数学推理与证明

合集下载

数学学习中的数学推理与证明方法

数学学习中的数学推理与证明方法

数学学习中的数学推理与证明方法数学是一门以逻辑思维为基础的学科,而数学推理与证明则是数学学习中不可或缺的重要部分。

它们是数学的灵魂,是培养学生思维能力和逻辑思维能力的重要手段。

本文将探讨数学学习中的数学推理与证明方法,以期帮助读者更好地理解和应用数学知识。

一、演绎推理法演绎推理是数学学习中常用的一种推理方法。

它基于已知的事实和前提条件,通过逻辑推理得出结论。

演绎推理法主要分为三种形式:直接推理法、间接推理法和归谬推理法。

1. 直接推理法直接推理法是最常用的推理方法之一。

它根据已知的事实和前提条件,通过逻辑推理直接得出结论。

例如,已知“若a=b,且b=c,则a=c”,通过直接推理可以得出“若2+3=5,且5-1=4,则2+3-1=4”。

2. 间接推理法间接推理法是通过假设与推理,最终得到结论的一种推理方法。

它常常使用反证法来进行证明。

例如,要证明一个命题P成立,可以先假设P不成立,然后推导出与已知事实或前提条件相矛盾的结论,从而证明P一定成立。

3. 归谬推理法归谬推理法是一种常用的判断方法,用于证明一些命题不成立。

它通过假设该命题成立,然后通过逻辑推理得出与已知事实或前提条件相矛盾的结论,从而推翻该命题的真实性。

二、归纳推理法归纳推理是从一系列已知事实或样本中得出普遍结论的一种推理方法。

在数学学习中,归纳推理常常用于证明数列、函数等的性质。

归纳推理法主要分为数学归纳法和完全归纳法两种形式。

1. 数学归纳法数学归纳法是一种证明自然数性质的方法。

它包括两个步骤:首先证明当n等于某个特定自然数时,命题成立;其次,假设n=k时命题成立,再通过归纳假设证明当n=k+1时命题也成立。

这样,通过数学归纳法可以得出结论,该命题对于所有自然数都成立。

2. 完全归纳法完全归纳法是一种证明整数性质的方法。

与数学归纳法类似,完全归纳法也分为两个步骤:首先证明当n等于某个特定自然数时命题成立;其次,假设命题对于n<k(k为自然数)时成立,再通过归纳假设证明当n=k时命题也成立。

