离散数学结构 第3章 命题逻辑的推理理论
离散数学课件03命题逻辑的推理理论

((┐p∧┐q)∨p) ∨ q
((┐p∨p )∧(┐q∨p)) ∨ q
(┐q∨p) ∨ q 1
精选课件ppt
由定理 3.1可知, 推理正确。
15
推理定律--重言蕴含式
(1) A (A∨B)
附加律
(2) (A∧B) A
化简律
(3) (A→B)∧A B
假言推理
(4) (A→B)∧┐B ┐A
拒取式
(5) (A∨B)∧┐B A
析取三段论
(6) (A→B) ∧ (B→C) (A→C)
假言三段论
(7) (AB) ∧ (BC) (A C)
等价三段论
(8) (A→B)∧(C→D)∧(A∨C) (B∨D) (A→B)∧(┐A→B)∧(A∨┐A) B
构造性二难 构造性二难
(特殊形式)
(9)(A→B)∧(C→D)∧(┐B∨┐精D选)课件pp(t ┐A∨┐C) 破坏性二难16
只要不出现(3)中的情况,推理就是正确的,因而判断 推理是否正确,就是判断是否会出现(3)中的情况。
推理正确,并不能保证结论B一定为真。
精选课件ppt
8
例题
例3.1 判断下列推理是否正确。(真值表法)
(1) {p,p→q}├ q (2) {p,q→p}├ q
正确 不正确
p q p(p→q) q p(q→p)
推理是指从前提出发推出结论的思维过程。
前提是已知命题公式集合。
结论是从前提出发应用推理规则推出的命题公式。
证明是描述推理正确或错误的过程。
要研究推理,首先应该明确什么样的推理是有效的或 正确的。
精选课件ppt
4
命题逻辑的推理理论
概念
描述问题 的句子
命题逻辑的推理理论课件(离散数学)

一、自然推理系统P
自然推理系统P由三个部分组成:
1.
字母表:命题变项符号;联结词符号;括
号和逗号。
2.
命题公式。
3.
推理规则。
22
二、推理规则
(1) 前提引入规则 (2) 结论引入规则 (3) 置换规则 (4) 假言推理规则 AB A \B (5) 附加规则 A \AB (6) 化简规则 AB \A (7) 拒取式规则 AB B \A (8) 假言三段论规则 AB BC \AC
30
四、附加前提证明法
例6:用附加前提证明法构造证明下面的推
理: 2是素数或合数。若2是素数,则 2 是 无理数。若 2 是无理数,则4不是素数。所 以,如果4是素数,则2是合数。
31
四、附加前提证明法
解: 设 p:2是素数, q:2是合数,
r: 2 是无理数,s:4是素数 推理形式结构 前提:pq, pr, rs 结论:sq
40
五、归谬法
解:命题符号化
p:小张守第一垒 q:小李向B队投球
r:A队取胜
s:A队成为联赛第一名
推理的形式结构如下:
( p q ) r , r s , s , p 结论: q
前提:
41
五、归谬法
证一:归谬法(略) 证二:直接法 ① r s 前提引入
② s
③r
前提引入
5
前提是有限个公式的集合,而不是序列 。
二、推理的有效性
A1A2… Ak
0 0
B
0 1
推理的有效性 有效 有效
1
1
0
有效
无效
6
二、推理的有效性
定义:若对于每组赋值,当 A1A2…Ak
离散数学命题逻辑推理理论

构造性二难
(A®B)Ù(ØA®B) Þ B
构造性二难(特殊形式)
(A®B)Ù(C®D)Ù( ØBÚØD) Þ (ØAÚØC) 破坏性二难
自然推理系统P
自然推理系统P由下述3部分组成:
1、 字母表
命题变项符号: p,q,r,…,
pi,qi,ri,…
联结词:
,
,
,
,
括号与逗号: ( ), , 2、 合式
明天就是5号、 解 设 p: 今天就是1号, q: 明天就是5号 推理得形式结构为 (p®q)Ùp®q 证明 用等值演算法
(p®q)Ùp®q Û Ø((ØpÚq)Ùp)Úq Û ((pÙØq)ÚØp)Úq Û ØpÚØqÚq Û 1
得证推理正确
实例( 续 )
(2) 若今天天冷,小王就穿羽绒服。小王就穿羽绒服。 所以, 今天天冷。
r:我有课,
s:我备课
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
