单片机实验报告-数字时钟设计报告
单片机设计数字钟实验报告

单片机实验报告——数字钟设计班级:学号:姓名:时间:一.实验目的1、进一步熟悉C的语法知识和keil环境;2、熟练掌握一些常用算法;3、熟悉keil的编写、下载、调试过程;4、了解单片机的工作原理和电路图;5、熟悉单片机的外围电路功能模块、LED灯、数码管模块以及键盘;6、熟练焊接技术。
二.实验器件三.数字钟设计原理数字钟实际是对标准频率计数的电路,由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的时间信号必须做到准确稳定。
通常使用石英晶体振荡电路构成数字钟。
数字钟电子钟由以下几部分组成:按键开关部分,振荡电路部分,89c51单片机控制器,4位数码管显示部分,7407数码管驱动部分。
按键开关振荡电路89C51单片机控制器4位数码管显示7407列驱动四.流程图主程序流程图如图2.3所示,定时器T0中断服务程序流程图如2.4所示。
返回五.51单片机系统的硬件连接1、STC单片机最小系统硬件电路图如下2、硬件电路的设计该电路采用AT89C51单片机最小化应用,采用共阴7段LED数码管显示器,P2.4~P2.7口作为列扫描输出,P0口输出段码数据,P1.2,P1.1口接2个按钮开关,用于调时及功能误差,采用12Mhz晶振,可提高秒计时的精确度。
六.程序设计HOUR EQU 3AH ;赋值伪指令MIN EQU 3BHSEC EQU 3CHBUFF EQU 3DHORG 0000HAJMP MAINORG 000BH ;主程序入口AJMP PTF0ORG 0033H ;跳转到标号PTF0执行;**************************************************************;主程序MAIN: MOV HOUR, #00H ;时,分,秒,标记清零MOV MIN, #00HMOV SEC, #00HMOV BUFF, #00HMOV SP, #0EFH ;设堆栈指针MOV TH0, #0ECH ;定时器赋初值MOV TL0, #78HMOV 40H, #100 ;设循环次数MOV 41H, #2MOV TMOD , #1 ;写TMODMOV IP, #2 ;写IPMOV IE, #82HMOV R5,#0;开中断SETB TR0 ;启动定时器PTF0: SETB P1.2MOV TH0, #0ECHMOV TL0, #78HINC R5MOV R6,BUFFCJNE R6,#00H,BBMOV DPTR,#TAB1LJMP LOOP0BB:MOV DPTR,#TABLOOP0: CJNE R5,#1,LOOP1ACALL LOP0AJMP JKLOOP1:CJNE R5,#2,LOOP2ACALL LOP1AJMP JKLOOP2:CJNE R5,#3,LOOP3ACALL LOP2AJMP JKLOOP3:ACALL LOP3MOV R5,#0JK: DJNZ 40H, PTFORXRL BUFF, #0FFHMOV 40H, #100JNB P1.1, JFJNB P1.2, JSMOV R7, 41HCJNE R7, #1, AAAA: DJNZ 41H, PTFORMOV 41H,#2MOV A, SEC ;秒加1ADD A, #1DA AMOV SEC, ACJNE A, #60H, PTFORMOV SEC, #0 ;秒清零JF: MOV A, MIN ;分加1ADD A, #1DA AMOV MIN, ACJNE A, #60H,PTFORMOV MIN, #0 ; 分清零ACALL LEDJS: MOV A,HOURADD A,#1DA AMOV HOUR,A ;时加1CJNE A, #24H,PTFOR ;时加到24时否?是,清零MOV HOUR, #0PTFOR:RETILOP0: MOV A, MIN ;显示分钟的个位ANL A, #0FHMOVC A, @A+DPTRMOV P0,AMOV P2,#0F0HCLR P2.4CLR P0.4RETLOP1:MOV A, MIN ;显示分钟的十位SWAP AANL A, #0FHMOVC A, @A+DPTRMOV P0, AMOV P2, #0F0HCLR P2.5CLR P0.4RETLOP2: MOV A, HOUR ;显示时钟的个位ANL A, #0FHMOVC A, @A+DPTRMOV P0, AMOV P2, #0F0HCLR P2.6RETLOP3:MOV A, HOUR ;显示时钟的十位SWAP AANL A, #0FHMOVC A, @A+DPTRMOV P0, AMOV P2, #0F0HCLR P2.7CLR P0.4RETTAB: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH ;不带小数点的字型码TAB1:DB 0BFH,86H,0DBH,0CFH,0E6H,0EDH,0FDH,87H,0FFH,0EFH ;带小数点的字型码END七.系统调试及结果分析硬件调试硬件电路板中器件连接好后,先用万用表测试电路中有无虚焊短接之处,测试无误后,将板子通电,进行静态调试。
