离散数学第一章命题逻辑的推理理论

合集下载

离散数学第一章 命题逻辑

离散数学第一章 命题逻辑

令Q表示:张亮是跳远运动员。
于是命题,张亮可能是跳高或跳远运动员就可以用P∨Q来表示,因为这里的或是可 兼或。 逻辑联结词析取也是个二元运算符。
1.1 命题和联结词
逻辑联结词单条件—“→”
设P是一个命题,Q是一个命题,由联结词→把P、Q连接成P→Q,称P→Q为P、 Q的条件式复合命题,把P和Q分别称为P→Q的前件和后件,或者前提和结论。 P→Q读作“如果P则Q”或“如果P那么Q”。其中P被称为前件,Q被称为为后件。 很多时候联结词→也被称为蕴涵。 P→Q的真值是这样定义的,当且仅当P→Q的前件P的真值为T,后件Q的真值为F
1.1 命题和联结词
逻辑联结词否定—“┓”
设P是一个命题,则联结词┓和命题P构成┓P,┓P为命题P的否定式复合 命题,读作“非P”。联结词┓是自然语言中的“非”、“不”和“没有” 等的逻辑抽象。 其真值是这样定义的,若P的真值是T,那么┓P的真值是F;若P的真值 是F,则┓P的真值是T。命题P与其否定┓P的如表1.1所示。
1.2 合式公式与真值表
例1.4 令P表示:小明现在正在睡觉。
令Q表示:小明现在正在打球。 于是命题,小明现在正在睡觉或者正在打球不能用P∨Q来表示。因为这里自然语言陈述的或是 排斥或,这种意义的或我们用另一个逻辑联结词“异或”“”来表示,后面我们将给出它的 定义。
1.1 命题和联结词
逻辑联结词析取——“∨”
例1.5 将句子“他昨晚做了20或者30道作业题”表示为复合命题。 在此例中,该句子不能被表示成复合命题,因为这里的“或”表示的是近似或者猜 测的意思。 例1.6 令P表示:张亮是跳高运动员。
P F F T T Q F T F T P∧Q F F F T P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1

离散数学第一章命题逻辑知识点总结

离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。

简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。

离散数学(一)知识梳理

离散数学(一)知识梳理

离散数学(一)知识梳理•逻辑和证明部分o命题逻辑题型▪命题符号化问题将自然语言转为符号化逻辑命题▪用命题变量来表示原子命题▪用命题联结词来表示连词▪命题公式的类型判断判断命题公式是否是永真式、矛盾式、可能式▪利用真值表判断▪利用已知的公式进行推理判断▪利用主析取和合取范式判断▪定理:A为含有n个命题变元的命题公式,若A的主析取范式含有2^n个极小项,则A为重言式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为矛盾式;若A的主合取范式含有2^n个极大项,则A为矛盾式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为重言式▪翻译:一个命题公式化成主范式后,若所有项都分布在主析取范式中(主合取范式为1)则为重言式;若所有项都分布在主合取范式中(主析取范式为0)则为矛盾式;若均有分布,则为可满足式。

【思想来源:真值表法求主范式】▪一个质析取式是重言式的充要条件是其同时含有某个命题变元及其否定式;一个质合取式是矛盾式的充要条件是其同时含有某个命题变元及其否定式▪一个析取范式是矛盾式当且仅当它的每项都是矛盾式;一个合取范式是重言式当且仅当它的每项都是重言式▪求(主)析取或合取范式▪等值演算法▪ 1. 利用条件恒等式消除条件(蕴含和双条件)联结词,化简得到一个范式▪ 2. 在缺项的质项中不改变真值地添加所缺项,化简得到一个主范式▪ 3. 找出包含所有命题变元排列中剩余项,凑出另一个主范式(思想上类似于真值表法)▪真值表法▪ 1. 画出命题公式真值表▪ 2. 根据真值表结果求出主范式▪主析取范式:真值为1的所有项,每一项按对应01构成极小项▪主合取范式:真值为0的所有项,每一项按对应01构成极大项▪形式证明与命题推理利用推理规则构造一个命题公式的序列,证明结论▪形式证明:命题逻辑的论证是一个命题公式的序列,其中每个公式或者是前提,或者是由它之前的公式作为前提推得的结论,序列的最后一个是待证的结论,这样的论证也称为形式证明。

2. 离散数学-命题逻辑1

2. 离散数学-命题逻辑1
P:⊿ABC是等边三角形。 Q:⊿ABC是等角三角形。 PQ :⊿ABC是等边三角形当且仅当它是等角三角形。
PQ的真值:
• PQ的真值为真,当且仅当P与Q的真值相同。
PQ FF FT TF TT
PQ T F F T

