超临界流体萃取技术的应用与发展

合集下载

超临界流体技术在有机合成中的应用研究

超临界流体技术在有机合成中的应用研究

超临界流体技术在有机合成中的应用研究超临界流体技术是一种新型的有机溶剂替代技术,近年来在有机化学合成领域引起了越来越多的关注。

它利用高压和高温下的超临界流体条件,使有机物在其中呈现出类似气体和液体的物理和化学性质,既具有溶解性又具有反应性,在有机合成中有着广泛的应用。

一、超临界流体技术在催化合成中的应用利用超临界流体作为反应介质,可以使得很多有机合成催化反应的催化剂得到更大程度的利用,不需要加大催化剂的用量,有效减少了催化剂消耗量,进一步提高了催化合成的效率和经济性。

在较低的反应温度下,反应活性也能得到较好的保留,可以获得高产率和高选择性的有机化合物。

超临界流体技术与多种催化合成反应、例如催化加氢、氧化、羰基化、脱羧化、脱水等反应有着广泛的应用。

二、超临界流体技术在萃取中的应用超临界流体技术在萃取分离领域也有着广泛的应用。

相比于传统的溶剂萃取技术,超临界流体技术具有更强的选择性和连续性,同时也可以改善萃取过程中产生的环境污染问题,是一种环保性更好的分离技术。

通常,通过调节超临界流体的压力和温度条件,可以控制溶解度,实现对特定物质的高效萃取。

同时,超临界流体技术还可以结合超临界萃取-超临界分离的方法处理繁杂的溶液体系,提高分离效率。

三、超临界流体技术在纳米材料制备中的应用利用超临界流体反应介质可以实现一定的加工精度和控制粒径的效果,如反应液相对固体热传导系数大,利于传递反应热,故在纳米粒子控制制备方面得到了广泛应用。

特别是在无机纳米材料制备中,超临界流体技术为控制粒径、粒子形貌和制备纯度提供了一种全新的选择。

例如,超临界二氧化碳溶液可通过超临界沉淀法制备高度分散的纳米粉末,而超临界甲醇可能用于制备无机-有机纳米复合材料。

四、超临界流体技术发展趋势虽然超临界流体技术在有机合成、分离和制备领域中表现良好,但它仍然存在许多未解决的问题和挑战。

其中,提高反应压力或温度条件以获得更好的反应性对反应设备和系统的设计提出了更高的要求。

超临界流体萃取技术及其在食品工业中的应用

超临界流体萃取技术及其在食品工业中的应用

超临界流体萃取技术及其在食品工业中的应用一、本文概述《超临界流体萃取技术及其在食品工业中的应用》这篇文章旨在深入探讨超临界流体萃取(SFE)技术的原理、特点及其在食品工业中的广泛应用。

超临界流体萃取作为一种新兴的分离技术,其独特的萃取效率和环保特性使其在食品加工、提取和纯化等领域具有广阔的应用前景。

本文将首先概述超临界流体萃取技术的基本原理和优势,然后详细介绍其在食品工业中的具体应用案例,包括天然产物的提取、油脂的精炼、食品中农药残留的去除等。

通过本文的阐述,旨在为读者提供一个全面、深入的了解超临界流体萃取技术的平台,并为其在食品工业中的进一步应用提供参考和指导。

二、超临界流体萃取技术原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种基于物质在超临界状态下具有特殊溶解能力的分离技术。