单片机数字时钟实验报告

数字时钟实验报告一、实验目的:通过实验进一步深刻理解单片机最小系统的工作原理。
着重掌握中断和定时器的使用,以及读键盘和LED显示程序的设计(具体设计在后面会涉及到)。
培养动手能力。
二、实验内容:使用单片机最小系统设计一个12小时制自动报时的数字时钟。
三、功能描述:★使用低六位数码管显示时、分、秒、使用第七位表示上午和下午。
符号A表示上午;符号P表示下午。
★通过按键分别调整小时位和分钟位。
★到达整点时以第八位数码管闪烁的方式报时,使用8作为显示内容。
★考虑整点报时功能。
四、设计整体思路以及个别重点部分的具体实现方式:下面这幅图展示主函数的流程下面描述的是调用T0中断时所进行的动作显示更新的函数具体见下面这幅图我们还一个对键盘进行扫描以获得有效键盘值,其具体的实现见下面这幅图● 要实现时钟的运行和时间的调整,我的设计思路是这样的:由于T0中断的时间间隔是4ms,那么我可以设置一个计数器i,在每次进入中断时进行加一调整,当i计满面250时就将时钟我秒的低位加一。
然后根据进位规则,对其后的各位依次进行调整。
●要实现整点报时功能,则可以根据时位是否为0判断是否要闪烁显示字符8。
至于闪烁的具体实现方式,见源程序。
至此,本实验的设计思路己基本介绍完毕。
下面就是本次实验的源程序代码。
/*********************************************************//** 数字时钟程序**//** **//*********************************************************/#include <absacc.h>#include <reg51.h>#define uchar unsigned char#define uint8 unsigned char#define uint16 unsigned int#define LED1 XBYTE [0xA000] //数码管地址#define LED2 XBYTE [0xA001]#define LED3 XBYTE [0xA002]#define LED4 XBYTE [0xA003]#define LED5 XBYTE [0xA004]#define LED6 XBYTE [0xA005]#define LED7 XBYTE [0xA006]#define LED8 XBYTE [0xA007]#define KEY XBYTE [0xA100] //键盘地址bit ap=0;//上下午int i=0;//计数器uchar data clock[7]={0,0,0,0,0,0,0};/*扫描键盘使用的变量 */sbit first_row = P1^4; //键盘第一行控制sbit second_row = P1^3; //键盘第二行控制bit first_getkey = 0,control_readkey = 0; //读键盘过程中的标志位bit getkey = 0; //获得有效键值标志位等于1时代表得到一个有效键值bit keyon = 0; //防止按键冲突标志位uchar keynum = 0; //获得的有效按键值寄存器/*数码管显示使用的变量和常量*/uchar lednum = 0; //数码管显示位控制寄存器uchar led[8] = {0,0,0,0,0,0,0,0}; //数码管显示内容寄存器uchar code segtab[18] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0x8c,0xff}; //七段码段码表// "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D","E", "F", "P" ,"black"void leddisp(void); //数码管显示函数void readkey(void); //读键盘函数void intT0() interrupt 1 //T0 定时中断处理函数{TH0 = -2720/256; //定时器中断时间间隔 4msTL0 = -2720%256;if((clock[2]==0)&&(clock[3]==0)&&(i==125)&&(clock[5]<=5)&&(clock[4]==0))led[7]=17;if((clock[2]==0)&&(clock[3]==0)&&(i==0)&&(clock[5]<=5)&&(clock[4]==0))led[7]=8;i=i+1;if(i==250){if((clock[2]==0)&&(clock[3]==0)&&(clock[4]==0)&&(clock[5]==0)&&(clock[6]==0)){ap=!ap;if(ap==0)led[6]=10;if(ap==1)led[6]=16;}clock[5]=clock[5]+1;i=0;}if(clock[5]==10){clock[5]=0;clock[4]=clock[4]+1;}if(clock[4]==6){clock[4]=0;clock[3]=clock[3]+1;}if(clock[3]==10){clock[3]=0;clock[2]=clock[2]+1;}if(clock[2]==6){clock[2]=0;clock[6]=clock[6]+1;}if(clock[6]==12){clock[6]=0;}clock[0]=clock[6]/10;clock[1]=clock[6]%10;led[5]=clock[0];led[4]=clock[1];led[3]=clock[2];led[2]=clock[3];led[1]=clock[4];led[0]=clock[5];leddisp(); //每次定时中断显示更新一次if(control_readkey == 1) //每两次定时中断扫描一次键盘{readkey();}c ontrol_readkey = !control_readkey;}void main(void){TMOD = 0x01; //TH0 = -2720/256; //定时器中断时间间隔 4msTL0 = -2720%256;TCON = 0x10;ET0 = 1;EA = 1;while(1){if(getkey == 1) //判断是否获得有效按键{getkey = 0;switch(keynum) //判断键值,对不同键值采取相应的用户定义处理方式{case 0x01: //当按下第一行第二列键时,分加一clock[3]=clock[3]+1;break;case 0x02: ////当按下第一行的第三列键时,分减一clock[3]=clock[3]-1;break;case 0x03://当按下第一行的第四列时,时加一clock[6]=clock[6]+1;break;case 0x04:clock[6]=clock[6]-1; //当按下第一行的第五列时,时减一break;default:break;}}}}/***************************************************键盘扫描函数原型: void readkey(void);功能: 当获得有效按键时,令getkey=1,keynum为按键值****************************************************/void readkey(void){uchar M_key = 0;second_row = 0;M_key = KEY;if(M_key != 0xff) //如果有连续两次按键按下,认为有有效按键按下。
单片机实验报告数字时钟设计报告

单片机实验报告数字时钟设计报告一、实验目的本次单片机实验的目的是设计并实现一个基于单片机的数字时钟。
通过该实验,深入了解单片机的工作原理和编程方法,掌握定时器、中断、数码管显示等功能的应用,提高综合运用知识解决实际问题的能力。
二、实验原理1、单片机选择本次实验选用了常见的 51 系列单片机,如 STC89C52。
它具有丰富的资源和易于编程的特点,能够满足数字时钟的设计需求。
2、时钟计时原理数字时钟的核心是准确的计时功能。
通过单片机内部的定时器,设定合适的定时时间间隔,不断累加计时变量,实现秒、分、时的计时。
3、数码管显示原理采用共阳或共阴数码管来显示时间数字。
通过单片机的 I/O 口控制数码管的段选和位选信号,使数码管显示相应的数字。
4、按键控制原理设置按键用于调整时间。
通过检测按键的按下状态,进入相应的时间调整模式。
三、实验设备与材料1、单片机开发板2、数码管3、按键4、杜邦线若干5、电脑及编程软件(如 Keil)四、实验步骤1、硬件连接将数码管、按键与单片机开发板的相应引脚通过杜邦线连接起来。
确保连接正确可靠,避免短路或断路。
2、软件编程(1)初始化单片机的定时器、中断、I/O 口等。
(2)编写定时器中断服务程序,实现秒的计时。
(3)设计计时算法,将秒转换为分、时,并进行进位处理。