实例( 续 )
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
证明 ① r®s ② Øs ③ Ør ④ (pÚq)®r
前提引入 前提引入 ①②拒取式 前提引入
Ø(pÚq)
③④拒取式
⑥ ØpÙØq
置换
结论有效, 即明天不就是星期一与星期三
公式
3. 推理规则
前提引入规则
结论引入规则
置换规则
自然推理系统P(续)
(4) 假言推理规则 A®B A
\B (5) 附加规则
A \AÚB (6) 化简规则
AÙB \A
(7) 拒取式规则 A®B ØB
\ØA (8) 假言三段论规则
A®B B®C
离散数学结构第3章命题逻辑的推理理论复习

离散数学结构第3章命题逻辑的推理理论复习第3章命题逻辑的推理理论主要内容1. 推理的形式结构:①推理的前提②推理的结论③推理正确④有效结论2. 判断推理是否正确的⽅法:①真值表法②等值演算法③主析取范式法3. 对于正确的推理,在⾃然推理系统P中构造证明4. ①⾃然推理系统P的定义②⾃然推理系统P的推理规则:前提引⼊规则、结论引⼊规则、置换规则、假⾔推理规则、附加规则、化简规则、拒取式规则、假⾔三段式规则、构造性⼆难规则、合取引⼊规则。
③附加前提证明法④归谬法学习要求1. 理解并记住推理的形式结构的三种等价形式,即①{A1,A2,…,A k}├B②A1∧A2∧…∧A k→B③前提与结论分开写:前提:A1,A2,…,A k结论:B在判断推理是否正确时,⽤②;在P系统中构造证明时⽤③。
2. 熟练掌握判断推理是否正确的三种⽅法(真值表法,等值演算法,主析取范式法)。
3. 牢记P系统中的各条推理规则。
4. 对于给定的正确推理,要求在P系统中给出严谨的证明序列。
5. 会⽤附加前提证明法和归谬法。
3.1 推理的形式结构定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意⼀组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。
⼆、有效推理的等价定理定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当(A1∧A2∧…∧A k )→B为重⾔式。
A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。
由此定理知,推理形式:前提:A1,A2,…,A k结论:B是有效的当且仅当(A1∧A2∧…∧A k)→B为重⾔式。
(A1∧A2∧…∧A k)→B称为上述推理的形式结构。
从⽽推理的有效性等价于它的形式结构为永真式。
于是,推理正确{A1,A2,…,A k} B可记为A1∧A2∧…∧A k B其中同⼀样是⼀种元语⾔符号,⽤来表⽰蕴涵式为重⾔式。
离散数学课件-3-命题逻辑的推理理论

第三章 命题逻辑的推理理论§1 推理的形式结构推理:从前提出发推出结论的思维过程。
前提:已知命题公式集合。
结论:从前提出发应用推理规则推出的命题公式。
定义设A1, A2, …, A k, B都是命题公式,若命题公式A1∧A2∧…∧A k→B是重言式,则称由前提A1, A2, …, A k推出结论B的推理是有效的或正确的,并称B是有效的结论。
推理的形式结构记为{A1,A2,…,A k}A B推理正确,记为{ A1,A2,…,A k }⊨B推理无效,记为{ A1,A2,…,A k }⊭B注①推理正确,结论未必为真。
②推理只注重结构。
例判断下述推理的正确性。
(1) {p, p→q}⊢ q(2) {p, q→p}⊢ q解 (1) p∧(p→q)→q⇔p∧(¬p∨q)→q⇔(p∧¬p)∨(p∧q)→q⇔p∧q→q⇔¬ (p∧q)∨q⇔¬p∨(¬q∨q)⇔¬p∨1⇔1故{p, p→q }⊨ q(2) p∧(q→p)→q让q =0,可得q→p =1,再取p =1可得p∧(q→p)=1 由此得p∧(q→p)→q有成假赋值1 0,故{ p, q→p }⊭ q判断推理正确性:1.真值表法。
