. 根据公式E19得 (H1∧H2∧...∧Hn)(R→C)是重言式. 即 H1∧H2∧...∧ Hn R→C.定理得证. E19: P(Q→R)(P∧Q)→R.
此定理告诉我们,如果要证明的结论是蕴涵式 (R→C)形式,则可以把结论中蕴涵式的前件R作为附加 前提,与给定的前提一起推出后件C即可.
我们把上述定理写成如下规则: 如果H1∧H2∧...∧Hn ∧R S,则

离散数学--第二章 命题逻辑的推理理论

离散数学--第二章 命题逻辑的推理理论
1 2 k
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(4)构造证明法 构造证明法 当前提与结论中命题变项较多时,前几种方法 的工作量太大,不方便,而构造证明法较为方 便。构造证明法必须在给定的推理规则下进行。 常用的推理规则有以下11条: (1)前提引入规则:在证明的任何步骤上,都可 以引入前提。 (2)结论引入规则:在证明的任何步骤上,所得 中间结果都可以作为后继证明的前提。 (3)置换规则:在证明的任何步骤上的公式中的 子公式均可用与之等值的公式置换。
离散数学
Discrete Mathematics
Chen Guangxi
School of Mathematics and Computing Science
第二章 命题逻辑的推理理论
目标:
掌握推理形式结构 熟练运用构造推理方法 了解命题逻辑归结证明
学习建议:
与初中平面几何证明进行对比 勤做练习
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(8)假言三段论 :
A→B B→C ∴A→C
(9)析取三段论规则: A∨ B A∨ B ¬A ¬B 或者 ∴B ∴A
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(10)构造性二难推理规则:
A → B C → D A∨C ∴B∨ D
(11)合取引入规则:
A B ∴A∧ B
Dr Chen Guangxi
第二章 命题逻辑的推理理论
是重言式类似, 与用 A ⇔ B 表示 A ↔ B是重言式类似,用 A ⇒ B表示A → B 是重言式, 不是联结词 是重言式, ⇒ 符。 推出B的推理正确 的推理正确, 若 A , A ,⋯, A 推出 的推理正确,则记作 ( A1 ∧ A2 ∧ ⋯ ∧ Ak ) ⇒ B 为蕴涵式。 称A⇒B为蕴涵式。 ⇒ 为蕴涵式

1.7推理理论(离散数学)PPT

1.7推理理论(离散数学)PPT

例2. 构造下列推理的证明
前提:p∨q, p→ r, s→t, s→r, t
结论:qБайду номын сангаас
①s→t
前提引入
② t
前提引入
③ s
①②拒取式
④ s→r
前提引入
⑤r
③④假言推理
⑥p→ r
前提引入
⑦ p
⑤⑥拒取式
⑧p∨q
前提引入
⑨q
⑦⑧析取三段论
例3. 构造下列推理的论证
前提:p→q, r→ q, r∨s, s→ q
称(A1∧A2∧…∧Ak)→B 为由前提A1,A2,…,Ak推结论 B 的推理的形式结构.
说明:
同用“A B”表示“AB”是重言式类似,用 “AB”表示“AB”是重言式.因而,若由前提 A1,A2,···,Ak推结论B的推理正确,也记
(A1∧A2∧…∧Ak)B.
于是,判断推理是否正确的方法就是判断重言蕴涵 式的方法.比如真值表法,等值演算法,主析取范式 法等.
8.(A→B)∧(C→D)∧(A∨C) (B∨D). 构造性二难
推理规则
(1)前提引入规则 在证明的任何步骤上都可以引入前提。
(2)结论引入规则 在证明的任何步骤上所得到的结论都可以作为
后继证明的前提。
(3)置换规则 在证明的任何步骤上,命题公式中的子公式都
可以用与之等值的公式置换,得到公式序列中的又 一个公式。
①p∨ s
前提引入
②s
附加前提引入
③p
①②析取三段论
④p→ (q→r)
前提引入
⑤q→r
③④假言推理
⑥q
前提引入
⑦r
⑤⑥假言推理
四、归谬法
若A1∧A2∧…∧An 是可满足式,则称A1 ,A2,…,An 是相 容的,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档