其技术原理主要是利用超临界流体(如二氧化碳、乙醇等)的物理化学性质,在特定的温度和压力下,使流体兼具气体和液体的双重特性,从而实现对目标物质的高效、选择性萃取。

在超临界状态下,流体的密度、扩散系数和溶解度等参数均会发生显著变化,这些变化使得超临界流体具有优异的渗透能力和溶解能力。

通过调整温度和压力,可以控制超临界流体的溶解度和选择性,从而实现对目标物质的高效萃取。

在食品工业中,超临界流体萃取技术主要用于提取食品中的天然成分,如色素、香气成分、油脂等。

与传统的提取方法相比,超临界流体萃取具有操作温度低、提取时间短、提取效率高、溶剂用量少、提取物纯度高等优点。

由于超临界流体萃取过程中无需使用有机溶剂,因此可以避免溶剂残留对食品质量和安全性的影响。

超临界流体萃取技术的核心设备是超临界萃取装置,其主要包括高压釜、压缩机、分离器、热交换器等部分。

在萃取过程中,首先将超临界流体通过压缩机增压至所需压力,然后通过热交换器加热至所需温度,形成超临界流体。

接着,将超临界流体与待提取的物料接触,利用超临界流体的溶解能力将目标物质萃取出来。

超临界流体技术在化工生产中的应用

超临界流体技术在化工生产中的应用

超临界流体技术在化工生产中的应用超临界流体技术,是一种在高压、高温条件下,將气体和液体的特氏点融合成一体的新型物质态态方式。

在化工生产中,超临界流体技术已经得到了广泛的应用。

本文将探讨超临界流体技术在化工生产中的应用的优点和发展趋势。

一、超临界流体技术的优点1.1 高效能: 在超临界条件下,液体和气体的分子之间的距离被压缩到了很小的程度,甚至比常温下互相团结。

因此,基于超临界流体的化学反应往往比常规反应更快、更有效。

1.2 節能:與傳統操作相比,超临界流体技术处理方式所需的能源要少得多,这主要是因为这种技术不需要使用其他溶剂或有害物质来溶解原料,从而避免了能源浪费和污染环境的问题。

1.3 高选择性:超临界条件下反应仅在狭窄的高温高压范围内进行,这种情况下反应中可能出现的必须进行修补或再過程可以在其他条件下转化的副产品是大大减少的,从而提高了产品的品质和可控性。

二、超临界流体技术的应用2.1 化工催化剂:超临界流体技术可用作催化剂的载体,用于吸附、分离、转化和传递分子等多个方面。

后续根据反应的需要对载体和催化剂组合提供的底物种类将不同,因此其他方面的催化发生更加复杂多样。

2.2 精细化工品制造: 超临界流体技术被广泛用于制造精细化学品,如药品,食品等。

由于超临界流体在温度、压力和pH值方面全面适应,可以促进和控制化学反应,从而产生高纯度的产品。

2.3 流体萃取:超临界流体技术还可用于流体萃取,例如,在制备芳香化合物时可以使用超临界二氧化碳作为萃取剂,实现高效而准确的提取目标物质。

三、超临界流体技术发展趋势随着科技的不断发展,超临界流体技术也在不断完善和发展。

未来超临界流体技术方面的应用将主要集中在两个方面:3.1 应用特定场:超临界流体技术已广泛应用于常规常温常压的工艺中,新的应用需要针对特定领域和场合,依赖于新的催化剂、固体材料、液体和气体条件等特性。