2.等值演算法。
3.主析取范式法。
4.构造证明。
例判断下述推理是否正确?(1)若a能被4整除,则a能被2整除。
a能被4整除。
所以a能被2整除。
(2)若下午气温超过30℃,则王小燕必去游泳。
若她去游泳,则她就不去看电影了。
所以,若王小燕没去看电影,则下午气温必超过了30℃。
解(1) p:a能被4整除q:a能被2整除前提:p→q,p结论:q推理的形式结构:{p→q,p} A q前面已证此推理正确。
(2) p:下午气温超过30℃q:王小燕去游泳r:王小燕去看电影前提:p→q, q→¬r结论:¬ r→p推理的形式结构:{p→q,q→¬r} A(¬r→p)因为,(p→q)∧(q→¬ r)→(¬r→p)⇔m1∨m3∨m4∨m5∨m6∨m7主析取范式显然不是重言式,故推理不正确。
离散数学PPT课件

20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学命题逻辑推理理论

通过引入新的逻辑元素、运算符和规则,扩展 命题逻辑的表达能力和应用范围。
模糊命题逻辑
研究模糊命题的逻辑结构和推理规则,以处理 不确定性和模糊性。
模态命题逻辑
引入模态算子,研究模态命题的逻辑结构和推理,以处理必然性和可能性。
未来命题逻辑的研究热点
自然语言处理中的逻辑推理
结合自然语言处理技术,研究自然语言中复杂逻辑 关系的表达和推理。
人工智能中的逻辑推理
探索在人工智能领域中应用命题逻辑的方法和技术 ,提高人工智能系统的推理能力。
多模态逻辑推理
研究多模态信息(如文本、图像、音频等)的逻辑 结构和推理规则,以实现多模态信息的融合和理解 。
THANK YOU
感谢聆听
离散数学命题逻辑推理理论
目
CONTENCT
录
• 命题逻辑基础 • 推理规则 • 逻辑推理题目解析 • 命题逻辑的应用 • 命题逻辑的局限性与发展
01
命题逻辑基础
命题与逻辑联结词
命题
命题是具有真假意义的陈述句,可以 判断为真或假。
逻辑联结词
逻辑联结词用于连接命题,形成复合 命题,常见的逻辑联结词包括与(&&) 、或(||)、非(~)等。
命题形式与真值表
命题形式
命题可以表示为不同的形式,如P、Q、R等,表示简单命题,也 可以表示为P(&&)Q、P(||)Q等,表示复合命题。
真值表
真值表是用来表示命题逻辑运算结果的表格,根据不同的逻辑联 结词和命题的真假值,可以计算出复合命题的真假值。
命题的等价与蕴含
命题等价
如果两个命题在逻辑上具有相同的真 假值,则它们是等价的。
80%
归结推理
《离散数学》教学大纲

《离散数学》教学大纲(Discrete Mathematics)适用专业:电子信息类课程类别:学科基础课课程学时:48课程学分:3.0先修课程:高等数学、线性代数等一、课程简介离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是计算机科学与技术的支撑学科。
它在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能与机器人、数据库、网络、计算机图形学、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握离散结构的描述工具和处理方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
二、教学目的与任务离散数学是一门培养学生缜密思维、严格推理,具有综合归纳分析能力的课程。
通过本课程的学习,使学生有一定的严格逻辑推理与抽象思维能力,掌握离散量的处理及运算技能,能够将离散数学应用到解决计算机技术中的实际问题中。
不仅能为学生奠定计算机科学的专业基础,并且能为将后续课程的学习及将来开发软、硬件技术及研究、应用提供有力的工具。