数学证明与推理的基本方法与技巧

数学证明与推理的基本方法与技巧

数学证明与推理的基本方法与技巧数学是一门严谨而抽象的学科,其中的证明和推理是数学思维的核心部分。

通过证明和推理,数学家能够发现、验证和推广数学定理,推动数学科学的进步。

本文将介绍数学证明与推理的基本方法与技巧,帮助读者更好地理解和应用数学知识。

一、数学证明的基本方法1. 直接证明法直接证明法是数学证明中最常见的方法,即通过逻辑推理从已知条件推出结论。

首先,列出已知条件,然后基于这些已知条件使用逻辑推理得出结论。

例如,证明一个等式,可以从等式的两边进行运算,逐步推导出相等关系。

2. 反证法反证法是通过假设命题的否定结果,然后推导出矛盾,从而证明原命题是正确的方法。

这种方法常用于证明存在性质的命题,其证明思路是假设命题不成立,然后通过推理得出矛盾的结论。

3. 数学归纳法数学归纳法用于证明具有递推性质的命题,即通过证明命题在某些特殊情况下成立,并假设对于某个自然数n成立,然后证明在n+1的情况下也成立。

这样,通过归纳可以得出命题在所有自然数上成立的结论。

4. 构造法构造法是通过构造一个满足条件的示例来证明命题。

证明思路是首先根据已知条件构造出一个符合题目要求的对象,然后验证该对象满足题目给出的条件。

例如,证明存在一个正整数满足某种性质,可以通过构造一个具体的正整数来完成证明。

二、推理的基本技巧1. 充分性与必要性在数学证明中,需要区分充分条件和必要条件。

充分条件指的是当条件成立时,结论一定成立;必要条件指的是当结论成立时,条件一定成立。

在进行推理时,需要确保充分条件和必要条件的正确性,不可混淆。

2. 逻辑演绎逻辑演绎是通过逻辑关系进行推理的重要方法。

主要包括假言推理、拒取式推理、假设推理等。

在推理过程中,需要根据已知条件和逻辑规则推导出新的结论,确保逻辑推理的准确性和完整性。

3. 利用等价关系等价关系在数学证明中起着重要的作用。

当遇到复杂的命题或不等式时,可以利用等价关系将其转化为更简单的形式,从而更便于证明。

掌握简单的数学推理与证明

掌握简单的数学推理与证明

掌握简单的数学推理与证明在数学学习中,掌握简单的数学推理与证明是非常重要的。

通过推理和证明,我们可以深入理解数学概念和定理,提高问题解决能力,并培养逻辑思维和分析能力。

本文将围绕数学推理和证明展开,为您介绍几个重要的数学推理方法以及如何进行简单的数学证明。

一、数学推理方法1. 直接证明法直接证明法是最常见的一种数学推理方法。

它通过一系列的逻辑推理,从已知条件出发,推导出所要证明的结论。

这种方法通常包括先给出已知条件,然后利用定义、定理或运算法则,逐步推理直到得到结论。

举个例子,我们来证明一个简单的结论:若两个正整数的和是偶数,则这两个正整数必定都是偶数。

我们可以假设这两个正整数分别为a和b,并根据已知条件写出等式 a + b = 2k(k为整数)。

然后利用奇偶数的性质,推导出a和b都是偶数。

2. 反证法反证法是一种常用的数学证明方法,它通过反设假设,假设所要证明的结论不成立,然后推导出矛盾的结论,违背了已知的事实。

由此可以得出结论:原先的假设错误,所要证明的结论是成立的。

例如,我们来证明一个经典的数学定理:勾股定理。

假设直角三角形存在边长为a、b和c(c为斜边)的三条边,且满足a^2 + b^2 = c^2。

若我们反设该三角形不满足勾股定理,即a^2 + b^2 ≠ c^2。

然后我们通过一系列的逻辑推理,得出矛盾的结论,证明了该三角形必然满足勾股定理。

3. 数学归纳法数学归纳法常用于证明某个性质或结论对于所有自然数都成立。

它包括两个步骤:基础步骤和归纳步骤。

基础步骤是证明基本情况下结论的正确性,通常是证明n=1或n=2时结论成立。

归纳步骤是假设n=k时结论成立,并在此基础上证明n=k+1时结论也成立。

通过这种递推的方式,可得出结论对于所有自然数都成立。

二、简单数学证明的步骤在进行数学证明时,为了保证论证的准确性和严谨性,我们需要按照一定的步骤进行。

1. 提出待证命题首先,明确所要证明的命题或结论,将其写下来。

数学推理与证明方法

数学推理与证明方法

