离散数学结构 第3章 命题逻辑的推理理论复习
离散数学课件03命题逻辑的推理理论

((┐p∧┐q)∨p) ∨ q
((┐p∨p )∧(┐q∨p)) ∨ q
(┐q∨p) ∨ q 1
精选课件ppt
由定理 3.1可知, 推理正确。
15
推理定律--重言蕴含式
(1) A (A∨B)
附加律
(2) (A∧B) A
化简律
(3) (A→B)∧A B
假言推理
(4) (A→B)∧┐B ┐A
拒取式
(5) (A∨B)∧┐B A
析取三段论
(6) (A→B) ∧ (B→C) (A→C)
假言三段论
(7) (AB) ∧ (BC) (A C)
等价三段论
(8) (A→B)∧(C→D)∧(A∨C) (B∨D) (A→B)∧(┐A→B)∧(A∨┐A) B
构造性二难 构造性二难
(特殊形式)
(9)(A→B)∧(C→D)∧(┐B∨┐精D选)课件pp(t ┐A∨┐C) 破坏性二难16
只要不出现(3)中的情况,推理就是正确的,因而判断 推理是否正确,就是判断是否会出现(3)中的情况。
推理正确,并不能保证结论B一定为真。
精选课件ppt
8
例题
例3.1 判断下列推理是否正确。(真值表法)
(1) {p,p→q}├ q (2) {p,q→p}├ q
正确 不正确
p q p(p→q) q p(q→p)
推理是指从前提出发推出结论的思维过程。
前提是已知命题公式集合。
结论是从前提出发应用推理规则推出的命题公式。
证明是描述推理正确或错误的过程。
要研究推理,首先应该明确什么样的推理是有效的或 正确的。
精选课件ppt
4
命题逻辑的推理理论
概念
描述问题 的句子
《离散数学》复习提纲(2018)

《离散数学》期末复习大纲一、数理逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足)8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量词分配)和置换规则(置换规则、换名规则)9、一阶逻辑前束范式(定义、求法)本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与解释、求前束范式。
[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;掌握命题的符号化。
7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。
8、掌握求一阶逻辑前束范式的方法。
二、集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理)3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根律等)及应用本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。
离散数学结构 第3章 命题逻辑的推理理论

第3章命题逻辑的推理理论3.1 推理的形式结构一、有效推理数理逻辑的主要任务是用数学的方法来研究数学中的推理。
所谓推理是指从前提出发推出结论的思维过程,而前提是已知命题公式集合,结论是从前提出发应用推理规则推出的命题公式。
要研究推理就应该给出推理的形式结构,为此,首先应该明确什么样的推理是有效的或正确的。
定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意一组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B 也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。
关于定义3.1还需要做以下几点说明:1.由前提A1,A2,…,A k推结论B的推理是否正确与诸前提的排列次序无关。
因而前提的公式不一定是序列,而是一个有限的公式集合,若将这个集合记为Г,可将由Г推B 的推理记为Г├B。
若推理是正确的,则记为ГB,否则记为ГB。
这里,可以称Г├B和{ A1,A2,…,A k}├B 为推理的形式结构。