(4)编写数码管显示程序,将时间数据转换为数码管的段选和位选信号进行显示。
(5)添加按键检测程序,实现时间的调整功能。
3、编译与下载使用编程软件将编写好的程序编译生成可执行文件,并下载到单片机中进行运行测试。
五、程序设计以下是本次数字时钟设计的主要程序代码片段:```cinclude <reg52h>//定义数码管段选码unsigned char code SEG_CODE ={0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90};//定义数码管位选码unsigned char code BIT_CODE ={0x01, 0x02, 0x04, 0x08, 0x10,0x20, 0x40, 0x80};//定义时间变量unsigned int second = 0, minute = 0, hour = 0;//定时器初始化函数void Timer_Init(){TMOD = 0x01; //定时器 0 工作在方式 1 TH0 =(65536 50000) / 256; //定时 50ms TL0 =(65536 50000) % 256;EA = 1; //开总中断ET0 = 1; //开定时器 0 中断TR0 = 1; //启动定时器 0}//定时器 0 中断服务函数void Timer0_ISR() interrupt 1{TH0 =(65536 50000) / 256;TL0 =(65536 50000) % 256;second++;if (second == 60){second = 0;minute++;if (minute == 60){minute = 0;hour++;if (hour == 24){hour = 0;}}}}//数码管显示函数void Display(){unsigned char i;for (i = 0; i < 8; i++)P2 = BIT_CODEi;if (i == 0){P0 = SEG_CODEhour / 10;}else if (i == 1){P0 = SEG_CODEhour % 10;}else if (i == 2){P0 = 0xBF; //显示“”}else if (i == 3){P0 = SEG_CODEminute / 10;else if (i == 4){P0 = SEG_CODEminute % 10;}else if (i == 5){P0 = 0xBF; //显示“”}else if (i == 6){P0 = SEG_CODEsecond / 10;}else if (i == 7){P0 = SEG_CODEsecond % 10;}delay_ms(1);//适当延时,防止闪烁}}//主函数void main(){Timer_Init();while (1){Display();}}```六、实验结果与分析1、实验结果将程序下载到单片机后,数字时钟能够正常运行,准确显示时、分、秒,并且通过按键可以进行时间的调整。
单片机数字钟实习报告

单片机数字钟实习报告一、实习目的和意义随着计算机科学与技术的飞速发展,计算机的应用已经渗透到国民经济与人们生活的各个角落,而单片机技术作为计算机技术中的一个独立分支,具有性价比高、集成度高、体积小、可靠性高、控制功能强大、低功耗、低电压等特点,因此在各个领域得到了广泛的应用。
本次实习旨在通过设计一款数字钟,使学生掌握单片机的原理及其应用,提高实际动手能力和创新能力。
数字钟作为一种典型的数字电路,包括组合逻辑电路和时序电路。
通过设计制作数字钟,可以让学生了解数字钟的原理,学会制作数字钟,并进一步了解各种中小规模集成电路的作用及实用方法。
同时,通过数字钟的制作,可以让学生进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。
二、实习内容和要求1. 设计一款基于单片机的数字钟,能显示时、分、秒。
2. 数字钟具有校时功能,能以24小时为一个周期循环显示时间。
3. 掌握单片机的原理及其编程方法,熟悉LCD1602液晶显示屏的使用。
4. 了解数字钟的原理,学会制作数字钟,并掌握各种组合逻辑电路与时序电路的原理与使用方法。
三、实习过程1. 首先,我们对单片机的原理进行了学习,了解了单片机的内部结构、工作原理及其编程方法。
同时,我们还学习了LCD1602液晶显示屏的使用,掌握了如何将单片机与LCD1602液晶显示屏进行连接。
2. 接下来,我们开始了数字钟的设计。
首先,我们设计了数字钟的电路原理图,包括了单片机、LCD1602液晶显示屏、按键、时钟芯片等元件。
然后,我们进行了电路板的焊接,焊接过程中,我们严格遵循电路焊接规范,确保了电路板的质量和稳定性。