数学推理与证明方法数学是一门以推理和证明为基础的学科,推理和证明是数学家们发现、探索和解决问题的关键方法。

数学推理和证明方法的正确运用对于数学理论的建立和发展至关重要。

本文将介绍一些常见的数学推理与证明方法,以帮助读者更好地理解数学思维和解决问题。

一、归纳法归纳法是数学中常用的一种证明方法,它基于以下思想:如果某个结论在某个情况下成立,并且在下一个情况下也成立,那么可以推断它在所有情况下都成立。

归纳法通常分为弱归纳法和强归纳法两种形式。

以弱归纳法为例,假设要证明一个关于自然数的命题P(n)在所有自然数上成立。

首先证明P(1)成立,即命题在n=1的情况下成立。

然后假设P(k)成立,即在n=k的情况下命题成立。

接下来证明当n=k+1时,命题也成立。

通过这样的推理和证明,可以得出结论P(n)在所有自然数上成立。

二、反证法反证法是一种常用于数学证明中的方法,它的基本思路是通过假设命题不成立,推导出矛盾的结论,从而证明命题的正确性。

反证法常用于证明一些普适性的命题,如证明无理数的存在性等。

假设要证明命题P为真。

采用反证法时,首先假设P为假,即非P为真。

然后对非P进行推导和证明,得出矛盾的结论。

由于“假与假取真”,根据反证法的原理,可以推断P为真,即命题成立。

三、直接证明法直接证明法是最常见的一种数学证明方法,它基于推理和逻辑链条,通过一系列的逻辑推导来证明所要求的结论。

直接证明法一般包含以下几个步骤:假设所有前提条件成立,根据这些前提条件和所要证明的结论,通过推导和推理得出最终结论。

直接证明法的关键是合理运用逻辑和推理规则,清晰地展示证明的过程。

通过逐步推导,将所要证明的结论与已知条件进行联系,逐渐逼近最终的结果。

四、数学归纳法数学归纳法是一种常用于证明自然数性质的方法。

它与普通归纳法类似,但更加专注于证明自然数的性质。

数学归纳法的基本思路是:首先证明当n=1时,所要证明的性质成立;然后假设当n=k时性质成立,即我们假设P(k)为真;接下来证明当n=k+1时,性质也成立。

数学推理与证明的方法与技巧

数学推理与证明的方法与技巧

数学推理与证明的方法与技巧数学是一门精确、逻辑性强的学科,推理与证明是数学学习中至关重要的一部分。

掌握正确的方法与技巧,能够帮助我们有效地进行数学推理和证明,提高解题能力和逻辑思维能力。

本文将为您介绍数学推理与证明的方法与技巧。

一、简单归纳法简单归纳法是数学证明中常用的方法之一。

它通过从特殊情况出发,逐步推导出一般情况,从而达到证明的目的。

具体操作可以分为以下几步:1. 验证初始情况是否成立,通常是在n=1时验证。

2. 假设当n=k时结论成立。

3. 推理出当n=k+1时结论也成立。

4. 结合初始情况的验证和推理步骤,可以得出结论对所有n成立。

二、反证法反证法是一种常用的证明方法,它通过假设所要证明的结论不成立,然后推导出与已知事实或已有结论相矛盾的结论,进而推翻假设,说明原结论是正确的。

具体步骤如下:1. 假设所要证明的结论不成立。

2. 推导出与已知事实或已有结论相矛盾的结论。

3. 由于推导过程中出现矛盾,可以得出假设不成立,即原结论成立。

三、数学归纳法数学归纳法是一种常见的数学证明方法,适用于证明由整数判断的性质。

它通过证明结论在初始情况下成立,以及当结论对某个特定整数成立时,它也对下一个整数成立,从而推导出结论对所有整数成立的思路。

具体步骤如下:1. 验证初始情况是否成立,通常是在n=1时验证。

2. 假设当n=k时结论成立。

3. 推理出当n=k+1时结论也成立。

4. 结合初始情况的验证和推理步骤,可以得出结论对所有正整数n成立。

四、引理法引理法是通过引入一个新的有用的命题(即引理),利用该引理来证明所要证明的结论。

引理通常是一个相对简单易证的命题,通过引入引理可以简化原证明或将证明拆分为几个步骤。

具体步骤如下:1. 引入一个与原问题有关的引理。

2. 证明引理的正确性。

3. 利用引理来证明原问题。

五、逆否命题法逆否命题法是通过对所要证明的命题进行否定和逆转,从而来证明该命题的方法。

具体步骤如下:1. 对所要证明的命题进行否定。