2.设A1,A2,…,A k,B中共出现n个命题变项,对于任何一组赋值α1,α2,…,αn(αi =0或者1,i=1,2,…,n),前提和结论的取值情况有以下四种:(1) A1∧A2∧…∧A k为0,B为0.(2) A1∧A2∧…∧A k为0,B为1.(3) A1∧A2∧…∧A k为1,B为0.(4) A1∧A2∧…∧A k为1,B为1.由定义3.1可知,只要不出现(3)中的情况,推理就是正确的,因而判断推理是否正确,就是判断是否会出现(3)中的情况。
3.由以上的讨论可知,推理正确,并不能保证结论B一定为真,这与数学中的推理是不同的。
例3.1判断下列推理是否正确:(1){p,p→q}q(2){p,q→p}q解只要写出前提的合取式与结论的真值表,看是否出现前提合取式为真,而推论为假的情况。
(1)由表3.1可知,没有出现前提合取式为真,而结论为假的情况,因而(1)中推理正确,即{p,p→q}q.(2)由表3.1可知,在赋值为10情况下,出现了前提合取式为真,而结论为假的情况,因而(2)推理不正确,即{p,q→p}q.表3.1对于本例这样简单的推理,不用写真值表也可以判断推理是否正确。
离散数学及其应用第3章-命题演算与推理(上)

Discrete Mathematics
汪荣贵 教授
合肥工业大学计算机与信息学院
20210/3/7
计算机应用技术研究所
1
第3章 命题演算与推理 (上)
2020/3/7
计算机应用技术研究所
2
命题演算与推理(上)
2020/3/7
1 命题的概念与运算
2 命题公式与等值演算
33
联结词的完备集
2020/3/7
计算机应用技术研究所
14
弗雷格
Friedrich Ludwig Gottlob Frege (1848-1925)
1879年的重要著作:
概念文字:一种模仿算术语言构造的纯思维的形式语言
是第一个公理化谓词逻辑系统 是自Aristotle以来逻辑的最重要进展 基本实现了Leibniz梦想
命题的概念与运算
2020/3/7
计算机应用技术研究所
4
命题的概念与运算
☺ 逻辑与命题逻辑 命题的基本概念 命题的常用联结词
逻辑学
逻辑学--是一门研究思维形式和思维规律的科学, 包含:
辩证逻辑:研究人的思维中的辩证法。例如:用全 面的和发展的观点观察事物;具体问题具体分析; 实践是检查事物正误的唯一标准;等等。
形式逻辑:研究人的思维的形式和一般规律。本课 程只关心形式逻辑。
2020/3/7
计算机应用技术研究所
6
人类的思维规律
人类的思维过程:通过学习掌握概念和判断,然 后进行推理,即: 概念 判断 推理
推理:由若干个已知的判断(前提),推出新的判 断(结论)的思维过程。
正确的思维: 概念清楚,判断正确,推理合乎逻辑
数理逻辑包括: 命题逻辑、谓词逻辑、公理化集合论、
《离散数学》命题逻辑

解 (1)设P:1是偶数;Q:1是负数,则命题(1)可符号化为P↔Q,真值为1。
(2)设R:太阳从东方升起;S:小鸡会飞,则命题(2)可符号化为R↔S,真值为0。
总结
第 2章 命题逻辑
18
解题小贴士—复合命题的真值判断方法
首先确定复合命题中每个原子命题的真值,然后确定具体的联结词,最后根据上表直接计算。
CONTENTS
F
T
例2.3 符号化下列命题,并确定其真值。
(1)0是偶数且是自然数。
P
O
O
1
1
Q
O
1
O
1
P∧Q
O
O
O
1
(2)雪是白的且羊是食肉动物。
解 (1)设P:0是偶数;Q:0是自然数,则命题(1)可符号化为P∧Q,真值为1。
(2)设R:雪是白的;S:羊是食肉动物,则命题(2)可符号化为R∧S,真值为0。
第 2章 命题逻辑
1
O
例2.2 符号化下列命题,并确定其真值。
(1)四川不是人口最多的省份。
(2)并不是没有最小的自然数。
解:(1)设P:四川是人口最多的省份,则命题(1)可符号化为: ¬ P,真值为1。
(2)设Q:有最小的自然数,则命题(2)可符号化为: ¬ ( ¬ Q),真值为1。
2、合取联结词
第 2章 命题逻辑
例如,若P:周末天气晴朗;Q:我们将到郊外旅游。
则如果周末天气晴朗,则我们将郊外旅游可符号化为P→Q
例2.5 符号化下列命题,并确定其真值。
P
O
O
1
1
Q
P→Q
善意推断
O
1
1
1
O
O
离散数学课件-3-命题逻辑的推理理论

第三章 命题逻辑的推理理论§1 推理的形式结构推理:从前提出发推出结论的思维过程。
前提:已知命题公式集合。
结论:从前提出发应用推理规则推出的命题公式。
