温湿度采集系统设计
温湿度监测系统设计

温湿度监测系统设计简介温湿度监测系统设计是指设计一种能够实时监测环境温度和湿度的系统。
该系统可以广泛应用于许多领域,如农业、生物实验室、供应链管理和建筑管理等。
系统架构温湿度监测系统的基本架构由以下几个组件组成:传感器传感器是温湿度监测系统的核心组件,用于实时采集环境温度和湿度数据。
常见的传感器类型包括温度传感器和湿度传感器。
这些传感器可以通过多种接口(如模拟接口或数字接口)与系统主控板连接。
主控板主控板是温湿度监测系统的控制中心,负责调度传感器的工作,接收并处理传感器采集的数据。
主控板通常包括一个微处理器和一些I/O端口,用于与传感器和其他外部设备进行通信。
数据存储温湿度监测系统需要一个数据存储设备来存储传感器采集的数据。
这可以是一个本地数据库,也可以是一个云端存储解决方案。
数据存储设备需要提供高可靠性和灵活性,以满足系统运行和数据分析的需求。
用户界面温湿度监测系统需要一个用户界面,以便用户可以实时监测环境的温湿度数据。
用户界面可以是一个网页应用程序或一个移动应用程序,通过与主控板或数据存储设备进行通信,显示和更新温湿度数据。
系统设计考虑因素在设计温湿度监测系统时,需要考虑以下因素:传感器选择选择适合特定应用场景的传感器。
不同的传感器有不同的测量范围、精度和响应时间等特性。
根据具体需求选择合适的传感器以确保系统性能和准确性。
数据采集频率根据应用需求和资源限制,确定数据采集的频率。
如果需要更高的实时性,可以选择更高的采样频率。
然而,较高的采样频率可能会增加系统的数据处理和存储需求。
数据存储和处理选择适当的数据存储和处理方案。
可以选择本地数据库来存储数据,也可以选择将数据上传到云端进行存储和分析。
确保数据存储和处理方案具备良好的可靠性和性能,以满足系统的要求。
用户界面设计设计一个用户友好的界面,使用户能够方便地查看和管理温湿度数据。
用户界面应具备良好的可用性和可扩展性,以支持不同平台和设备。
系统工作流程温湿度监测系统的工作流程通常包括以下几个步骤:1.启动系统:用户启动系统,主控板开始工作。
基于单片机的温湿度监测系统设计

基于单片机的温湿度监测系统设计一、引言在现代生活和工业生产中,对环境温湿度的准确监测具有重要意义。
温湿度的变化可能会影响到产品质量、设备运行以及人们的生活舒适度。
因此,设计一个高效、准确且可靠的温湿度监测系统至关重要。
本设计基于单片机,旨在实现对环境温湿度的实时监测和数据处理。
二、系统总体设计方案(一)系统功能需求本系统需要实现以下功能:1、实时采集环境温湿度数据。
2、对采集到的数据进行处理和分析。
3、将温湿度数据显示在液晶显示屏上。
4、具备数据存储功能,以便后续查询和分析。
5、当温湿度超出设定范围时,能够发出报警信号。
(二)系统总体架构本系统主要由传感器模块、单片机控制模块、显示模块、存储模块和报警模块组成。
传感器模块负责采集温湿度数据,并将其转换为电信号传输给单片机。
单片机对接收的数据进行处理和分析,然后将结果发送给显示模块进行显示,同时将数据存储到存储模块中。
当温湿度超出设定范围时,单片机控制报警模块发出报警信号。
三、硬件设计(一)传感器选择选用 DHT11 数字温湿度传感器,它是一款含有已校准数字信号输出的温湿度复合传感器。
具有体积小、功耗低、响应速度快、性价比高等优点,能够满足本系统的设计要求。
(二)单片机控制模块选择 STC89C52 单片机作为控制核心。
它具有丰富的 I/O 口资源、较高的处理速度和稳定性,能够有效地处理和控制整个系统的运行。
(三)显示模块采用液晶显示屏 1602,它能够清晰地显示温湿度数据和相关信息。
(四)存储模块选用 EEPROM 芯片 AT24C02 作为存储模块,用于存储温湿度数据,方便后续查询和分析。
(五)报警模块使用蜂鸣器作为报警装置,当温湿度超出设定范围时,单片机控制蜂鸣器发出报警声音。
四、软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机内部资源的初始化、传感器的初始化、显示模块的初始化等。
然后,系统进入循环,不断读取传感器采集到的温湿度数据,并进行处理和分析。