数学推理与证明

数学推理与证明

数学推理与证明数学是一门精确、逻辑严密的科学,而推理与证明则是数学学科中不可或缺的部分。

数学推理与证明能够揭示数学问题的真相和内在规律,发现数学问题的本质特征,为数学定理的建立提供了基础。

本文将探讨数学推理与证明的基本概念、方法和应用。

一、数学推理的基本概念数学推理是通过逻辑关系的推导过程来得出结论的方法。

数学推理是基于形式逻辑的,它遵循严密的推理规则和规律。

数学推理包括两个基本要素:前提和结论。

前提是已知的事实或条件,也是推理的起点;结论是通过推理过程得出的结果,是推理的终点。

数学推理中常用的推理方式有直接推理、间接推理、假设推理等。

二、数学证明的基本方法数学证明是为了证实一个命题的真实性而进行的一种推理活动,它通过对已知条件进行逻辑推理,最终得出结论的正确性。

数学证明具有严密性、合理性和清晰性的特点。

数学证明的基本方法包括直接证明法、间接证明法和归纳证明法。

1. 直接证明法直接证明法是一种比较常见和直观的证明方法,它通过利用已知条件和数学定义、原理等,逐步推导得出结论。

直接证明法使用简洁明了的论证方式,适用于结论不复杂、前提条件明确的情况。

2. 间接证明法间接证明法也称为反证法,它通过假设结论不成立,再通过逻辑推理推导出矛盾的结论,从而证明原命题的正确性。

间接证明法常用于解决较为复杂的数学问题和证明中的困难部分。

3. 归纳证明法归纳证明法是通过数学归纳法进行证明的方法。

它先证明当命题成立时特定情况下命题成立,再证明如果命题对于某个特定情况成立,则对于下一个情况也成立,由此逐步推导出结论的正确性。

三、数学推理与证明的应用数学推理与证明不仅是数学领域的基础,也广泛应用于其他学科和实际生活中。

数学推理与证明的应用包括以下几个方面:1. 培养逻辑思维能力数学推理和证明过程需要进行严密的逻辑推理,这种过程可以培养人们的逻辑思维能力和分析问题的能力。

逻辑思维能力是思维清晰、条理分明的基础,对于解决问题和提高学习能力都有重要作用。

数学学习中的推理与证明方法

数学学习中的推理与证明方法

数学学习中的推理与证明方法数学是一门严密的学科,其中推理和证明是数学学习中的重要内容。

在数学学习中,学生需要掌握一些基本的推理与证明方法,这对于他们在解决数学问题时具有重要的指导作用。

本文将介绍数学学习中常用的推理与证明方法,以帮助读者更好地理解和运用数学知识。

一、数学学习中的逻辑推理逻辑推理是数学推理的基础,它是一种通过已知条件来得出结论的方法。

在数学学习中,逻辑推理常常用到以下几种形式:1. 直接推理:通过已知条件和事实得出结论。

比如,如果已知“所有A都是B”,则可以直接推出“某个特定的事物是B”。

2. 归谬法:通过说明假设的为真,证明相互矛盾的结论,从而排除假设的真实性。

这种推理方法常用于反证法中。

3. 排中律推理:在二元逻辑推理中,排中律指的是“或者是A,或者不是A”,即A与非A之间不存在其他可能性。

排中律推理常用于判断两个陈述之间的关系,例如“如果A为真,则B为假”。

二、数学学习中的归纳法归纳法是从具体事例得出一般结论的推理方法,在数学学习中广泛应用。

归纳法可以分为以下几个步骤:1. 确定基础情况:首先,需要观察到一些具体事例,然后找出它们之间的共同特征或规律。

2. 假设归纳法:在确定了基础情况后,假设该规律对于所有情况都成立。

3. 证明归纳法:通过证明基础情况的成立以及在一个事例成立的情况下,下一个事例也会成立,从而证明该规律对于所有情况都成立。

三、数学学习中的举例法举例法是一种通过列举具体的实例来说明或证明问题的方法,也是数学学习中常用的一种推理方法。

举例法的步骤如下:1. 确定问题:首先,需要明确要解决的问题以及问题的背景。

2. 举例说明:选择一些具体的实例进行分析,通过这些实例来说明或证明问题。

3. 一般化:在通过具体实例进行分析后,将结果推广到一般情况,得出一般性的结论。

四、数学学习中的数学归纳法数学归纳法是数学中一种重要的证明方法,它通过证明基础情况成立以及在某个情况成立的前提下,下一个情况也成立,从而证明一个关于自然数的性质对于所有自然数都成立。