三、课程内容第1章命题逻辑的基本概念1.1命题与联结词1.2命题公式及其赋值第2章命题逻辑等值演算2.1等值式2.2析取范式与合取范式* 2.3联结词的完备集* 2.4可满足性问题与消解法第3章命题逻辑的推理理论3.1推理的形式结构3.2自然推理系统P3.3消解证明法第4章一阶逻辑基本概念4.1一阶逻辑命题符号化4.2一阶逻辑公式及其解释第5章一阶逻辑等值演算与推理5.1一阶逻辑等值式与置换规则5.2一阶逻辑前束范式* 5.3一阶逻辑的推理理论第6章集合代数6.1集合的基本概念6.2集合的运算6.3有穷集的计数6.4集合恒等式第7章二元关系7.1有序对与笛卡儿积7.2二元关系7.3关系的运算7.4关系的性质7.5关系的闭包7.6等价关系与划分7.7偏序关系第8章函数8.1函数的定义与性质8.2函数的复合与反函数* 8.3双射函数与集合的基数* 8.4一个电话系统的描述实例第14章图的基本概念14.1图14.2通路与回路14.3图的连通性14.4图的矩阵表示* 14.5图的运算第15章欧拉图与哈密顿图15.1欧拉图15.2哈密顿图15.3最短路问题、中国邮递员问题与货郎担问题第16章树16.1无向树及其性质16.2生成树16.3根树及其应用三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明该课程教学方式主要有:课堂教学、交互学习、课后作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章命题逻辑的推理理论3.1 推理的形式结构一、有效推理数理逻辑的主要任务是用数学的方法来研究数学中的推理。
所谓推理是指从前提出发推出结论的思维过程,而前提是已知命题公式集合,结论是从前提出发应用推理规则推出的命题公式。
要研究推理就应该给出推理的形式结构,为此,首先应该明确什么样的推理是有效的或正确的。
定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意一组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B 也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。
关于定义3.1还需要做以下几点说明:1.由前提A1,A2,…,A k推结论B的推理是否正确与诸前提的排列次序无关。
因而前提的公式不一定是序列,而是一个有限的公式集合,若将这个集合记为Г,可将由Г推B 的推理记为Г├B。
若推理是正确的,则记为ГB,否则记为ГB。
这里,可以称Г├B和{ A1,A2,…,A k}├B 为推理的形式结构。
2.设A1,A2,…,A k,B中共出现n个命题变项,对于任何一组赋值α1,α2,…,αn(αi =0或者1,i=1,2,…,n),前提和结论的取值情况有以下四种:(1) A1∧A2∧…∧A k为0,B为0.(2) A1∧A2∧…∧A k为0,B为1.(3) A1∧A2∧…∧A k为1,B为0.(4) A1∧A2∧…∧A k为1,B为1.由定义3.1可知,只要不出现(3)中的情况,推理就是正确的,因而判断推理是否正确,就是判断是否会出现(3)中的情况。
3.由以上的讨论可知,推理正确,并不能保证结论B一定为真,这与数学中的推理是不同的。
例3.1判断下列推理是否正确:(1){p,p→q}q(2){p,q→p}q解只要写出前提的合取式与结论的真值表,看是否出现前提合取式为真,而推论为假的情况。
(1)由表3.1可知,没有出现前提合取式为真,而结论为假的情况,因而(1)中推理正确,即{p,p→q}q.(2)由表3.1可知,在赋值为10情况下,出现了前提合取式为真,而结论为假的情况,因而(2)推理不正确,即{p,q→p}q.表3.1对于本例这样简单的推理,不用写真值表也可以判断推理是否正确。
在(1)中,当q 为假时,无论p是真是假,p∧(p→q)均为假,因而不会出现前提合取式为真,结论为假的情况,因而推理正确。
而在(2)中,当q为假,p为真时,出现了前提合取式为真,结论为假的情况,因而推理不正确。
二、有效推理的等价定理定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当(A1∧A2∧…∧A k )→B为重言式。