3. 焊接完成后,我们开始了数字钟的程序编写。
我们编写了相应的程序,实现了数字钟的时、分、秒显示功能以及校时功能。
在编程过程中,我们深入理解了单片机的编程原理,掌握了Keil编程软件的使用。
4. 最后,我们对数字钟进行了调试和测试。
我们通过观察数字钟的显示效果,分析了可能存在的问题,并针对问题进行了改进。
单片机实验报告数字时钟设计报告

单片机实验报告题目:数字时钟的设计指导老师:班级:姓名:学号:一、实验目的通过实践设计出能准确显示时、分、秒的时钟,并可以调时、定时,包括蜂鸣器的整点报时与闹钟功能。
二、实验要求基本功能:准确计时,以数字形式显示时间,24时制;具备时、分调整和整点报时功能。
扩展功能:定时与闹钟功能三、设计方案及论证Ⅰ、硬件部分:1、时钟显示用七段LED数码管来实现,采用共阳管和PNP驱动方式。
PNP工作于开关状态,基极通过1K的电阻连到单片机的P2口。
为节省P口,将六位数码管的8段段选端分别并接并加上470Ω的限流电阻,由P0口控制,给低电平的段会被点亮。
因为六位管的段被并接只能通过动态扫描的方式来显示,即利用管子的余晖和人眼的视觉残留实现六位管子在“同一时间”显示不同的值,而扫描这是靠位选的轮流有效实现。
如左图。
2、整点报时和闹钟铃此部分用一个5V有源蜂鸣器来做,同样用PNP作为开关来控制,此外为防止其可能的方向电压尖峰在蜂鸣器两端反接一个IN4148二极管来保护。
如右图。
3、校时、定时此部分由4个按键控制,如下图,key1和key3用来选定要调校的时、分的位,被选中的为将闪烁;key2用来是选中的为按相应的进制增1变化;key4是进入定时模式,定时的时数改变与调时方法相同。
4、单片机最小系统本实验采用STC89C52RC单片机,指令系统完全与51兼容。
其最小系统包含电源电路、晶振电路、复位电路。
本实验才用STC单片机的典型系统,各模块参数配置如图:其中晶振频率为12MHz,震荡部分电容为30pF的瓷片电容。
复位电路采用图示的兼有上电复位和按键复位功能的方式,其中的电容为10uF电解电容。
5、硬件系统全电路图Ⅱ、软件部分软件部分主要有两大块:一是上电后程序靠定时器T1产生的中断而实现的常规时钟显示,这里面就是要处理时、分、秒的六位数字的循环和进位问题。
按照24时制的规则,其进位逻辑为:秒的个位为十进制(0~9)满10向秒的十位进1,而秒的十位为六进制(0~5)满6向分的个位进1,分与秒相似,时的个位在时的十位为0、1的时候也是10进制,而在时的十位为2的时候则只是0到4就进位了。
数字时钟实验报告

数字时钟实验报告一、实验目的本次数字时钟实验的主要目的是设计并实现一个能够准确显示时、分、秒的数字时钟系统,通过该实验,深入理解数字电路的原理和应用,掌握计数器、译码器、显示器等数字电路元件的工作原理和使用方法,提高电路设计和调试的能力。
二、实验原理1、时钟脉冲产生电路时钟脉冲是数字时钟的核心,用于驱动计数器的计数操作。
本实验中,采用石英晶体振荡器产生稳定的高频脉冲信号,经过分频器分频后得到所需的秒脉冲信号。
2、计数器电路计数器用于对时钟脉冲进行计数,分别实现秒、分、时的计数功能。
秒计数器为 60 进制,分计数器和时计数器为 24 进制。
计数器可以由集成计数器芯片(如 74LS160、74LS192 等)构成。
3、译码器电路译码器将计数器的输出编码转换为能够驱动显示器的信号。
常用的译码器芯片有 74LS47(用于驱动共阳数码管)和 74LS48(用于驱动共阴数码管)。
显示器用于显示数字时钟的时、分、秒信息。
可以使用数码管(LED 或 LCD)作为显示元件。
三、实验器材1、集成电路芯片74LS160 十进制计数器芯片若干74LS47 BCD 七段译码器芯片若干74LS00 与非门芯片若干74LS10 三输入与非门芯片若干2、数码管共阳数码管若干3、电阻、电容、晶振等无源元件若干4、面包板、导线、电源等四、实验步骤1、设计电路原理图根据实验原理,使用电路设计软件(如 Protel、Multisim 等)设计数字时钟的电路原理图。
在设计过程中,要合理布局芯片和元件,确保电路连接正确、简洁。
按照设计好的电路原理图,在面包板上搭建实验电路。
在搭建电路时,要注意芯片的引脚排列和连接方式,避免短路和断路。
3、调试电路接通电源,观察数码管是否有显示。
如果数码管没有显示,检查电源连接是否正确,芯片是否插好。
调整时钟脉冲的频率,观察秒计数器的计数是否准确。
如果秒计数器的计数不准确,检查分频器的连接是否正确,晶振的频率是否稳定。
单片机数字钟设计总结

单片机数字钟设计总结第一篇:单片机数字钟设计总结单片机数字钟设计总结经过一周的课程设计,我收获颇多,有深刻的心得体会。