数学推理与证明 richard hammack 概述说明

数学推理与证明 richard hammack 概述说明

数学推理与证明richard hammack 概述说明1. 引言1.1 概述数学推理与证明是数学领域中非常重要的概念和技巧。

通过逻辑推理与论证,我们可以从已知的条件出发,得出结论,并确保其正确性。

在数学研究和应用中,推理和证明起到指导思考、解决问题以及建立新知识的关键作用。

1.2 文章结构本文将探讨数学推理与证明的基本原理和方法,并以数学教育界著名人物Richard Hammack为例,介绍他对此领域的贡献。

首先,我将对数学推理和证明进行定义和解释,强调其重要性以及与现实生活之间的联系。

然后,我会简要介绍Richard Hammack的背景和成就,并着重介绍他所撰写的《Book of Proof》一书对数学教育产生的影响。

接下来,我将深入探讨数学推理和证明的基本原理和方法,包括公理与定理之间关系、直接证明与间接证明的比较评价,以及归纳法与反证法在推理过程中的应用。

最后,在结论部分我们将总结文章主要观点,并给予Richard Hammack及其作品以评价,同时展望数学推理与证明在未来的发展前景。

1.3 目的通过撰写这篇长文,我们旨在帮助读者更好地理解数学推理与证明的基本原理和方法,并且展示Richard Hammack在数学教育领域中的突出贡献。

同时,我们希望引发对于数学推理与证明未来发展前景的思考,并为读者提供一定的启示和思路。

通过对该主题进行全面而深入的探讨,我们有信心能够激发读者对于数学和逻辑思维的兴趣,进一步提升他们在这个领域中的知识水平和技能。

2. 数学推理与证明2.1 数学推理的定义数学推理是指通过逻辑和推导从已知的事实或前提出发,得出新的结论或命题。

它是数学思维和研究的核心要素之一,也是数学解题和证明过程中必不可少的步骤。

数学推理包括直接推理、间接推理、归纳法、反证法等多种形式。

2.2 数学证明的重要性数学证明是确保数学结论正确性与有效性的关键过程。

通过证明,我们能够确定一个命题是否成立,对于解决问题和扩展数学知识具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bm+n=
.
思路分析 分析等差数列、等比数列的区别→分析原命题特征→得到新命题
继续学习
数学
题型全突破 8
第十四章 推理与证明
解析 等差数列中的bn和am可以类比等比数列中的bn和am,等差数列中的bn-am可以类比
等比数列中的 bn am
,等差数列中的 bn-am 可以类比等比数列中的 n-m bn
第十四章 推理与证明
点评 利用综合法证明不等式是不等式证明的常用方法之一,即充分利用已知条 件经过推理论证推导出正确结论,是顺推法和由因导果法.其逻辑依据是三段论式 的演绎推理方法,这就需保证前提正确,推理合乎规律,这样才能保证结论的正确.
数学
知识全通关 5
第十四章 推理与证明
【辨析比较】
综合法与分析法各有优缺点,分析法思考起来比较简单,易找到解题的 思路和方法,缺点是叙述烦琐;综合法从条件推结论,步骤简单,但不便 于思考.实际应用中,通常将它们结合起来使用,先用分析法探索证明 途径,再用综合法叙述出来.
继续学习
数学
知识全通关 6
第十四章 推理与证明
继续学习
数学
题型全突破 3
解析 观察所给等式的左右可以归纳出
.
1- 1 + 1 - 1 +...+ 1 - 1 = 1 + 1 +... 1
2 34
2n 1 2n n 1 n 2 2n
第十四章 推理与证明
继续学习
数学
题型全突破 4
第十四章 推理与证明
考法示例2 某种平面分形图如图15-1所示,一级分形图是由一点出发的三条线段,长度均为 1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为 原来的的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.
