小学六年级数学相遇问题公式及例题

合集下载

六年级数学相遇问题解题技巧

六年级数学相遇问题解题技巧

六年级数学相遇问题解题技巧一、相遇问题基本概念与公式1. 基本概念相遇问题是行程问题中的一种,它研究的是两个运动物体作相向运动的情况。

例如甲、乙两人分别从A、B两地同时出发,相向而行,经过一段时间后在途中相遇。

2. 基本公式路程和 = 速度和×相遇时间速度和 = 路程和÷相遇时间相遇时间 = 路程和÷速度和二、解题技巧与题目解析1. 直接利用公式求解例1:甲、乙两车分别从相距360千米的A、B两地同时出发,相向而行。

甲车每小时行50千米,乙车每小时行40千米。

问几小时后两车相遇?解析:已知路程和是360千米(A、B两地的距离),速度和为甲车速度 + 乙车速度,即50+40 = 90(千米/小时)。

根据相遇时间 = 路程和÷速度和,可得相遇时间为360÷90 = 4(小时)。

2. 先求出路程和或速度和再求解例2:小明和小红同时从自己家出发,相向而行。

小明每分钟走60米,小红每分钟走50米。

经过5分钟两人相遇。

两家相距多远?解析:这里已知速度和为60 + 50=110(米/分钟),相遇时间是5分钟。

根据路程和 = 速度和×相遇时间,可得两家相距110×5 = 550(米)。

例3:A、B两地相距480千米,甲、乙两车同时从A、B两地相向而行,甲车速度是每小时45千米,经过6小时两车相遇,求乙车速度。

解析:首先根据路程和与相遇时间求出速度和,速度和 = 路程和÷相遇时间 = 480÷6 = 80(千米/小时)。

然后用速度和减去甲车速度得到乙车速度,即80 45 = 35(千米/小时)。

3. 复杂情况的相遇问题(含中途停留等情况)例4:甲、乙两人从相距200米的A、B两地同时出发,相向而行。

甲每分钟走30米,乙每分钟走20米。

甲中途休息了2分钟,问两人出发后多久相遇?解析:设两人出发后t分钟相遇。

甲实际走的时间是(t 2)分钟。

六年级上册奥数试题-第9讲 相遇问题 全国通用(含答案)

六年级上册奥数试题-第9讲  相遇问题   全国通用(含答案)

第9讲相遇问题知识网络相遇问题属于行程问题。

无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间。

路程、速度、时间三者之间的数量关系,不仅可以表示成:路程=速度×时间,还可以变形成以下两个关系式:速度=路程÷时间,时间=路程÷速度一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上是甲、乙两人一起走了这段路程,如果两人同时出发,那么有:甲走的路程+乙走的路程=全程甲(乙)走的路程=甲(乙)的速度×相遇时间全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间重点·难点以上给出的是相遇问题的一般情况,但在实际问题中,两人可能不同时出发,或其他条件比起一般情况发生变化,要注意区分。

学法指导相遇问题的计算关系式为:总路程=速度和×相遇时间这里的总路程指两人从出发到相遇共同走的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经历的时间。

通常情况下对于相遇问题的求解还要借助于线段图来进行直观地分析和理解题意,以突破难点。

经典例题[例1]甲乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时52千米,问第二列火车的速度是多少?思路剖析相遇时第一列火车走的路程与第二列火车走的路程的和为全程。

而路程=速度×时间,那么第一列火车速度×相遇时间+第二列火车速度×相遇时间=全程。

因此第一列火车速度+第二列火车速度=全程÷相遇时间。

再由已知的第一列火车的速度,那么第二列火车的速度可知。

解答两列火车的速度和:840÷8=105(千米/小时)第二列火车的速度:105-52=53(千米/小时)答:第二列火车的速度是53千米/小时。

[例2]上午9时,小宇和弟弟同时从家出发去学校参加活动,小宇骑自行车,每分钟行300米;弟弟步行,每分钟行70米。

六年级相遇和追及问题(含答案)

六年级相遇和追及问题(含答案)

一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩n n n n n n n nn n n n n n n n nn n 路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。

小学数学常考相遇问题、追及问题(附例题、解题思路)

小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。

六年级相遇追及问题--基础版

六年级相遇追及问题--基础版

相遇、追及问题一、相遇问题甲从A地到B地, 乙从B地到A地, 然后两人在途中相遇, 实质上是甲和乙一起走了A,B之间这段路程, 如果两人同时出发, 那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地, 相遇问题的关系式为: 速度和×相遇时间=路程和, 即二、追及问题有两个人同时行走, 一个走得快, 一个走得慢, 当走得慢的在前, 走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上, 要算走得快的人在某一段时间内, 比走得慢的人多走的路程, 也就是要计算两人走的路程之差(追及路程).如果设甲走得快, 乙走得慢, 在相同的时间(追及时间)内: 追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地, 追击问题有这样的数量关系: 追及路程=速度差×追及时间, 即在研究追及和相遇问题时, 一般都隐含以下两种条件:(1)在整个被研究的运动过程中, 2个物体所运行的时间相同(2)在整个运行过程中, 2个物体所走的是同一路径。

相遇问题: 总路程=速度和×相遇时间相遇时间=总路程÷速度和相遇时间=路程差÷速度差速度和=总路程÷相遇时间追及问题: 追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间一、相遇问题——基础题两列火车从两个车站同时出发相对开出, 甲车每小时行44千米, 乙车每小时行52千米, 经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?两列火车从两个车站同时相对开出。