例 求下列复合命题的真值
(1) 2 + 2 = 4 当且仅当 3 + 3 = 6.
数理逻辑把推理符号化之二*
• 设M(x): x是金属 .
• 设C(x): x能导电.
• 设x 表示: 所有的x .
• 设 a 表示铜.
例2的推理过程表示为:
前提:x(M(x)→C(x)) (所有金属都导电.)
前提:M(a)
(铜是金属.)
结论:C(a)
(铜能导电.)
(其中符号M(x)是谓词, 是量词,所以这就是第二章“一阶逻辑(谓 词逻辑)”中所讨论的内容.)
假命题
(3) x + 5 > 3.
真值不确定
(4) 你有铅笔吗?
疑问句
(5) 这只兔子跑得真快呀!
感叹句
(6) 请不要讲话!
祈使句
(3)~(6)都不是命题
15
命题的分类
• 简单命题 (原子命题):由最简单的陈述句构成的命题 (该句再不能 分解成更简单的句子了)。通常用大写英字母表示。
• 例1-1.1中的(1)、(2)、(3)是原子命题。 • 复合命题 :由若干个原子命题构成的命题。 • 例1-1.1中的(4)是由三个原子命题(a>b、b>c、a>c)构成的复合命题。
• 这里我们只关心形式逻辑。
形式逻辑*
• 人的思维过程:概念 判断 推理 • 正确的思维:概念清楚,判断正确,推理合乎逻辑。 • 人们是通过各种各样的学习(理论学习和从实践中学习)

离散数学命题逻辑推理理论

离散数学命题逻辑推理理论

构造性二难
(A®B)Ù(ØA®B) Þ B
构造性二难(特殊形式)
(A®B)Ù(C®D)Ù( ØBÚØD) Þ (ØAÚØC) 破坏性二难
自然推理系统P
自然推理系统P由下述3部分组成:
1、 字母表
命题变项符号: p,q,r,…,
pi,qi,ri,…
联结词:
,
,
,
,
括号与逗号: ( ), , 2、 合式
明天就是5号、 解 设 p: 今天就是1号, q: 明天就是5号 推理得形式结构为 (p®q)Ùp®q 证明 用等值演算法
(p®q)Ùp®q Û Ø((ØpÚq)Ùp)Úq Û ((pÙØq)ÚØp)Úq Û ØpÚØqÚq Û 1
得证推理正确
实例( 续 )
(2) 若今天天冷,小王就穿羽绒服。小王就穿羽绒服。 所以, 今天天冷。
r:我有课,
s:我备课
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
实例( 续 )
前提: (pÚq)®r, r®s, Øs
结论: ØpÙØq
证明 ① r®s ② Øs ③ Ør ④ (pÚq)®r
前提引入 前提引入 ①②拒取式 前提引入
Ø(pÚq)
③④拒取式
⑥ ØpÙØq
置换
结论有效, 即明天不就是星期一与星期三
公式
3. 推理规则
前提引入规则
结论引入规则
置换规则
自然推理系统P(续)
(4) 假言推理规则 A®B A
\B (5) 附加规则
A \AÚB (6) 化简规则
AÙB \A
(7) 拒取式规则 A®B ØB
\ØA (8) 假言三段论规则
A®B B®C

1命题逻辑

1命题逻辑

6
命题表示法:可用 • 字母a,b,c,…,p,q,r… • 或带下标的字母,如p1,q4…表示命题。 例:p:今天下雨。 q:今天是晴天。 r :雪是黑的。
命题标识符:表示命题的符号。 如上例中的p,q和r就是标识符。
7
命题分类 1. 简单命题:不能分解为更简单命题的命题, 又称为原子命题。 2. 复合命题:由原子命题、联结词和标点符 号复合构成的命题。 例:(1) 黄色和蓝色都是常用的颜色。 (2) 李冰选学英语或法语。 (3) 如果4是偶数,则5也是偶数。 (4) 小王虽然没上过大学,但他自学成才。 符号逻辑下,联结词也要符号化。
例:公式 p pq (p q) ∧r ((pq)( q p)) 的层次分别为 0、1、3、4
33
1.4
真值表与等值公式
赋值/指派:设p1,p2,…,pn是出现在公 式A中的全部命题变元,给p1,p2,…,pn 各指定一个真值,称为对公式A的一个赋值。 若指定的一组值使A的真值为1,则称这组 值为A的成真赋值/指派,若使A的真值为0, 则称这组值为A的成假赋值/指派。 真值表:在命题公式中,对于分量指派真 值的各种可能组合,就确定了这个命题公 式的各种真值情况,把它汇列成表,就是 命题公式的真值表。
18
如:R:张三或者李四考了90分。 S:第一节课上数学或者上英语。
对于R,张三和李四可能都考了90分。张三和 李四中只要有一个考了90分,则命题R为真, 若张三和李四都考了90分,R当然也为真。
而对于S,第一节课不能既上数学又上英语, 因此,若p表示“第一节课上数学”,q表示“ 第一节课上英语”,当两个命题都真,S就不 真了。在将命题进行形式化的时候,我们不能 简单的符号化为p∨q,而应采用其他形式。如 可以写为(p∧┐q)∨(┐p∧q)。