数学
考情精解读 3
考纲解读
命题规律
命题趋势
第十四章 推理与证明
1.热点预测 合情推理一般以新定义、新规则 的形式考查,题型以选择题、填空题为主,分值 为5分,而演绎推理以及直接证明和间接证明常 以不等式、数列、解析几何、函数等为背景来 考查,题型以解答题为主,分值为12分. 2.趋势分析 预测2018年仍将重点考查归纳、 类比推理,难度可能会提高,对直接、间接证明 的考查会综合到函数、导数、不等式、数列等 方面,渗透到多题之中,尤其要注意不等式的放 缩的应用.
返回目录
知识全通关
数学
知识全通关 1
考点1 合情推理与演绎推理
第十四章 推理与证明
1.合情推理 合情推理包括归纳推理和类比推理,二者区别如下:
归纳推理
由某类事物的部分对象具有某些特征,推 定 出该类事物的全部对象都具有这些特征 义 的推理,或者由个别事实概括出一般结论
的推理
类比推理
由两类对象具有某些类似特征和其中一类对 象的某些已知特征,推出另一类对象也具有
继续学习
数学
题型全突破 2
考法示例1 [2015陕西高考]观察下列等式
1- 1 = 1 22
1- 1 + 1 - 1 = 1 + 1 2 34 3 4
1- 1 + 1 - 1 + 1 - 1 = 1 + 1 + 1 2 34 56 4 5 6
据此规律,第n个等式可为
.
思路分析 观察等式→寻找规律→得结论
解析 (1)由题图知,一级分形图有3=3×2-3(条)线段,二级分形图有9=3×22-3(条)线段,三
级分形图中有21=3×23-3(条)线段,按此规律,n级分形图中的线段条数为an=3×2n3(n∈N*).
(2)∵从分形图的每条线段的末端出发再生成两条长度为原来的的线段,∴n级分形图中
第n级的所有线段的长度和为 为
数学
考情精解读 2
考纲解读
命题规律
命题趋势
第十四章 推理与证明
考点 2016全国
合情推理与 演绎推理 全国Ⅱ,16,5分 【5%】
2015全国
直接证明与 间接证明 【20%】
全国Ⅰ,22,10 分
2014全国
自主命题区域
全国Ⅰ,14,5分 2016山东,12,5分
2016山东,18,12分 2016浙江,20,15分 2016江苏,16,14分 2014山东,4,5分
(1)n级分形图中共有
条线段;
(2)n级分形图中所有线段长度之和为
.
继续学习
数学
题型全突破 5
第十四章 推理与证明
思路分析 (1)通过观察下一级分形图与上一级分形图之间线段条数的关系,归纳 出n级分形图中的线段条数表达式的规律;(2)先求出n级分形图中第n级的所有线段 的长度,然后再利用等比数列求和公式可求出n级分形图中所有线段长度之和.
n-m
am
,故bm+n= n-m bn. am
继续学习
数学
题型全突破 9
考法3 演绎推理
第十四章 推理与证明
考法指导 数学问题的解决和证明都蕴含着演绎推理,即一连串的三段论,关键是找 到每一步推理的依据——大前提、小前提,注意前一个推理的结论会作为下一个三段 论的前提.
继续学习
数学
题型全突破 10
第十四章 推理与证明
继续学习
数学
题型全突破 12
考法4 直接证明
第十四章 推理与证明
考法指导 1.综合法证题的思路 (1)分析条件,选择方向.分析题目的已知条件及已知与结论之间的联系,选择相关的定理、公
式等,确定恰当的解题方法. (2)转化条件,组织过程.把已知条件转化成解题所需要的语言,主要是文字、符号、图形三种语 言之间的转化.
数的运算与向量的运算类比;圆锥曲线间的类比等.
继续学习
数学
题型全突破 7
第十四章 推理与证明
考法示例3 知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m,n∈N*),则am+n=