定义设A1, A2, …, A k, B都是命题公式,若命题公式A1∧A2∧…∧A k→B是重言式,则称由前提A1, A2, …, A k推出结论B的推理是有效的或正确的,并称B是有效的结论。
推理的形式结构记为{A1,A2,…,A k}A B推理正确,记为{ A1,A2,…,A k }⊨B推理无效,记为{ A1,A2,…,A k }⊭B注①推理正确,结论未必为真。
②推理只注重结构。
例判断下述推理的正确性。
(1) {p, p→q}⊢ q(2) {p, q→p}⊢ q解 (1) p∧(p→q)→q⇔p∧(¬p∨q)→q⇔(p∧¬p)∨(p∧q)→q⇔p∧q→q⇔¬ (p∧q)∨q⇔¬p∨(¬q∨q)⇔¬p∨1⇔1故{p, p→q }⊨ q(2) p∧(q→p)→q让q =0,可得q→p =1,再取p =1可得p∧(q→p)=1 由此得p∧(q→p)→q有成假赋值1 0,故{ p, q→p }⊭ q判断推理正确性:1.真值表法。
2.等值演算法。
3.主析取范式法。
4.构造证明。
例判断下述推理是否正确?(1)若a能被4整除,则a能被2整除。
a能被4整除。
所以a能被2整除。
(2)若下午气温超过30℃,则王小燕必去游泳。
若她去游泳,则她就不去看电影了。
所以,若王小燕没去看电影,则下午气温必超过了30℃。
解(1) p:a能被4整除q:a能被2整除前提:p→q,p结论:q推理的形式结构:{p→q,p} A q前面已证此推理正确。
(2) p:下午气温超过30℃q:王小燕去游泳r:王小燕去看电影前提:p→q, q→¬r结论:¬ r→p推理的形式结构:{p→q,q→¬r} A(¬r→p)因为,(p→q)∧(q→¬ r)→(¬r→p)⇔m1∨m3∨m4∨m5∨m6∨m7主析取范式显然不是重言式,故推理不正确。
离散数学复习提纲(完整版)解析

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
离散数学 第3章 基于归结原理的推理证明

7
3.1.1.2 斯柯林(Skolem)标准范式
定义 3.1.2 从前束范式中消去全部存在量词所得到的公式即为 Skolem 标准范式。 例如,如果用 Skolem 函数 f(x)代替前束形范式 x (y)(z)( P( x) F ( y, z) Q( y, z)) 中 的 y 即得到 Skolem 标准范式: ( x) ( z)(P(x)∧F(f(x), z)∧Q(f(x), z)) Skolem 标准型的一般形式是
(x1 )(x2 )...(xn )M ( x1, x2 ,...,xn )
其中,M(x1,x2,…,xn)是一个合取范式,称为 Skolem 标准型的母式。
8
将谓词公式 G 化为 Skolem 标准型的步骤如下: (1)消去谓词公式 G 中的蕴涵(→)和双条件符号() ,以A∨B 代替 A→B,以(A∧ B)∨(A∧B)替换 AB。 (2)减少否定符号()的辖域,使否定符号“”最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。这里分两种情况,一种情况是存在量词不出现在全称量词的辖域内,此 时,只要用一个新的个体常量替换该存在量词约束的变元,就可以消去存在量词;另一种情况 是,存在量词位于一个或多个全称量词的辖域内,这时需要用一个 Skolem 函数替换存在量词 而将其消去。
15
例 3.2.1 求子句集 S={T(x)∨Q(z),R(f(y))}的 H 域。 解 此例中没有个体常量,任意指定一个常量 a 作为个体常量;只有一个函数 f(y),有: H0={a} H1={a,f(a)} H2={a,(a),f(f(a))} …… H∞={a,f(a),f(f(a)),f(f(f(a))),…}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章命题逻辑的推理理论主要内容1. 推理的形式结构:①推理的前提②推理的结论③推理正确④有效结论2. 判断推理是否正确的方法:①真值表法②等值演算法③主析取范式法3. 对于正确的推理,在自然推理系统P中构造证明4. ①自然推理系统P的定义②自然推理系统P的推理规则:前提引入规则、结论引入规则、置换规则、假言推理规则、附加规则、化简规则、拒取式规则、假言三段式规则、构造性二难规则、合取引入规则。