3.2 与其他技术的结合:超临界流体技术将不断与其他化学过程和新技术进行配合,如纳米技术和生物技术等。

超临界流体萃取的原理和应用

超临界流体萃取的原理和应用

超临界流体萃取的原理和应用一、超临界流体萃取的原理超临界流体萃取是一种利用超临界流体对物质进行分离和提取的技术。

所谓超临界流体,是指在高于其临界温度和临界压力条件下的流体状态。

在这种状态下,超临界流体既具有气体的低粘度和高扩散性,又具有液体的高溶解力和可控性。

超临界流体萃取的基本原理是通过调节温度和压力,使超临界流体的密度和溶解力发生变化,从而实现对目标物质的选择性提取。

超临界流体萃取的主要原理包括溶解度变化原理、扩散速率变化原理和传质机理变化原理。

1. 溶解度变化原理超临界流体的溶解力随温度和压力的变化而变化。

通过调节温度和压力,可以使溶解度增大或减小,从而实现对目标物质的选择性提取。

当温度和压力适当增大时,超临界流体的溶解力会增大,有助于提高目标物质的萃取效率。

2. 扩散速率变化原理超临界流体的扩散速率比常规溶剂要快得多。

基于扩散速率变化原理,超临界流体可以更快地进入被提取物质的内部,提高物质的提取速率。

此外,超临界流体的扩散速率还受到温度和压力的影响,可以通过调节参数来控制提取速率。

3. 传质机理变化原理超临界流体的传质机理与常规溶剂有所不同。

超临界流体通过质量传递和热传递来实现物质的提取和分离。

传质机理的变化使得超临界流体的提取效率更高,同时还可以减少对环境的影响。

二、超临界流体萃取的应用超临界流体萃取技术在许多领域都有广泛的应用,主要包括化学、食品、药物和环境等。

1. 化学领域超临界流体萃取技术在化学合成、催化反应、分析测试等方面有着重要的应用。

超临界流体可以作为溶剂或反应介质,用于提取和分离化学物质,提高反应速率和选择性,减少催化剂的使用量。

2. 食品领域超临界流体萃取技术可以用于提取天然食品成分,如咖啡因、花青素、香料等。

相比传统的有机溶剂提取方法,超临界流体萃取技术具有高效、环保、无残留等优点,被广泛应用于食品加工和营养保健等领域。

3. 药物领域超临界流体萃取技术在药物研发、制备和分析中有着重要的应用。

超临界流体萃取技术及其应用

超临界流体萃取技术及其应用

超临界流体萃取技术及其应用摘要:超临界流体萃取作为一种新型分离技术,越来越受到各行业关注和重视,并已广泛应用于医药、食品、化妆品及香料工业等领域。

本文对超临界流体萃取技术进行了评述,主要从超临界流体萃取技术原理、工业应用及其强化过程等几个方面。

介绍了国内外关于超临界流体分离技术最新研究动态,最后针对超临界萃取技术应用现状,探讨了其目前存在问题及应用前景。

关键词:超临界流体萃取;工业应用;应用前景Abstract: As a new separation technology, supercritical fluid extraction has get more and more attention from all walks of life, and it has been widely used in pharmaceutical, food, cosmetics, perfume industry and other fields. This article reviewed present application and research status of supercritical fluid extraction technology both at home and abroad, mainly in industrial applications of supercritical carbon dioxide extraction technology and strengthening processes. The latest studies on supercritical fluid extraction technology were introduced. Finally based on Chinese present situations of the technology, the existing problems and application prospects were discussed.Key words: Supercritical fluid extraction;Industrial application;Application prospect超临界流体( Supercritical Fluid 即SCF ) 即指是物体处于其临界温度和临界压力以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质。

超临界流体萃取技术在食品中的应用研究

超临界流体萃取技术在食品中的应用研究

超临界流体萃取技术在食品中的应用研究随着人们对健康和品质生活的追求不断提高,食品产业也在不断追求创新和提升产品品质。

超临界流体萃取技术是一种新型的生物化学分离提纯技术,它在萃取、分离和提纯方面具有很大的优势。

因此,越来越多的人开始探索超临界流体萃取技术在食品中的应用研究。

一、超临界流体概述超临界流体简单来说就是介于气态和液态之间的物质,当压力和温度达到一定的程度时,物质的状态会发生改变,从液态和气态的物质融合到一起,成为超临界流体。