现已知等比数列{bn} (b≠0,n∈N*),bm=a,bn=b(m≠n,m,n∈N*),若类比上述结论,则可得到
第十四章 推理与证明
【考法示例4】
如图所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,且DE∥BA.求证:ED=AF(要求注明每一 步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).
【思路分析】
通过证明四边形AFDE为平行四边形来证明ED=AF.
继续学习
数学
题型全突破 11
(3)适当调整,回顾反思.回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰, 反思总结解题方法的选取.
继续学习
数学
题型全突破 13
第十四章 推理与证明
2.分析法证题的思路 逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转 化方向是使问题顺利获解的关键. 在解决实际问题时,常把分析法和综合法综合起来运用,通常用分析法探索证明途径,然后用综 合法加以证明,对于较复杂的问题,可以采用两头凑的办法,即通过分析法找出某个与结论等价 (或充分)的中间结论,然后通过综合法由条件证明这个中间结论,从而使原命题得证.
【解析】 同位角相等,两条直线平行,(大前提)
∠BFD与∠A是同位角,且∠BFD=∠A,(小前提) 所以DF∥EA.(结论) 两组对边分别平行的四边形是平行四边形,(大前提) DE∥BA且DF∥EA,(小前提) 所以四边形AFDE为平行四边形.(结论) 平行四边形的对边相等,(大前提) ED和AF为平行四边形的对边,(小前提) 所以ED=AF.(结论) 上面的证明可简略地写成:
数学
知识全通关 2
第十四章 推理与证明
2.演绎推理 演绎推理是从一般性的原理出发,推出某个特殊情况下的结论的推理方法,它是由一般到 特殊的推理,演绎推理的一般模式是“三段论”,其结构和表示如下:
“三段论” 的结构
①大前提——已知的条件;②小前提——所研究的特殊情况; ③结论——根据一般原理,对 特殊问题作出的判断
这些特征的推理
特 点
由部分到整体,由个别到一般的推理
由特殊到特殊的推理
一 般 步 骤
(1)通过观察个别对象发现某些相同性质; (2)从已知的相同性质中推出一个明确的
一般性命题(猜想)
(1)找出两类对象之间的相似性或一致性; (2)用一类对象的性质去推测另一类对象的
性质,得出一个明确的命题(猜想)
继续学习
继续学习
数学
知识全通关 7
第十四章 推理与证明
【注意】
(1)反设命题时常用词语的否定详见《高考帮》P015一些常见词语的否定总结. (2)归谬时,常见的矛盾的情况有与已知条件、定义、公理、定理、性质矛盾,与 假设矛盾,与公认的简单事实或显然成立的结论矛盾,自相矛盾等.
继续学习
数学
知识全通关 8
第十四章 推理与证明
【名师提醒】
应用反证法证题时,必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推 理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.
继续学习
题型全突破
数学
题型全突破 1
考法1 归纳推理
第十四章 推理与证明
考法指导 归纳推理问题的常见类型及解题策略 (1)与等式或不等式相关问题.观察所给的几个等式或不等式的两边式子的特点,注意 从纵向看,发现隐含的规律. (2)与数列相关问题.先求出几个特殊现象,归纳所得的结论是上述未知的一般现象,该 结论超越了前提所包含的范围,从而由特殊的结论推广到一般结论. (3)与图形变化相关问题.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证 其真伪.
“三段论” 的表示
相关文档
最新文档