基于ZigBee技术的温湿度数据采集系统设计毕业设计

毕业设计基于ZigBee技术的温湿度数据采集系统设计摘要:本设计提出了一种利用新型低功率、低成本的ZigBee无线网络技术来实现分布式温湿度检测系统的方法。
该方法采用了一款含有已校准数字信号输出的温湿度复合传感器芯片SHT11来对温湿度进行数据采集,并采用符合ZigBee标准的CC2430射频芯片作为传感器节点的数据采集和处理单元。
在IAR开发环境下编写和编译传感器节点程序,实现了无线传感器网络采集温湿度信号及传感器节点之间的数据传输功能。
本设计对无线传感器网络化农业工业等温湿度数据采集系统进行了测试和应用性试验,结果表明该系统各项技术性能指标达到设计要求,具有推广和应用价值。
关键词:ZigBee,温湿度,SHT11,CC2430,无线传感网络,数据采集Abstract:This paper proposes a method to realize the distributed detection system of temperature and humidity using zigbee wireless network technology which is new low-power, low cost. The method collects data on temperature and humidity by using a single chip relative humidity and temperature multi sensor comprising a calibrated digital output, using the line with zigbee standard CC2430 radio chip as the sensor nodes in data collection. After writing and compiling procedures in the IAR development environment, sensor nodes achieve a wireless sensor network by collecting temperature and humidity signals and transmission data between nodes. The design makes the application experiment on wireless sensor networks of agricultural industrial temperature and humidity data acquisition system, the results show that the technical performance indicators meet the design requirement with the promotion and application value.Keyword: ZigBee, Temperature and humidity, SHT11, CC2430, Wireless sensor networks, Data acquisition目录1 前言 (5)2 无线传感器网络 (5)2.1 无线传感器网络体系结构 (6)2.2 无线传感器网络特点 (7)2.3 无线传感网络的发展趋势 (8)3 Zigbee技术简介 (9)3.1 Zigbee技术的由来 (9)3.2 Zigbee的技术特点 (9)3.3 Zigbee协议栈 (10)3.4 Zigbee网络拓扑结构 (11)4 系统总体方案设计 (12)4.1 系统总体框架 (12)4.2 无线传感网络节点设计 (12)4.3 系统设计芯片的选择 (13)4.3.1 SHT11介绍 (13)4.3.2 CC2430介绍 (16)4.3.3 RS-485 (17)5 系统的硬件设计 (18)5.1 采集单元设计 (18)5.2 CC2430单元设计 (20)5.2.1 处理器单元设计 (20)5.2.2 通讯模块设计 (21)5.2.3 天线 (21)6 系统的软件设计 (22)7 系统测试 (23)7.1 系统测试结果 (25)7.1.1 组网测试结果 (25)7.1.2 数据传输及显示测试结果 (25)结论 (26)参考文献 (27)致谢 (28)1 前言目前的环境状况逐渐恶化,已引起人们广泛的关注。