证首先证明其必要性。
若A1,A2,…,A k推B的推理正确,则对于A1,A2,…,A k,B中所含命题变项的任意一组赋值,不会出现A1∧A2∧…∧A k为真,而B为假的情况,因而在任何赋值下,蕴涵式(A1∧A2∧…∧A k )→B均为真,故它为重言式。
再证明其充分性。
若蕴涵式(A1∧A2∧…∧A k)→B为重言式,则对于任何赋值此蕴涵式均为真,因而不会出现前件为真后件为假的情况,即在任何赋值下,或者A1∧A2∧…∧A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。
由此定理知,推理形式:前提:A1,A2,…,A k结论:B是有效的当且仅当(A1∧A2∧…∧A k)→B为重言式。
(A1∧A2∧…∧A k)→B称为上述推理的形式结构。
从而推理的有效性等价于它的形式结构为永真式。
于是,推理正确{A1,A2,…,A k} B可记为A1∧A2∧…∧A k B其中同一样是一种元语言符号,用来表示蕴涵式为重言式。
而判断命题公式永真性有三个方法:1.真值表法2.等值演算法3.主析取范式法下面用例子说明。
例3.2判断下面推理是否正确:(1)若a能被4整除,则a能被2整除;A能被4整除。
所以a能被2整除。
(2)若a能被4整除,则a能被2整除;A能被2整除。
所以a能被4整除。
(3)下午马芳或去看电影或去游泳;她没有看电影。
所以,她去游泳了。
(4)若下午气温超过30℃,则王小燕必去游泳;若她去游泳,她就不去看电影了。
所以王小燕没有去看电影,下午气温必超过了30℃。
解解上述类型的推理问题,首先应该将简单命题符号化。
然后分别写出前提、结论、推理的形式结构,接着进行判断。
(1)设p:a能被4整除。
q: a能被2整除。
前提:p→q,p结论:q推理的形式结构:(p→q)∧p→q (3.1)由例3.1可知,此推理正确,即(p→q)∧p q。
(2)设p,q的含义同(1)。
前提:p→q,q结论:p推理的形式结构:(p→q)∧q→p (3.2)当然可以用真值表法、等值演算、主析取范式等方法来判断(3.2)式是否为重言式。
但在此推理中,容易看出01是(3.2)式的成假赋值,所以(2)推理不正确。
(3)设p:马芳下午看电影。
q:马芳下午去游泳。
前提:p∨q,┐p结论:q推理形式结构:((p∨q)∧┐p)→q (3.3)用等值演算法来判断(3.3)式是否为重言式。
((p∨q)∧p)→q┐((p∨q)∧┐p)∨q((┐p∧┐q)∨p)∨q((┐p∨p)∧(┐q∨p))∨q┐q∨p∨q1这说明(3.3)式为重言式,所以推理正确。
(4)设p:下午气温超过30℃。
q:王小燕去游泳。
r:王小燕去看电影。
前提:p→q,q→┐r结论:┐r→p推理的形式结构:((p→q)∧(q→┐r))→(┐r→p) (3.4)用主析取范式法判断(3.4)式是否为重言式。
((p→q)∧(q→┐r))→(┐r→p)┐((┐p∨q)∧(┐q∨┐r))∨(r∨p)((p∧┐q)∨(q∧r))∨r∨pr∨p (用两次吸收律)(p∧┐q∧┐r)∨(p∧┐q∧r)∨(p∧q∧┐r) ∨(p∧q∧r)∨(┐p∧┐q∧r)∨(┐p∧q∧r) ∨(p∧┐q∧r)∨(p∧q∧r) m1∨m3∨m4∨m5∨m6∨m7(重排了序)可见(3.4)式不是重言式(主析取范式中少两个极小项m0,m2),所以推理不正确。
三、重言蕴涵式由上一个小节可以看出:形如A→B的重言式在推理中十分重要。
若A→B为重言式,则称B为A的推论,记为A B,下面是几个重要的重言蕴涵式及其名称1.A(A∨B) 附加律2.(A∧B) A 化简律3.(A→B)∧A B 假言推理4.(A→B)∧┐B┐A 拒取式5.(A∨B)∧┐B A 析取三段论6.(A→B)∧(B→C)(A→C) 假言三段论7.(A B)∧(B C)(A C) 等价三段论8.(A→B)∧(C→D)∧(A∨C)(B∨D) 构造性二难(A→B)∧(┐A→B)∧(A∨┐A) B 构造性二难(特殊形式)9.(A→B)∧(C→D)∧(┐B∨┐D)(┐A∨┐C) 破坏性二难这几个蕴涵式在下节中将起重要的作用。