此时的超临界流体具有灵活的物化性质,可以完成分离、提纯等化学作用,而且在作用过程中消耗的能量非常少,这使得超临界流体成为一种非常值得探索的化学工艺。

二、超临界流体萃取技术与应用超临界流体萃取技术已经广泛用于化学、药物、医学、环境等领域中,也已逐渐应用于食品中的提取和分离工艺。

因为超临界流体具有很好的渗透性和可控性,可以很方便的实现食品成分的分离并从中提取目标物质。

1、萃取超临界流体萃取技术在萃取和分离方面已经有了非常明显的优势。

例如生产咖啡时,超临界流体可以快速、方便地从咖啡豆中分离和提取出有机酸、咖啡因和醇等成分。

而且,从咖啡豆中提取出的这些成分不仅口感更好,而且更健康。

2、提纯超临界流体萃取技术还可以用于制作天然色素,这也是食品工业应用较多的一种方法。

超临界流体可将植物中的色素和其他成分分离开来,然后通过温度和压力调节,分离的物质可以得到进一步的提纯。

通过这种方法,提取出的色素能够用于食品中的着色和调味。

三、超临界流体萃取技术在食品中的使用现在,越来越多的食品加工业开始利用超临界流体加工技术。

其中,最常见的应用是在食品保护、提味、调色、提高营养成分、改善口感等方面。

例如,超临界流体萃取技术可以用于获得香菇的多糖成分,可以用于获得柿子椒的色素成分,也可以用于获得橘子香精成分。

总之,超临界流体萃取技术在食品加工方面具有非常广泛的应用前景。

随着人们对食品品质和健康的追求,超临界流体萃取技术将会越来越受到关注和应用。

超临界流体萃取技术及其应用前景

超临界流体萃取技术及其应用前景

超临界流体萃取技术及其应用前景随着人们对天然资源的需求增加,如何高效有效地提取和利用它们已成为人们面临的一个难题。

而超临界流体萃取技术就是其中的一种新型技术,在萃取天然物质方面表现出了独特的优势,其应用前景也越来越广阔。

一、超临界流体萃取技术的定义及原理超临界流体萃取技术指的是将一定物质通过高压和高温处理后,使之达到超临界状态,进而作为溶剂进行物质的提取、分离和纯化的一种技术。

其主要原理在于在超临界状态下,可控制流体溶解性、扩散性、表面张力和密度等物理化学性质,即在高温与高压作用下,流体将呈现出类似气体和液态的混合状态,故此也被称为“气-液混合物”或“超临界流体”。

二、超临界流体萃取技术的应用1、天然植物提取物超临界流体萃取技术在提取天然植物物质方面拥有很大的优势,不仅具有高效提取、低耗能、易分离等特点,而且对提取物质的品质和纯度的要求也很高。

据研究表明,采用超临界流体萃取技术提取的植物物质中,含量高、活性强,可能有助于减少二次污染和产生有害物质。

常见的植物提取物如茶叶、红枣、桂花、白芍药等。

2、农产品萃取超临界流体萃取技术还可以应用于农产品领域,如茶叶多酚、葡萄籽提取物、西红柿红素、番茄红素、苦瓜苦素、榨菜素等萃取工艺方面,可以帮助提高产品的产量和纯度。

3、药物提取超临界流体萃取技术在药物提取方面也具有不错的应用前景,能够提取多种天然草药中的有效成分,如黄芪、人参、当归、酒枣、枸杞等,而且在提取过程中不会对提取物产生不良影响。

三、超临界流体萃取技术的优势和发展现状与传统的提取技术相比,超临界流体萃取技术有以下几点优势:提取速度快,纯度高、产品无残留、副产物少等,而且工艺稳定可控,有利于环保和资源节约。

目前,这一技术已经被广泛应用于食品、化学制品、药品等各个领域,其未来发展的前景也越来越被人们所看好。

四、结语如今,超临界流体萃取技术已经成为在提取天然物质方面备受人们关注的一种新型技术,其优越的性能和无污染环保的特点也使得其应用前景越来越广阔。

超临界CO2流体萃取技术

超临界CO2流体萃取技术

超临界CO2流体萃取技术美国应⽤分离公司超临界 CO2流体萃取仪⼀、超临界流体萃取技术的起源及发展超临界流体萃取(Supercritical Fluid Extraction,SFE) 作为⼀种技术应⽤于分离提取最早可追溯到1879年,当时J.B.Hannay 等就发现,⽤超临界的⼄醇可溶解⾦属卤化物,压⼒越⾼,溶解能⼒越强。