基于ZigBee的温湿度采集系统设计

基于ZigBee的温湿度采集系统设计近年来,随着无线通信网络技术的飞速发展,人们不需要花费高成本和进行复杂的布线,就能实现系统组网和数据通信。
而ZigBee无线传感器网络因其低功率、低成本的特性,受到了科学爱好者和人们的广泛的关注。
它作为ZigBee 技术和传感器技术相结合的产物,能组建ZigBee无线传感器网络,实现点与点之间的通信。
本设计采用符合ZigBee标准的CC2530作为传感器节点的数据采集和处理单元,并采用了温湿度复合传感器芯片DHT11进行温湿度进行数据采集。
在IAR开发环境下进行传感器节点程序的编写,实现无线传感器网络对温湿度信号的采集,并实现传感器节点之间的数据传输功能。
标签:ZigBee DHT11 CC2530 无线传感网络温湿度数据采集一、温湿度采集系统的总体设计协调器上电后,能够建立ZigBee无线网络,接着终端节点能查找并自动加入该ZigBee无线网络中,这时就建立起了协调器和终端节点的通信。
终端节点能够定时的采集温湿度数据,并将其通过网络发送给协调器,协调器收到温湿度数据后,通过RS232通信串口传输上到PC机。
系统设计原理图如图3-1:图1-1 系统设计原理图1.无线传感器网络节点设计针对ZigBee无线传感器网络的功能和组成,将传感器节点大致分成如下几个部分:采集单元、处理单元、通讯单元、电源单元。
无线传感器网络节点的模块如图1-2:图1-2 无线传感器网络节点的模块2.系统设计的主要任务2.1硬件平台的搭建:基于符合ZigBee标准的CC2530和温湿度传感器DHT11相结合,实现系统对温湿度的采集、存储和收集功能,并通过RS232与PC机相联,把收集到的温湿度数据传输到PC机中进行分析处理。
2.2软件平台的搭建:在IAR开发环境下进行传感器节点程序的编写和编译,实现无线传感器网络对温湿度数据的采集,还能实现传感器节点之间的数据传输功能。
二、温湿度采集系统的硬件设计1.系统采集单元设计鉴于本实验测量环境的特殊要求,需要对温湿度高精确度的测量和长期的保持工作。
基于单片机的温湿度检测系统的设计

基于单片机的温湿度检测系统的设计一、引言温湿度是常见的环境参数,对于很多应用而言,如农业、生物、仓储等,温湿度的监测非常重要。
因此,设计并实现一个基于单片机的温湿度检测系统是非常有实际意义的。
本文将介绍该温湿度检测系统的设计方案,并详细阐述其硬件和软件实现。
二、系统设计方案1.硬件设计(1)传感器选择温湿度传感器的选择非常关键,常用的温湿度传感器包括DHT11、DHT22、SHT11等。
根据不同应用场景的精度和成本要求,选择相应的传感器。
(2)单片机选择单片机是整个系统的核心,需要选择性能稳定、易于编程的单片机。
常用的单片机有51系列、AVR系列等,也可以选择ARM系列的单片机。
(3)电路设计温湿度传感器与单片机的连接电路包括供电电路和数据通信电路。
供电电路通常采用稳压电源,并根据传感器的工作电压进行相应的电压转换。
数据通信电路使用串行通信方式。
2.软件设计(1)数据采集单片机通过串行通信方式从温湿度传感器读取温湿度数据。
根据传感器的通信协议,编写相应的代码实现数据采集功能。
(2)数据处理将采集到的温湿度数据进行处理,可以进行数据滤波、校准等操作,以提高数据的准确性和可靠性。
(3)结果显示设计一个LCD显示屏接口,将处理后的温湿度数据通过串行通信方式发送到LCD显示屏上显示出来。
三、系统实现及测试1.硬件实现按照上述设计方案,进行硬件电路的实现。
连接传感器和单片机,搭建稳定的供电电路,并确保电路连接无误。
2.软件实现根据设计方案,使用相应的开发工具编写单片机的代码。
包括数据采集、数据处理和结果显示等功能的实现。
3.系统测试将温湿度检测系统放置在不同的环境条件下,观察测试结果是否与真实值相符。
同时,进行长时间的测试,以验证系统的稳定性和可靠性。