离散数学-第1章

离散数学-第1章
27
练习1解答
提示: 分清复合命题与简单命题 分清相容或与排斥或 分清必要与充分条件及充分必要条件
答案: (1) 是简单命题
(2) 是合取式
(3) 是析取式(相容或)(4) 是析取式(排斥或)
设 p: 交通阻塞,q: 他迟到
(5) pq,
(6) pq或qp
(7) qp 或pq, (8) qp或pq
假命题 真命题 不是命题 不是命题
不是命题 不是命题
命题,但真值现在不知道
5
命题分类
命题分类:简单命题(也称原子命题)与复合命题 简单命题符号化
用小写英文字母 p, q, r, …, pi, qi, ri (i1)表示简单命题
用“1”表示真,用“0”表示假 例如,令
p: 2是有理数,则 p 的真值为0,
p q p pq (pq) (pq)q
00 1 1
0
0
01 1 1
0
0
10 0 0
1
0
11 0 1
0
0
成假赋值:00,01,10,11; 无成真赋值
24
公式的类型
定义1.10 (1) 若A在它的任何赋值下均为真, 则称A为重言式或永真式; (2) 若A在它的任何赋值下均为假, 则称A为矛盾式或永假式; (3) 若A不是矛盾式, 则称A是可满足式.
30
练习3解答
(1) pr(qp)
pqr
qp (qp) pr(qp)
000
1
0
0
001
1
0
0
010
0
1
0
011
0
1
0
100
1
0
0
101

离散数学课件 第一章

离散数学课件  第一章
离 散 数 学
主讲教师 李红军 北京林业大学 理学院
BEIJING FOREST UNIVERSITY
教材及参考资料
教材:
1耿素云,屈婉玲,张立昂编著,离散数学,清华大学出版 社, 2008年3月(第4版) 2耿素云,屈婉玲编著.离散数学(修订版).高等教育出版社, 2004年
参考资料:
1 左孝凌编著,离散数学,上海科学技术出版社
1.1 命题与联结词 命题:能判断真假而不是可真可假的陈述句。 命题的真值:命题为真或者假的判断。 真命题:真值为真的命题。 假命题:真值为假的命题。 注:任何命题的真值都是惟一的;
用“1”表示真,用“0”表示假。
例 1.1 :判断下列句子哪些是命题.
(1)
3 是有理数。
(2) 2是素数。 (3) X+Y>10。
1 3
m z 1 r m 1
z m 1
1 2
1
3
比赛结束,三位观众各猜对了一半,并且没有并列名次.问:中 国、美国、日本的各排名第几? 设z1:中国第一;z2 :中国第三;r1:日本第一; m1:美国第一;m2:美国第二; m3:美国第三.
例1的参考答案 m1 z3 1 r1 m3 1 z1 m2 1
对偶原理
A和A*是互为对偶式,P1, P2 ,……Pn是出现在A和A*的原子变元,则 A(P1,…,Pn) A*( P1,…, Pn) A( P1,…, Pn) A*(P1,…,Pn)
即公式的否定等值于其变元否定的对偶式。 例:A为PQ,则A*为PQ, 则(PQ) PQ
真值表
将命题公式A在所有赋值下取值情况列成表
试考虑求公式A的真值表的步骤? 例1 求下列公式的真值表,并求出成真赋值和成假赋值. 1) p(¬ r∧q) 2) (p∨q)(¬ p q)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