1962年E.klesper等⾸次成功⽤超临界的⼆氯⼆氟甲烷从⾎液中分离铁卟啉,1966年开始⽤超临界CO2和超临界正戊烷来分析多环芳烃、染料和环氧树酯等。

1978年klesper⼜将超临界流体技术应⽤于聚合物⼯业,从聚合物中提取各类添加剂,使超临界流体萃取技术的应⽤范围不断扩⼤。

超临界流体萃取技术在⼯业中也早有应⽤,最为典型的例⼦就是⽤CO2流体萃取咖啡⾖中的咖啡因,即脱咖啡因。

⼆、超临界流体萃取仪的⼯作原理及特点超临界流体萃取(Supercritical Fluid Extraction,SFE) 是⼀种以超临界流体作为流动相的分离技术。

超临界流体是指物质⾼于其临界点,即⾼于其临界温度和临界压⼒时的⼀种物态。

它即不是液体,也不是⽓体,但它具有液体的⾼密度,⽓体的低粘度,以及介⼊⽓液态之间的扩散系数的特征。

⼀⽅⾯超临界流体的密度通常⽐⽓体密度⾼两个数量级,因此具有较⾼的溶解能⼒;另⼀⽅⾯,它表⾯张⼒⼏近为零,因此具有较⾼的扩散性能,可以和样品充分的混合、接触,最⼤限度的发挥其溶解能⼒。

在萃取分离过程中,溶解样品在⽓相和液相之间经过连续的多次的分配交换,从⽽达到分离的⽬的。

三、超临界流体萃取仪的基本流程和重要部件典型的超临界流体萃仪的⼯作流程如下图所⽰。

它⼤体上可分为三个部分即流动相系统、分离系统、和收集系统。

Micrometering ValveModifier Pump Module流动相对流动相的选择⾸先要考虑它对萃取样品的溶解能⼒,流动相的密度越⼤,其溶解能⼒越强;次外,在实际应⽤中还必需考虑流体的超临界条件、腐蚀性和毒性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界流体萃取技术的应用与发展
摘要:介绍了超临界流体萃取技术(SFE)的原理、特点及工艺。

阐述了超临界流体萃取技术的发展与研究应用概况,并对超临界流体萃取技术的发展前景进行了展望。

关键词:超临界流体;萃取;应用;发展
随着现代工业的高速发展,绿色化学、清洁生产技术成为各国研究的热点,超临界流体萃取技术作为一种高效、清洁、节能的分离方法,受到了越来越多的关注,由于萃取过程容易控制调节、萃取效率高、能耗低,使得该技术广泛应用于各个领域。

1.超临界萃取技术简介
1.1超临界流体
临界态指气、液两态差异消失,相变为零时的特有状态。

处于临界态的温度和压力称为临界温度和临界压力,二者合称为临界点。

在临界点附近,温度和压力的微小变化都会使物体的密度发生极大变化。

我们把超过临界点的气体称为超临界流体(SCF),超临界流体具有其它流体所不具备的良好溶解性、流动性和传递性。

1.2技术原理
超临界萃取是利用在临界压力和临界温度附近具有特殊性能的超临界流体作为萃取溶剂的一种萃取技术。

超临界流体是一种被加热和压缩至临界温度与临界压力以上的流体,临界状态是不够稳定的特殊状态,在这种状态下气体和液体之间的性质差别将消失,两者之间的界面亦将消失。

由于超临界流体具有介于气体和液体之间的物理性质,具有近液体的溶解能力,有气体对固体和高黏度物质较强的渗透性,并且随温度和压力的微小变化有较大变化,因此具有比液体溶剂更好的萃取效率和更高的萃取速度。

SFE正是利用这一性质以及相似相容的原理,在较高的压力下,使溶质溶解在SCF中,然后使SCF溶液的压力降低或温度升高,这时溶解于SCF中的溶质就会因SCF的密度下降,溶解度降低而析出,从而达到萃取分离的目的。

1.3工艺流程
压力和温度的微小变化都可以引起密度很大的变化,并相应地表现为溶解度的变化,因此可以用压力、温度的变化来实现萃取和分离的过程,以超临界萃取二氧化碳为例,气体经换热器换热和加压泵加压达到工艺过程所需要的温度和压力(一般均高于临界温度和临界压力),使其成为超临界二氧化碳流体,流体进入萃取釜与物料充分接触进行选择性萃取所需要的组分,经节流阀降压至二氧化
碳的临界压力以下,随后进入分离釜,溶质从萃取液中解析出来成为产品,定期从釜内排出,解析后的二氧化碳再循环使用。