实训让我们受益匪浅。
首先是关于单片机方面的。
我们学到了许多关于单片机系统开发的知识,从最开始选题到最后的结题,更使我们得到了充分的锻炼。
其次,它让我体会到了什么才是teamwork spirit。
一如:团队管理的经验、团队意识的提升和协调能力等等,这些都会让我们终身受益。
通过此次课程设计,使我更加扎实的掌握了有关电子线路单片机方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查我终于找出了问题所在,也暴露出了前期我在这方面的知识欠缺和经验不足。
实践才能出真知,实践才是检验真理的唯一标准,唯有通过亲自动手制作,才能令我们掌握的知识不再是一些纸上谈兵的东西。
在这次的课程设计中,我们遇到了很多困难,过程很艰难,但是我们都克服了,这是对我们自己的肯定。
我们不断发现错误,不断改正,不断领悟,不断获取。
我们也曾灰心,也曾茫然,也曾不知所措,从一开始的自信满满,到最后的紧张繁杂,所有的这些都令我们回味无穷,这已经成为了我们人生的一个宝藏。
我想今后的学习和工作也是这样的,汗水见证着成功,我想十年过后,但我们都已经走入了社会,在某个阳光明媚的夏日,午后醒来,突然想起大学经历的时候,最先映入脑海里的就是这门课程吧,就是这些为了一个共同的目标,相互合作,共同奋斗的日子吧。
不可否认,单片机是一门比较难的专业学科。
但是经过这一学期的学习,我们觉得单片机这门课很好,让我们在设计中掌握课程,具有很强的实用性。
在社会上,单片机也应用极其广泛。
通过这次课程设计,我掌握了常用元件的识别和测试;熟悉了常用仪器、仪表;了解了电路的连线方法;以及如何提高电路的性能等等。
我相信在接下来的日子里,我会更深刻地去研究它,发掘它。
在这次的实训里,我觉得过得很充实。
实训,不仅培养了我们独立思考、动手操作的能力,在各种其它能力上也都有了提高。
单片机电子时钟课程设计实验报告(1)

单片机电子时钟课程设计实验报告(1)单片机电子时钟课程设计实验报告一、实验内容本次实验的主要内容是使用单片机设计一个电子时钟,通过编程控制单片机,实现时钟的显示、报时、闹钟等功能。
二、实验步骤1.硬件设计根据实验要求,搭建电子时钟的硬件电路,包括单片机、时钟模块、显示模块、按键模块等。
2.软件设计通过C语言编写单片机程序,用于实现时钟功能。
3.程序实现(1)时钟显示功能通过读取时钟模块的时间信息,在显示模块上显示当前时间。
(2)报时功能设置定时器,在每个整点时,通过发出对应的蜂鸣声,提示时间到达整点。
(3)闹钟功能设置闹钟时间和闹铃时间,在闹钟时间到达时,发出提示蜂鸣,并在屏幕上显示“闹钟时间到了”。
(4)时间设置功能通过按键模块实现时间的设置,包括设置小时数、分钟数、秒数等。
(5)年月日设置功能通过按键模块实现年月日的设置,包括设置年份、月份、日期等。
三、实验结果经过调试,电子时钟的各项功能都能够正常实现。
在运行过程中,时钟能够准确、稳定地显示当前时间,并在整点时提示时间到达整点。
在设定的闹铃时间到达时,能够发出提示蜂鸣,并在屏幕上显示“闹钟时间到了”。
同时,在需要设置时间和年月日信息时,也能够通过按键进行相应的设置操作。
四、实验感悟通过本次实验,我深刻体会到了单片机在电子设备中的广泛应用以及C 语言在程序设计中的重要性。
通过实验,我不仅掌握了单片机的硬件设计与编程技术,还学会了在设计电子设备时,应重视系统的稳定性与可靠性,并善于寻找调试过程中的问题并解决。
在今后的学习和工作中,我将继续加强对单片机及其应用的学习与掌握,努力提升自己的实践能力,为未来的科研与工作做好充分准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机实验报告-数字时钟设计报告
一、实验目的
1、掌握单片机的主要原理及相关的功能和特点。
2、熟悉单片机测试与调试的一般步骤与操作。
3、掌握定时/计数功能在单片机系统中的实现方法。
4、领会单片机实验模块设计思想。
二、实验内容
本次实验主要是利用STC89C52单片机实现数字时钟设计,实验从硬件电路组成和单片机编程两个部分来实现数字时钟的设计。
(1)硬件电路设计
该系统的硬件电路设计主要包括PCB板的设计、电源的设置、单片机与外设的连接以及时钟芯片的接入。
利用Altium Designer软件来进行电路板设计,将STC89C52芯片与时钟模块(DS1302)以及屏幕连接,整个电路如图1所示。
图1 数字时钟使用STC89C52的电路图
(2)单片机程序设计
本实验使用keil软件对单片机程序进行编程,主要的部分如下:
(2.1)定义单片机IO口
首先定义单片机IO口,其定义方式如下:
#include<reg52.h>
sbit Row0=P1^0; //定义P1.0作为数码管的Row0控制端