造证明时,采用“前提: A1, A2, … , Ak, 结论: B”.
4
实例
例 判断下面推理是否正确 (1) 若今天是1号,则明天是5号. 今天是1号. 所 以明天是5号. 解 设 p:今天是1号,q:明天是5号.
推理的形式结构为: (pq)pq 证明(用等值演算法)
(pq)pq ((pq)p)q pqq 1 得证推理正确
1.6 命题逻辑的推理理论
▪ 推理的形式结构 ▪ 判断推理是否正确的方法 ▪ 推理定律与推理规则 ▪ 构造证明法
1
推理的形式结构—问题的引入
推理举例: (1) 正项级数收敛当且仅当部分和有上界. (2) 若ACBD,则AB且CD.
推理: 从前提出发推出结论的思维过程 上面(1)是正确的推理,而(2)是错误的推理. 证明: 描述推理正确的过程.
6
推理定律——重言蕴涵式
重要的推理定律 A (AB) (AB) A (AB)A B (AB)B A (AB)B A (AB)(BC) (AC) (AB)(BC) (AC) (AB)(CD)(AC) (BD)
附加律 化简律 假言推理 拒取式 析取三段论 假言三段论 等价三段论 构造性二难
7
推理定律 (续)
(AB)(AB) B 构造性二难(特殊形式) (AB)(CD)( BD) (AC)
破坏性二难
说明: A, B, C为元语言符号 若某推理符合某条推理定律,则它自然是正确的 AB产生两条推理定律: A B, B A
8
推理规则
(1) 前提引入规则
(6) 化简规则
(2) 结论引入规则 (3) 置换规则 (4) 假言推理规则
AB A \B (5) 附加规则
AB
\A
(7) 拒取式规则 AB B
\A (8) 假言三段论规则
AB
A
BC
\AB
\AC 9
推理规则(续)
(9) 析取三段论规则 AB B \A
(10)构造性二难推理 规则
AB CD AC \BD
(11) 破坏性二难推理 规则
AB CD BD \AC (12) 合取引入规则 A B \AB
证明 ① rs ② s ③ r ④ (pq)r ⑤ (pq) ⑥ pq
前提引入 前提引入 ①②拒取式 前提引入 ③④拒取式 ⑤置换
12
构造证明——附加前提证明法
欲证明
前提:A1, A2, …, Ak 结论:CB
等价地证明
前提:A1, A2, …, Ak, C 结论:B
理由: (A1A2…Ak)(CB)
10
构造证明——直接证明法
例 构造下面推理的证明: 若明天是星期一或星期三,我就有课. 若有课, 今天必备课. 我今天下午没备课. 所以, 明天不是星期一和星期三.
解 设 p:明天是星期一,q:明天是星期三, r:我有课,s:我 结论:pq
11
直接证明法 (续)
5
实例 (续)
(2) 若今天是1号,则明天是5号. 明天是5号. 所以今天是1号. 解 设p:今天是1号,q:明天是5号.
推理的形式结构为: (pq)qp 证明(用主析取范式法)
(pq)qp (pq)qp ((pq)q)p qp (pq)(pq) (pq)(pq) m0m2m3 结果不含m1, 故01是成假赋值,所以推理不正确.
2
推理的形式结构
定义 若对于每组赋值,或者A1A2… Ak 均为假, 或者当A1A2…Ak为真时, B也为真, 则称由A1, A2, …, Ak推B的推理正确, 否则推理不正确(错误). “A1, A2, …, Ak 推B” 的推理正确
当且仅当 A1A2…AkB为重言式. 推理的形式结构: A1A2…AkB 或
前提: A1, A2, … , Ak 结论: B 若推理正确,则记作:A1A2…AkB.
3
判断推理是否正确的方法
• 真值表法 • 等值演算法 • 主析取范式法 • 构造证明法
判断推理是否正确 证明推理正确
说明:当命题变项比较少时,用前3个方法比较方 便, 此时采用形式结构“ A1A2…AkB” . 而在
将B加入前提,若推出矛盾,则得证推理正确. 理由:
A1A2…AkB (A1A2…Ak)B (A1A2…AkB) 括号内部为矛盾式当且仅当 (A1A2…AkB)为 重言式
16
归谬法 (续)
例 构造下面推理的证明
前提:(pq)r, rs, s, p
结论:q
证明(用归缪法)
①q
结论否定引入
② rs
前提引入
( A1A2…Ak)(CB)
( A1A2…AkC)B
(A1A2…AkC)B
13
附加前提证明法 (续)
例 构造下面推理的证明: 2是素数或合数. 若2是素数,则 2是无理数. 若 2 是无理数,则4不是素数. 所以,如果4是 素数,则2是合数. 用附加前提证明法构造证明
解 设 p:2是素数,q:2是合数, r: 22 是无理数,s:4是素数
③ s
前提引入
④ r
②③拒取式
17
归谬法 (续)
⑤ (pq)r
前提引入
⑥ (pq)
④⑤析取三段论
⑦ pq
⑥置换
⑧ p
①⑦析取三段论
⑨p
前提引入
⑩ pp
⑧⑨合取
请用直接证明法证明之
18
推理的形式结构 前提:pq, pr, rs 结论:sq
14
附加前提证明法 (续)
证明
①s
附加前提引入
② pr
前提引入
③ rs
前提引入
④ ps
②③假言三段论
⑤ p
①④拒取式
⑥ pq
前提引入
⑦q
⑤⑥析取三段论
请用直接证明法证明之
15
构造证明——归谬法(反证法)
欲证明 前提:A1, A2, … , Ak 结论:B
相关文档
最新文档