甲车每小时行44千米, 乙车每小时行52千米, 经过2.5小时后两车还相距85千米。

六年级相遇问题

六年级相遇问题

题型一、相遇问题与追及问题相遇问题当中:相遇路程=速度和⨯相遇时间追及问题当中:追及路程=速度差⨯追及时间航船问题中顺水时:速度=船速+水速逆水时:速度=船速-水速*************画路程图时必须注意每一段路程对应的问题是相遇问题还是追及问题【例题1】甲、乙两人从A地到B地,丙从B地到A地。

他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。

求乙的速度?【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?分析:两次相遇问题,其实两车一起走了3段两地距离,当然也用了3倍的一次相遇时间。

变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离中点西侧20米处,求东西两地相距多远?【例题3】快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时。

两车分别从两站同时开出,相向而行,在离中点18千米处相遇。

甲乙两站相距多少千米?分析:中点相遇问题,实际上是相遇问题和追及问题的综合。

变式1、快车每小时行48千米,慢车每小时行42千米。

两车分别从两站同时开出,相向而行,在离中点18千米处相遇。

甲乙两站相距多少千米?变式2、快慢两车分别从两站同时开出,相向而行,4小时后在离中点18千米处相遇。

快车每小时行70千米,求慢车每小时行多少千米?【例题4】甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发。

乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。

这只狗共奔跑了多少路程?分析:相遇问题。

关键是求相遇时间。

【例题5】甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米。

六年级相遇问题

六年级相遇问题

相遇问题:公式(1)总路程=(甲速+乙速) ×相遇时间(2)相遇时间=总路程÷(甲速+乙速)一、求路程1) 甲乙二人分别从AB两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,又继续前进,分别到达B、A两地后又立即按原速度返回。

从开始直到第二次相遇,共用了6小时。

问AB两地相距多少千米?2) 两列火车从甲乙两地同发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。

两车相遇时,每一列火车比第二列火车多行了20千米,求甲乙两地间的距离。

3) 甲乙二人同时从AB两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1.5千米的地方相遇。

求AB两地之间的距离。

4) 从甲城往乙城开出一列普通客车,每小时行60千米,行驶到全程的3/17时,从乙城往甲城开出一列快车,每小时行驶80千米。

快车开出4小时后同普通客车相遇。

求甲乙两城间相距多少千米?5) 甲车的速度是乙车速度的5/6,两车同时从AB两站相向而行,在离中点2千米处相遇,求两站间的距离。

1二、求各行多少1)两地相距37.5千米,甲乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小时走4千米,相遇时甲乙二人各走了多少千米?2)甲乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米。

相遇后他们又继续走了1小时。

两人各走了多少千米?3)两列火车分别从甲乙两个火车站相对开出,第一列火车每小时行48.65千米,第二列火车每小时行47.35千米。

两车在相遇时,第一列火车比第二列火车多行了5.2千米。

求相遇时两列火车各行了多少千米?4)东西两车站相距564千米,两列火车同时从两站相对开出,经6小时相遇。

第一列火车比第二列火车每小时快2千米。

相遇时这两列火车各行了多少千米?三、求相遇时间1)两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出。

客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。

相遇问题的计算公式

相遇问题的计算公式

相遇问题的计算公式一、相遇问题的基本公式1. 一般相遇问题- 路程和 = 速度和×相遇时间- 速度和 = 路程和÷相遇时间- 相遇时间 = 路程和÷速度和二、题目解析1. 例1:- 题目:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是5米/秒,乙的速度是3米/秒,经过10秒两人相遇,求A、B两地的距离。

- 解析:- 已知甲的速度v_甲 = 5米/秒,乙的速度v_乙=3米/秒,相遇时间t = 10秒。

- 根据路程和 = 速度和×相遇时间,速度和v = v_甲+v_乙=5 + 3=8米/秒。

- 则A、B两地的距离(路程和)s=v× t = 8×10 = 80米。

2. 例2:- 题目:A、B两地相距120千米,甲、乙两车分别从A、B两地同时出发相向而行,经过2小时相遇,已知甲车的速度是35千米/小时,求乙车的速度。

- 解析:- 已知路程和s = 120千米,相遇时间t = 2小时,甲车速度v_甲=35千米/小时。

- 根据速度和 = 路程和÷相遇时间,速度和v=(s)/(t)=(120)/(2)=60千米/小时。

- 乙车速度v_乙=v - v_甲=60 - 35 = 25千米/小时。

3. 例3:- 题目:甲、乙两人从相距200米的两地同时出发相向而行,甲的速度为12米/分钟,乙的速度为8米/分钟,他们多长时间能相遇?- 解析:- 已知路程和s = 200米,甲的速度v_甲 = 12米/分钟,乙的速度v_乙 = 8米/分钟。

- 根据相遇时间 = 路程和÷速度和,速度和v=v_甲 + v_乙=12+8 = 20米/分钟。

- 相遇时间t=(s)/(v)=(200)/(20)=10分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学相遇问题公式及例题
小学六年级数学相遇问题公式及例题
相遇问题公式
1.相遇路程=速度和×相遇时间
2.相遇时间=相遇路程÷速度和
3.速度和=相遇路程÷相遇时间
例1.甲乙两站相距360千米。

客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的`地点离乙站多少千米?
解答:
客车从甲站行至乙站需要
360÷60=60(小时)
客车在乙站停留0.5小时后开始返回甲站时,货车行了
40×(6+0.5)=260(千米)
货车此时距乙站还有360-260=100(千米)
货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为100÷(60+40)=1(小时)
所以,相遇点离乙站
60×1=60(千米)
例2.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
解答:
甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即
(60+70)×2=260(米)
甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需
260÷(60-50)=26(分)所以,A、B两地相距
(50+70)×26=3120(米)。

相关文档
最新文档