2.超临界流体萃取技术的发展与应用
2.1超临界流体萃取技术发展概况
超临界流体最早于1822年由Cardin所发现。

1850年,Andrews对二氧化碳的超临界现象进行了研究,并于1869年在英国皇家学术会议上发表了超临界实验装里和超临界实验现象观察一文。

1869年,Amaget2对超临界实验装里进行了改进,将水银柱下降到矿井底部,高达400atm。

1891年,Calleit3用高达塔顶的水银柱进行实验。

1879年,Hannay和Hosarth4在英国皇家学院首次发表了“超临界流体能够溶解低蒸汽压固体物质”一文。

早期超临界流体的研究主要集中在相行为变化和溶剂性质上,Buchner和Prius就是其中的代表。

二十世纪,由于钢管超临界萃取设备的出现及人们对超临界流体性质和萃取理论的进一步了解,超临界萃取技术开始应用于化工、石油、医药、食品、化妆品等工业中。

我国超临界萃取技术的研究起步较晚,始于8 0 年代初,但是发展速度很快,在超临界条件下的萃取、沉析及精馏等方面做了大量基础研究,同时在萃取技术工艺、设备等方面也进行了多项开发,但与世界发达国家相比,我国超临界萃取技术尚存在一定差距,如超临界萃取设备还完全依赖于进口,国内还没有超临界技术生产厂家,超临界萃取理论和应用研究还不够深入等。

.
2.2.超临界流体萃取技术的应用
超临界萃取技术是一门综合性技术,它涉及化学、化学工程、机械工程等多方面知识和技术。

上世纪70年代以来,美德等几个发达国家便将研究中的超临界萃取技术运用于生产中,随后超临界技术得到了不断发展。

超临界流体萃取技术应用的对象众多,主要应用于高附加值,小处理量的产品,其中以食品、油脂、香料及色素最为热门,其次为生物中有毒化合物的清除及农药污水处理等环保问题。

随着超临界萃取技术的不断发展,食品、香料、医药、石油和煤炭等工业都出现了超临界流体萃取技术的应用。

如在食品工业中主要应用:微量成分的去除如咖啡、茶叶中脱除咖啡因;有效成分的萃取如咖啡中提取咖啡油;酒花中提取有效成分;分离和精制如甘油酯的分离,卵磷脂的精制。

医药方面可用于酶、维生素等的精制回收、脂质混合物的分离精制、医药品原料的浓缩、精制、酵母、菌体生成物的萃取等。

化学工业方面用于共沸物的分离、反应的原料回收等。

除此之外,超临界流体萃取技术还可用于煤炭工业、海水淡化、污水处理等各个方面。

3.结语
超临界流体萃取技术对环境污染少、易于操作、使用温度低、萃取收率高,因此成为各国关注的热点。

超临界萃取技术是一种环保和可循坏利用萃取技术,符合现代发展的趋势,具有广阔的发展前景和巨大的市场。

我国资源丰富,超临界流体萃取技术具有更广泛的应用前景,随着人们对环境保护的日益重视和绿色时代的要求,将进一步的促进超临界流体技术的发展与应用。

参考文献
[1]朱自强. 超临界流体技术——原理和应用[M]. 北京:化学工业出版社,2000.
[2]刘洋,王丽娜,杜晓峰4 超临界萃取技术在中药方面的应用[J].辽宁中医学院学报,2005,7(3):283-284
[3]廖传华,黄振仁.超临界CO2流体萃取技术[M].北京:化学工业出版社,2004.
[4]江梅. 荔枝果皮精油的超临界萃取研究及精油成分分析[J].热带作物学报,2000,21(2):50~56
[5]吕维忠. 天然高纯度卵磷脂的超临界CO2[J]. 日用化学工业,2000(4):10-11。

相关文档
最新文档