③附加前提证明法④归谬法学习要求1. 理解并记住推理的形式结构的三种等价形式,即①{A1,A2,…,A k}├B②A1∧A2∧…∧A k→B③前提与结论分开写:前提:A1,A2,…,A k结论:B在判断推理是否正确时,用②;在P系统中构造证明时用③。
2. 熟练掌握判断推理是否正确的三种方法(真值表法,等值演算法,主析取范式法)。
3. 牢记P系统中的各条推理规则。
4. 对于给定的正确推理,要求在P系统中给出严谨的证明序列。
5. 会用附加前提证明法和归谬法。
3.1 推理的形式结构定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意一组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。
二、有效推理的等价定理定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当(A1∧A2∧…∧A k )→B为重言式。
A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。
由此定理知,推理形式:前提:A1,A2,…,A k结论:B是有效的当且仅当(A1∧A2∧…∧A k)→B为重言式。
(A1∧A2∧…∧A k)→B称为上述推理的形式结构。
从而推理的有效性等价于它的形式结构为永真式。
于是,推理正确{A1,A2,…,A k} B可记为A1∧A2∧…∧A k B其中同一样是一种元语言符号,用来表示蕴涵式为重言式。
而判断命题公式永真性有三个方法:1.真值表法2.等值演算法3.主析取范式法三、重言蕴涵式由上一个小节可以看出:形如A→B的重言式在推理中十分重要。
若A→B为重言式,则称B为A的推论,记为A B,下面是几个重要的重言蕴涵式及其名称1.A(A∨B) 附加律2.(A∧B) A 化简律3.(A→B)∧A B 假言推理4.(A→B)∧┐B┐A 拒取式5.(A∨B)∧┐B A 析取三段论6.(A→B)∧(B→C)(A→C) 假言三段论7.(A B)∧(B C)(A C) 等价三段论8.(A→B)∧(C→D)∧(A∨C)(B∨D) 构造性二难(A→B)∧(┐A→B)∧(A∨┐A) B 构造性二难(特殊形式)9.(A→B)∧(C→D)∧(┐B∨┐D)(┐A∨┐C) 破坏性二难这几个蕴涵式在下节中将起重要的作用。
3.2 自然推理系统P一、形式推理系统我们将前述推理用更严谨的形式推理系统描述出来。
定义3.2一个形式系统I由下面四个部分组成:(1)非空的字符表集,记作A(I)。
(2)A(I)中符号构造的合式公式集,记作E(I)。
(3)E(I)中一些特殊的公式组成的公理集,记作A X(I)。
(4)推理规则集,记作R(I)。
可以将I记为<A(I),E(I),A X(I),R(I)>.其中<A(I),E(I)>是I的形式语言系统,<A X(I),R(I)>为I的形式演算系统。
形式系统一般分为两类。
一类是自然推理系统,它的特点是从任意给定的前提出发,应用系统中的推理规则进行推理演算,得到的最后命题公式是推理的结论(有时称为有效的结论,它可能是重言式,也可能不是)。
另一类是公理推理系统,它只能从若干给定的公理出发,应用系统中推理规则进行推理演算,得到的结论是系统中的重言式,称为系统中的定理。
二、自然推理系统PP是一个自然推理系统,因而没有公理。
故P只有三个部分。
定义3.3自然推理系统P定义如下:1.字母表(1)命题变项符号:p,q,r,…,p i,q i,r i,…(2)联结词符号:┐,∧,∨,→,(3)括号和逗号:( , ),,2.合式公式同定义1.63.推理规则(1)前提引入规则:在证明的任何步骤上都可以引入前提。
(2)结论引入规则:在证明的任何步骤上所得到的结论都可以作为后继证明的前提。
(3)置换规则:在证明的任何步骤上,命题公式中的子公式都可以用与之等值的公式置换,得到公式序列中的又一个公式。
由九条推理定律和结论引入规则还可以导出以下各条推理定律。
(4)假言推理规则(或称分离规则):若证明的公式序列中已出现过A→B和A,则由假言推理定律(A→B)∧A B可知,B是A→B和A的有效结论。
由结论引入规则可知,可将B引入到命题序列中来。
用图式表示为如下形式:以下各条推理定律直接以图式给出,不再加以说明。
(5)附加规则:(6)化简规则:(7)拒取式规则:(8)假言三段论规则:(9)析取三段论规则:(10)构造性二难推理:(11)破坏性二难推理规则:(12)合取引入规则:本条规则说明,若证明的公式序列中已出现A和B ,则可将A∧B引入序列中。