3.2 自然推理系统P一、形式推理系统我们将前述推理用更严谨的形式推理系统描述出来。
定义3.2一个形式系统I由下面四个部分组成:(1)非空的字符表集,记作A(I)。
(2)A(I)中符号构造的合式公式集,记作E(I)。
(3)E(I)中一些特殊的公式组成的公理集,记作A X(I)。
(4)推理规则集,记作R(I)。
可以将I记为<A(I),E(I),A X(I),R(I)>.其中<A(I),E(I)>是I的形式语言系统,<A X(I),R(I)>为I的形式演算系统。
形式系统一般分为两类。
一类是自然推理系统,它的特点是从任意给定的前提出发,应用系统中的推理规则进行推理演算,得到的最后命题公式是推理的结论(有时称为有效的结论,它可能是重言式,也可能不是)。
另一类是公理推理系统,它只能从若干给定的公理出发,应用系统中推理规则进行推理演算,得到的结论是系统中的重言式,称为系统中的定理。
二、自然推理系统PP是一个自然推理系统,因而没有公理。
故P只有三个部分。
定义3.3自然推理系统P定义如下:1.字母表(1)命题变项符号:p,q,r,…,p i,q i,r i,…(2)联结词符号:┐,∧,∨,→,(3)括号和逗号:( , ),,2.合式公式同定义1.63.推理规则(1)前提引入规则:在证明的任何步骤上都可以引入前提。
(2)结论引入规则:在证明的任何步骤上所得到的结论都可以作为后继证明的前提。
(3)置换规则:在证明的任何步骤上,命题公式中的子公式都可以用与之等值的公式置换,得到公式序列中的又一个公式。
由九条推理定律和结论引入规则还可以导出以下各条推理定律。
(4)假言推理规则(或称分离规则):若证明的公式序列中已出现过A→B和A,则由假言推理定律(A→B)∧A B可知,B是A→B和A的有效结论。
由结论引入规则可知,可将B引入到命题序列中来。
用图式表示为如下形式:以下各条推理定律直接以图式给出,不再加以说明。
(5)附加规则:(6)化简规则:(7)拒取式规则:(8)假言三段论规则:(9)析取三段论规则:(10)构造性二难推理:(11)破坏性二难推理规则:(12)合取引入规则:本条规则说明,若证明的公式序列中已出现A和B ,则可将A∧B引入序列中。
这就完成了P的定义。
三、P中的证明P中的证明就是由一组P中公式作为前提,利用P中的规则,推出结论。
当然此结论也为P中公式。
例3.3在自然推理系统P中构造下面推理的证明:(1)前提:p∨q,q→r,p→s,┐s结论:r∧(p∨q)(2)前提:┐p∨q, r∨┐q ,r→s结论:p→s解 (1)证明:①p→s 前提引入②┐s 前提引入③┐p ①②拒取式④p∨q 前提引入⑤q ③④析取三段论⑥q→r 前提引入⑦r ⑤⑥假言推理⑧r∧(p∨q) ⑦④合取此证明的序列长为8,最后一步为推理的结论,所以推理正确,r∧(p∨q)是有效结论。
(2)证明:①┐p∨q 前提引入②p→q ①置换③r∨┐q 前提引入④q→r ③置换⑤p→r ②④假言三段论⑥r→s 前提引入⑦p→s ⑤⑥假言三段论从最后一步可知推理正确,p→s是有效结论。
可以在自然推理系统P中构造数学和日常生活中的一些推理,所得结论都是有效的,即当各前提的合取式为真时,结论必为真。
例3.4在自然推理系统P中构造下面推理的证明:若数a是实数,则它不是有理数就是无理数;若a不能表示成分数,则它不是有理数;a是实数且它不能表示成分数。
所以a是无理数。
解首先将简单命题符号化:设p:a是实数。
q:a是有理数。
r:a是无理数。
s:a能表示成分数。
前提:p→(q∨r), ┐s→┐q, p∧┐s结论:r证明:①p∧┐s 前提引入②p ①化简③┐s ①化简④p→(q∨r) 前提引入⑤q∨r ②④假言推理⑥┐s→┐q 前提引入⑦┐q ③⑥假言推理⑧r ⑤⑦析取三段论P中证明的两个常用技巧:1.附加前提证明法2.归谬法四、附加前提法有时推理的形式结构具有如下形式(A1∧A2∧…∧A k)→(A→B) (3.5)(3.5)式中结论也为蕴涵式。