四、系统优化优化系统的稳定性和功耗,可以采用以下方法:1.优化供电电路,减小电路噪声和干扰,提高电路的稳定性。
2.优化代码,减小程序的存储空间和运行时间,降低功耗。
仓库温湿度检测系统设计

仓库温湿度检测系统设计1.引言仓库是储存物品的重要场所,对于一些物品而言,温湿度的控制非常重要。
例如,一些易腐烂的食品需要低温干燥的环境才能存放长时间,而一些高温敏感的电子设备则需要保持低湿度来防止损坏。
因此,设计一个仓库温湿度检测系统对于仓库管理非常重要。
2.系统概述2.1温湿度传感器温湿度传感器是用于测量仓库内部温湿度的设备。
常见的温湿度传感器有电子传感器和光学传感器。
系统需要选择适合的传感器来满足温湿度检测的需求。
2.2数据采集模块数据采集模块负责从温湿度传感器中读取数据,并将数据传输到数据处理模块。
可以通过有线或无线方式传输数据。
如果仓库面积较大或温湿度变化快速,无线方式可能更适合。
2.3数据处理模块数据处理模块接收来自数据采集模块的数据,并进行处理和分析。
可以使用微控制器或单片机来实现数据处理功能。
数据处理模块需要实时监控仓库温湿度状态,并根据预先设置的阈值进行判断和报警。
2.4报警系统报警系统用于在温湿度超出预设范围时发出警报。
可以使用声音、光线、手机短信等方式进行报警,并进行记录和通知相关人员。
3.系统设计在设计过程中需要考虑以下几个关键点:3.1传感器选择根据仓库大小、温湿度变化情况和系统预算等因素选择适合的温湿度传感器。
考虑到传感器精度和稳定性等因素,建议选择专业的温湿度传感器。
3.2数据采集与传输根据仓库的实际情况选择有线或无线方式进行数据采集与传输。
有线方式通常更稳定可靠,但无线方式更适合仓库面积较大或需要移动传感器的情况。
3.3数据处理与报警数据处理模块需要接收并处理来自数据采集模块的数据。
可以通过设置阈值,在数据超出预设范围时触发报警系统。
同时,数据处理模块需要进行实时监控,并记录历史数据以便后续分析。
3.4报警系统报警系统需要能够及时准确地发出警报,并记录报警事件。
可以设置不同的报警级别以便根据不同情况采取相应措施。
4.系统实施4.1硬件实施根据系统设计,选择合适的传感器和数据处理模块,并进行搭建和调试。
无线温湿度采集系统设计

案 , 用 C 0 l3 0单 片机 配合铂 电阻两线制 测量 电路 和 HS l 1频率输 出电路 ,. 采 8 5 f3 l0 2 4GHzIM 频 S
段 射 频 收 发 芯 片 n F 4 0 作 为 发 送 和接 收 无 线 通 信 模 块 , C C 8 1 R 2L 1 由 Y7 6 O 3结 合 无 线 通 信 模 块 作 为 接 收 机 , 过 US 通 B将 温 湿 度 数 据 传 送 到 P C机 , 由 L b id wsC 显 示 实 时 温 湿 度 变 化 曲线 。 并 a W n o / VI 关 键 词 : 湿 度 采 集 ; Y C 8 1 ; a W id wsC 温 C 7 6 0 3 L b n o / VI
无线通 信模块 n F 4 0 R 2 L 1作 为基 础 , 由单 片 机 配合
P l 0铂 电阻两线 制 测量 电路 和 HS 1 1 度转 频 tO 10 湿
据 并通过 n F 4 0 R 2 L 1无 线模 块 将 数 据发 送 给 主 机 , 主机通 过 US B接 口将 数据传送 给 P C机 , 由 L b 并 a— Wid wsC 显 示实 时温度 变化 曲线 。 n o / VI
括 P l 0测 量 电路 , 1 0 t0 HS 1 1测 量 电 路 和 无 线 发射
模块; 主机部分 包括无 线接 收 模块 , B接 口和 P US C 机 界 面) 。系统 结构 如图 1 示 , 机采集 温湿度 数 所 从
存 、 字农业 、 数 医疗监 控等 行业尤 其重 要 。本 系统 以
No .2 0 v 01
文 章 编 号 : 0 8 1 3 ( 0 0 0 —5 00 1 0 - 5 4 2 1 ) 60 0 — 3
室内温湿度检测系统设计

室内温湿度检测系统设计【摘要】本文介绍了室内温湿度检测系统设计的相关内容。