这就完成了P的定义。
三、P中的证明P中的证明就是由一组P中公式作为前提,利用P中的规则,推出结论。
当然此结论也为P中公式。
例在自然推理系统P中构造下面推理的证明:(1)前提:p∨q,q→r,p→s,┐s结论:r∧(p∨q)(2)前提:┐p∨q, r∨┐q ,r→s结论:p→s解 (1)证明:①p→s 前提引入②┐s 前提引入③┐p ①②拒取式④p∨q 前提引入⑤q ③④析取三段论⑥q→r 前提引入⑦r ⑤⑥假言推理⑧r∧(p∨q) ⑦④合取此证明的序列长为8,最后一步为推理的结论,所以推理正确,r∧(p∨q)是有效结论。
(2)证明:①┐p∨q 前提引入②p→q ①置换③r∨┐q 前提引入④q→r ③置换⑤p→r ②④假言三段论⑥r→s 前提引入⑦p→s ⑤⑥假言三段论从最后一步可知推理正确,p→s是有效结论。
可以在自然推理系统P中构造数学和日常生活中的一些推理,所得结论都是有效的,即当各前提的合取式为真时,结论必为真。
例在自然推理系统P中构造下面推理的证明:若数a是实数,则它不是有理数就是无理数;若a不能表示成分数,则它不是有理数;a是实数且它不能表示成分数。
所以a是无理数。
解首先将简单命题符号化:设p:a是实数。
q:a是有理数。
r:a是无理数。
s:a能表示成分数。
前提:p→(q∨r), ┐s→┐q, p∧┐s结论:r证明:①p∧┐s 前提引入②p ①化简③┐s ①化简④p→(q∨r) 前提引入⑤q∨r ②④假言推理⑥┐s→┐q 前提引入⑦┐q ③⑥假言推理⑧r ⑤⑦析取三段论P中证明的两个常用技巧:1.附加前提证明法2.归谬法四、附加前提法有时推理的形式结构具有如下形式(A1∧A2∧…∧A k)→(A→B) (3.5)(3.5)式中结论也为蕴涵式。
此时可将结论中的前件也作为推理的前提,使结论只为B。
即,将(3.5)化为下述形式(A1∧A2∧…∧A k∧A)→B (3.6)其正确性证明如下:(A1∧A2∧…∧A k)→(A→B))┐(A1∧A2∧…∧A k)∨(┐A∨B)┐(A1∧A2∧…∧A k∨┐A)∨B┐(A1∧A2∧…∧A k∧A)∨B(A1∧A2∧…∧A k∧A)→B因为(3.5)式与(3.6)式是等值的,因而若能证明(3.6)式是正确的,则(3.5)式也是正确的。
用形式结构(3.6)式证明,将A称为附加前提,并称此证明法为附加前提证明法。
例在自然推理系统P中构造下面推理的证明。
如果小张和小王去看电影,则小李也去看电影;小赵不去看电影或小张去看电影;小王去看电影。
所以,当小赵去看电影时,小李也去看电影。
解将简单命题符号化:设p:小张去看电影。
q:小王去看电影。
r:小李去看电影。
s:小赵去看电影。
前提:(p∧q)→r,┐s∨p,q结论:s→r证明:用附加前提证明法。
①s 附加前提引入②┐s∨p 前提引入③p ①②析取三段论④(p∧q)→r 前提引入⑤q 前提引入⑥p∧q ③⑤合取⑦r ④⑥假言推理思考:不用附加前提证明法构造例3.5的证明。
五、归谬法在构造形式结构为(A1∧A2∧…∧A k)→B的推理证明中,如果将┐B作为前提能推出矛盾来,比如说得出(A∧┐A),则说明推理正确。
其原因如下:(A1∧A2∧…∧A k)→B┐(A1∧A2∧…∧A k)∨B┐(A1∧A2∧…∧A k∧┐B)若(A1∧A2∧…∧A k∧┐B)为矛盾式,正说明(A1∧A2∧…∧A k)→B为重言式,即(A1∧A2∧…∧A k)B,故推理正确。
例在自然推理系统P中构造下面推理的证明。
如果小张守第一垒并且小李向B队投球,则A队将取胜;或者A队未取胜,或者A 队获得联赛第一名;A队没有获得联赛的第一名;小张守第一垒。
因此,小李没有向B 队投球。
解先将简单命题符号化。
设p:小张守第一垒。
q:小李向B队投球。
r:A队取胜。
s:A队获得联赛第一名。
前提:(p∧q)→r,┐r∨s,┐s ,p结论:┐q证明:用归谬法①q 结论的否定引入②┐r∨s 前提引入③┐s 前提引入④┐r ②③析取三段论⑤(p∧q)→r 前提引人⑥┐(p∧q) ④⑤拒取式⑦┐p∨┐q ⑥置换⑧p 前提引入⑨┐q ⑦⑧析取三段论⑩q∧┐q ①⑨合取由于最后一步q∧┐q0,即(((p∧q)→r)∧(┐r∨s)∧┐s∧p)∧q0,所以推理正确。