sbit Row1=P1^7; //定义P1.7作为数码管的Row1控制端
sbit Row2=P1^1; //定义P1.1作为数码管的Row2控制端
sbit Row3=P2^0; //定义P2.0作为数码管的Row3控制端
sbit Col0=P1^2; //定义P1.2作为数字管的Col0控制端
sbit Col1=P1^3; //定义P1.3作为数字管的Col1控制端
sbit Col2=P1^4; //定义P1.4作为数字管的Col2控制端
sbit Col3=P1^5; //定义P1.5作为数字管的Col3控制端
sbit Col4=P1^6; //定义P1.6作为数字管的Col4控制端
(2.2)定义LED数码管数据和定义变量
//定义LED数码管数据
unsigned char code
table[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
unsigned char i,j,k,m,n,s;
(2.3)调用初始化函数
再调用初始化函数,用于完成I/O口、定时器0/1及外部中断的初始化,代码如下:
void init (void){
TMOD=0x01; //定时器0的模式1
TH0=0x3c; //定时器0赋初值
TL0=0xb0;
EA=1; //外部总中断开启
ET0=1; //允许定时器0中断
ET1=0; //不允许定时器1中断
TR0=1; //开启定时器0
TR1=1; //关闭定时器1
}
(2.4)主函数
最后我们考虑到,应该实现的LED点阵的显示函数和定时更新时钟的函数,本实验的核心代码如下:
void main(){
init(); //调用初始化函数
while(1){
display(); //调用LED点阵显示函数
number_refresh(); //调用定时更新时钟函数
}
}
(2.5)LED点阵显示函数
为保证LED点阵的正常工作,可利用多次延时函数,定义LED点阵显示函数,每次显示一位数字,实现数字从左往右以及从右往左的滚动移动显示,具体实现如下:
void display (int ){
P2=0xfe; //定义P2这一行位先低电平,控制第一位显示
P0=table[m]; //将得到的数字m 显示在第一位数码管
Delay_1ms(2); //延时1ms
P2=0xfd; //定义P2这一行位先低电平,控制第二位显示
P0=table[n]; //将得到的数字n 显示在第二位数码管
Delay_1ms(2); //延时1ms
P2=0xfb; //定义P2这一行位先低电平,控制第三位显示
P0=table[s]; //将得到的数字s 显示在第三位数码管
Delay_1ms(2); //延时1ms
P2=0xf7; //定义P2这一行位先低电平,控制第四位显示
P0=table[i]; //将得到的数字i 显示在第四位数码管
Delay_1ms(2); //延时1ms
P2=0xef; //定义P2这一行位先低电平,控制第五位显示
P0=table[j]; //将得到的数字j 显示在第五位数码管
Delay_1ms(2); //延时1ms
P2=0xdf; //定义P2这一行位先低电平,控制第六位显示
P0=table[k]; //将得到的数字k 显示在第六位数码管
Delay_1ms(2); //延时1ms
}
(2.6)定时更新时钟函数
本部分,利用定时器0的中断功能实现定时更新LED点阵时间,定义定时器0中断函数,实现每隔一秒更新一次,更新变量m、n、s、i、j、k,代码如下:
ㄖ/Timer 0中断函数
void Timer0() interrupt 1{
TH0=0x3c; //定时器0赋初值
TL0=0xb0;
m++; //每秒,m值加1
if(m>9) //当m的值大于9时,n值加1
{
n++;
m=0;
}
if(n>9) //当n的值大于9时,s值加1
{
s++;
n=0;
}
if(s>5) //当s的值大于5时,i值加1
{
i++;
s=0;
}
if(i>9) //当i的值大于9时,j值加1
{
j++;
i=0;
}
if(j>5) //当j的值大于5时,k值加1
{
k++;
j=0;
}
if(k>9) //当k的值大于9时,m值加1
{
k=0;
m=0;
}
}
三、实验结果
本次实验让我深入理解单片机及一些外设的工作原理,掌握定时/计数机制,以及实现数字时钟设计的思维过程。
在实验过程中,在实践中掌握的LCD的使用技巧,增加了对单片机的深入理解,使实践对理论及知识具有一定程度的运用,为后续的课程学习奠定了基础。
最后,实验结束时,我成功完成了可以作为数字时钟使用的电路设计及屏幕实时更新时间显示的功能。