在分别从研究背景、研究目的和研究意义三个方面进行了论述。
在正文部分则详细阐述了传感器选择与布局设计、硬件系统设计、软件系统设计、系统性能测试以及数据处理与分析等内容。
在总结了设计的成果,并展望了未来的发展方向,同时也对系统的局限性进行了讨论。
通过本文的介绍,读者可以了解到室内温湿度检测系统设计的具体过程和关键技术,以及该系统在实际应用中的重要性和潜在的局限性。
【关键词】室内温湿度检测系统设计、传感器、布局设计、硬件系统、软件系统、性能测试、数据处理、设计总结、未来展望、局限性讨论。
1. 引言1.1 研究背景室内温湿度检测系统设计的研究背景对于室内环境的监测与调控起着至关重要的作用。
随着人们对居住环境舒适性的要求不断提高,室内温湿度的监测,实时控制以及数据分析变得愈发重要。
传统的温湿度检测方法主要依靠人工测量或使用简单的仪器进行监测,然而这些方法存在人力成本高、数据采集不精确等问题。
随着物联网技术的快速发展,室内温湿度检测系统的设计与应用变得更加便捷与智能。
通过使用各种传感器技术,可以实时监测室内温湿度数据,并通过硬件系统和软件系统实现数据处理与分析,从而实现智能化的室内环境监测与控制。
这不仅可以提高居住环境的舒适性,还可以节约能源资源,提高生活质量。
设计一套稳定、精准和智能的室内温湿度检测系统对于现代生活具有重要意义。
通过本研究,我们将探讨传感器选择与布局设计、硬件系统设计、软件系统设计、系统性能测试以及数据处理与分析等方面,为室内温湿度检测系统的设计与应用提供一定的参考和指导。
1.2 研究目的研究目的是为了设计一个能够准确监测和控制室内温湿度的系统,以提高室内环境的舒适度和健康性。
通过对室内温湿度的实时监测和分析,可以及时调整空调和加湿器的工作状态,确保室内空气质量达到最佳状态。
研究还旨在探索利用传感器技术和数据处理算法来实现智能化控制系统,从而提高能源利用效率和节约资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第1章设计意义及要求 (1)1.1 设计意义 (1)1.2 设计要求 (1)第2章硬件设计 (2)2.1 AT89S52芯片介绍 (2)2.2 液晶显示器LCD1602 (3)2.2.1 液晶显示原理 (3)2.2.2 液晶显示器分类 (3)2.2.3 显示原理 (3)2.2.4 LCD1602的基本参数及引脚功能 (4)2.3 温湿度模块DHT11介绍 (6)2.3.1 DHT11概述 (6)2.3.2 DHT11传感特性说明 (7)2.3.3 DHT11封装信息 (8)2.3.4 串行接口(单线双向) (8)第3章设计实现 (11)3.1 设计框图及流程 (11)3.2 设计结果及分析 (11)第4章设计总结 (13)参考文献 (14)附录 (15)第1章设计意义及要求1.1 设计意义最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。
在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。
现代社会越来越多的场所会涉及到温度与湿度并将其显示。
由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。
在此范围内感到舒适的人占95%以上。
在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。
如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应是工作效率高。
18℃,湿度应是40%至60%,此时,人的精神状态好,思维最敏捷。
所以,本课程设计就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其他有关设计的基础。
如何高效、稳定地对数据(包括温度、湿度光线、压力等项目)进行实时采集对于现代的企业、工厂、研究所等对数据精度要求较高的单位具有非常重要的意义。
1.2 设计要求本系统设计采用温度和湿度作为采集对象,是以单片机为核心的温度、湿度采集、数字显示系统,用液晶显示出当前温度、湿度的信息。
以此了解AT89S52芯片为核心外接温度传感器和湿度传感器模块在液晶显示屏上显示当前的温度和湿度的过程。
第2章硬件设计2.1 AT89S52芯片介绍AT89S52功能特性描述:AT89S52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。
AT89S52的主要特性是:与MCS-51单片机产品兼容;8K字节在系统可编程Flash存储器;1000次擦写周期;全静态操作:0Hz~33Hz;三级加密程序存储器;32个可编程I/O口线;三个16位定时器/计数器;八个中断源;全双工UART串行通道;低功耗空闲和掉电模式;掉电后中断可唤醒;看门狗定时器;双数据指针;掉电标识符。
图2-1 AT89S52功能引脚图功能引脚说明:VCC:电源GND:接地RST:复位输入P0口:是一个8位漏极开路的双向I/O口,也被作为低8位地址/数据复用。
P1口:是一个有内部上拉电阻的8位双向I/O口,在flash编程和校验时,P1口接收低8位地址字节。
P2口:是一个具有内部上拉电阻的8 位双向I/O 口,也接收高8位地址字节和一些控制信号。
P3口:是一个具有内部上拉电阻的8 位双向I/O 口,亦作为AT89S52特殊功能(第二功能)使用。
ALE/PROG:地址锁存控制信号。
PSEN:外部程序存储器选通信号。
EA/VPP:访问外部程序存储器控制信号。
XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。
XTAL2:振荡器反相放大器的输出端。
2.2 液晶显示器LCD1602在日常生活中,我们对液晶显示器并不陌生。
液晶显示模块已作为很多电子产品的通过器件,如在计算器、万用表、电子表及很多家用电子产品中都可以看到,显示的主要是数字、专用符号和图形。
在单片机的人机交流界面中,一般的输出方式有以下几种:发光管、LED数码管、液晶显示器。
发光管和LED数码管比较常用,软硬件都比较简单,在前面章节已经介绍过,在此不作介绍,本章重点介绍字符型液晶显示器的应用。
在单片机系统中应用晶液显示器作为输出器件有以下几个优点:(1)显示质量高(2)数字式接口(3)体积小、重量轻(4)功耗低2.2.1 液晶显示原理液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,有电就有显示,这样即可以显示出图形。
液晶显示器具有厚度薄、适用于大规模集成电路直接驱动、易于实现全彩色显示的特点,目前已经被广泛应用在便携式电脑、数字摄像机、PDA移动通信工具等众多领域。
2.2.2 液晶显示器分类液晶显示的分类方法有很多种,通常可按其显示方式分为段式、字符式、点阵式等。
除了黑白显示外,液晶显示器还有多灰度有彩色显示等。
如果根据驱动方式来分,可以分为静态驱动(Static)、单纯矩阵驱动(Simple Matrix)和主动矩阵驱动(Active Matrix)三种。
2.2.3显示原理首先是液晶的线段的显示。
点阵图形式液晶由M×N个显示单元组成,假设LCD显示屏有64行,每行有128列,每8列对应1字节的8位,即每行由16字节,共16×8=128个点组成,屏上64×16个显示单元与显示RAM区1024字节相对应,每一字节的内容和显示屏上相应位置的亮暗对应。
例如屏的第一行的亮暗由RAM区的000H——00FH的16字节的内容决定,当(000H)=FFH时,则屏幕的左上角显示一条短亮线,长度为8个点;当(3FFH)=FFH时,则屏幕的右下角显示一条短亮线;当(000H)=FFH,(001H)=00H,(002H)=00H,......(00EH)=00H,(00FH)=00H时,则在屏幕的顶部显示一条由8段亮线和8条暗线组成的虚线。
这就是LCD显示的基本原理。
其次是液晶字符的显示。
用LCD显示一个字符时比较复杂,因为一个字符由6×8或8×8点阵组成,既要找到和显示屏幕上某几个位置对应的显示RAM区的8字节,还要使每字节的不同位为“1”,其它的为“0”,为“1”的点亮,为“0”的不亮。
这样一来就组成某个字符。
但由于内带字符发生器的控制器来说,显示字符就比较简单了,可以让控制器工作在文本方式,根据在LCD上开始显示的行列号及每行的列数找出显示RAM对应的地址,设立光标,在此送上该字符对应的代码即可。
图2-2液晶显示原理图2.2.4 LCD1602的基本参数及引脚功能1602LCD分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别,两者尺寸差别如图2-1所示:图2-3 LCD1602尺寸图LCD1602的主要技术参数:(1)显示容量:16×2个字符(2)芯片工作电压:4.5—5.5V(3)工作电流:2.0mA(5.0V)(4)模块最佳工作电压:5.0V(5)字符尺寸:2.95×4.35(W×H)mm引脚功能说明:LCD1602采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如表1所示:表1 引脚接口说明2.3 温湿度模块DHT11介绍2.3.1 DHT11概述DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。
它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。
传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。
因此该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。
每个DHT11传感器都在极为精确的湿度校验室中进行校准。
校准系数以程序的形式储存在OTP内存中,传感器内部在检测信号的处理过程中要调用这些校准系数。
单线制串行接口,使系统集成变得简易快捷。
超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选则。
产品为 4 针单排引脚封装。
连接方便,特殊封装形式可根据用户需求而提供。
它具备以下特点:(1)相对湿度和温度测量(2)全部校准,数字输出(3)卓越的长期稳定性(4)无需额外部件(5)超长的信号传输距离(6)超低能耗(7)4 引脚安装(8)完全互换应用领域有:暖通空调、测试及检测设备汽车、数据记录器、消费品、自动控制、气象站、家电、湿度调节器、医疗、除湿器等。
温湿度传感器模块DHT11实物图为图2-4:图2-4 DHT11模块实物图DHT11的供电电压为3-5.5V。
传感器上电后,要等待 1s 以越过不稳定状态在此期间无需发送任何指令。
电源引脚(VDD,GND)之间可增加一个100nF 的电容,用以去耦滤波。
图2-5为DHT11接口说明:图2-5 DHT11接口说明图表2为DHT11测量信息:表2 DHT11测量信息型号测量范围测湿精度测温精度分辨力封装DHT11 20-90%RH 0-50℃±5%RH ±2℃ 1 4针单排直插测量分辨率分别为 8bit(温度)、8bit(湿度)。
2.3.2 DHT11传感特性说明DHT11传感特性以表3所示:参数条件Min Typ Max 单位湿度分辨率 1 1 1 %RH8 Bit重复性±1 %RH精度25℃±4 %RH0-50℃±5 %RH 互换性可完全互换量程范围0℃30 90 %RH25℃20 90 %RH50℃20 80 %RH6 10 15 S响应时间1/e(63%)25℃,1m/s 空气迟滞±1 %RH长期稳定性典型值±1 %RH/yr 温度分辨率 1 1 1 ℃8 8 8 Bit重复性±1 ℃精度±1 ±2 ℃量程范围0 50 ℃响应时间1/e(63%) 6 30 S2.3.3 DHT11封装信息DHT11封装信息以图2-6所示:图2-6 DHT11封装信息图下表为DHT11引脚说明:Pin 名称注释1 VDD 供电 3-5.5VDC2 DATA 串行数据,单总线3 NC 空脚,请悬空4 GND 接地,电源负极2.3.4 串行接口(单线双向)DATA 用于微处理器与 DHT11之间的通讯和同步,采用单总线数据格式,一次通讯时间4ms左右,数据分小数部分和整数部分,具体格式在下面说明,当前小数部分用于以后扩展,现读出为零;操作流程如下: 一次完整的数据传输为40bit,高位先出。